MAT 21B, Spring 2019 Solutions to homework 1

Section 5.1

2. (10 points) (a) (2 points) Using lower sum with two rectangles:

$$
0.5(f(0)+f(0.5))=0.5\left(0+0.5^{3}\right)=0.0625
$$

(b) (3 points) Using lower sum with four rectangles:
$0.25(f(0)+f(0.25)+f(0.5)+f(0.75))=0.25\left(0+0.25^{3}+0.5^{3}+0.75^{3}\right)=$
$0.25(0+0.015625+0.125+0.421875)=0.25 \cdot 0.5625=0.140625$.
(c) (2 points) Using upper sum with two rectangles:

$$
0.5(f(0.5)+f(1))=0.5\left(0.5^{3}+1\right)=0.5 \cdot 1.125=0.5625
$$

(d) (3 points) Using upper sum with four rectangles:
$0.25(f(0.25)+f(0.5)+f(0.75)+f(1))=0.25\left(0+0.25^{3}+0.5^{3}+0.75^{3}+1^{3}\right)=$ $0.25(0+0.015625+0.125+0.421875+1)=0.25 \cdot 1.5625=0.390625$.
10. (10 points) Note that the velocity is in $\mathrm{m} / \mathrm{sec}$ while time is in minutes. To transform everything to minutes, we have to multiply everything by 60 . We get the following answers:
(a) (5 points)
$60 \cdot 5 \cdot(1+1.2+1.7+2.0+1.8+1.6+1.4+1.2+1.0+1.8+1.5+1.2)=60 \cdot 5 \cdot 17.4=5220 \mathrm{~m}$.
(b) (5 points)
$60 \cdot 5 \cdot(1.2+1.7+2.0+1.8+1.6+1.4+1.2+1.0+1.8+1.5+1.2+0)=60 \cdot 5 \cdot 16.4=4920 \mathrm{~m}$.
12. (10 points) (a) (5 points) For simplicity, we use right endpoints:
$0.001(40+62+82+96+108+116+125+132+137+142)=0.001 \cdot 1040=1.04$ miles.
(b) (5 points) The halfway point was after about $1.04 / 2=0.52$ miles. Since

$$
0.001(40+62+82+96+108+116)=0.504
$$

the car reached halfway point after about $0.006 \mathrm{~h}=21.6 \mathrm{sec}$. It was going 116 miles per hour.

