MATH 21B, practice problems for Midterm 2

This practice sheet contains more problems than the actual exam.

1. Consider the function $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
a) Find the length of the curve given by the equation $y=f(x),-1 \leq x \leq 1$.
b) Let R be the region bounded by the graph of $f(x)$ and the lines $x=1, x=-1$ and $y=0$. Find the area of R.
c) Find the coordinates of the center of mass of R.
d) Consider the solid obtained by rotation of R about the x-axis. Find its volume and surface area.
e) Consider the solid obtained by rotation of R about the y-axis. Find its volume.
2. A submarine has a shape of a round cylinder with radius R and length h. It is fully submerged such that its axis is horizontal at depth d (and $d>R$). Find the total force of water pressure acting on the front of the submarine.
3. By Newton's law of gravity two bodies with masses m and M are attracted to each other with a force

$$
F=G \frac{m M}{d^{2}}, G \text { is a constant }
$$

where d is the distance between their centers. A planet has a shape of a round ball of radius R and has mass M, a rocket of mass m starts vertically from its surface.
a) Compute the work $W(H)$ needed to move the rocket to a height H above the surface. What happens at the limit $H \rightarrow \infty$?
b) The escape velocity is the minimum speed needed for the rocket to move infinitely away from the planet without using its engine. Alternatively, if v is the escape velocity then the kinetic energy $m v^{2} / 2$ of the rocket at start equals $W(\infty)$. Use this idea to find the escape velocity.
4. A plate is bounded by the parabola $y=x^{2}$ and the line $y=1$. Find its center of mass.
5. Solve the differential equations:
a) $y^{\prime}=y / x$
b) $y^{\prime}=e^{x+y}$

