MAT 21B, Spring 2019 Solutions to homework 4

Section 6.1: 14. (10 points) A solid lies between the planes $x=0$ and $x=12$, and its cross-sections are circles whose diameters run from $y=x / 2$ to $y=x$. Explain why the solid have the same volume as the circular cone with radius 3 and height 12 .

Solution: The diameter of the cross-section equals $x-x / 2=x / 2$, so the radius equals $x / 4$ and the area of such a cross-section equals

$$
A(x)=\pi(x / 4)^{2}=\frac{1}{16} \pi x^{2}
$$

The volume equals

$$
\begin{gathered}
V=\int_{0}^{12} A(x) d x=\int_{0}^{12} \frac{1}{16} \pi x^{2} d x=\left.\frac{1}{16} \pi \frac{x^{3}}{3}\right|_{0} ^{12}=\frac{1}{16} \pi \cdot \frac{12^{3}}{3}= \\
\frac{12^{3} \pi}{3 \cdot 16}=\frac{1728 \pi}{48}=36 \pi .
\end{gathered}
$$

On the other hand, the volume of the circular cone with radius 3 and height 12 equals

$$
V_{\text {cone }}=\frac{1}{3} \cdot 12 \cdot \pi \cdot 3^{2}=36 \pi
$$

24. (10 points) Find the volume of the solid obtained by rotation of the region bounded by $y=x-x^{2}$ and $y=0$ around the x-axis.

Solution: The graphs $y=x-x^{2}$ and $y=0$ intersect at points where $x-x^{2}=0$, that is, $x=0$ and $x=1$. Now

$$
\begin{aligned}
& V=\int_{0}^{1} \pi\left(x-x^{2}\right)^{2} d x=\pi \int_{0}^{1}\left(x^{2}-2 x^{3}+x^{4}\right) d x=\left.\pi\left(\frac{x^{3}}{3}-2 \frac{x^{4}}{4}+\frac{x^{5}}{5}\right)\right|_{0} ^{1}= \\
& \pi\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)=\pi \frac{20-2 \cdot 15+12}{60}=\frac{2 \pi}{60}=\frac{\pi}{30}
\end{aligned}
$$

62. (10 points) The bob is obtained by the rotation of the curve $y=$ $\frac{x}{12} \sqrt{36-x^{2}}$ for $0 \leq x \leq 6$. Find the volume of the bob. If the brass density is $8.5 \mathrm{~g} / \mathrm{cm}^{3}$, find the mass of the bob.

Solution: We have $f(x)=\frac{x}{12} \sqrt{36-x^{2}}$, so

$$
\begin{gathered}
V=\int_{0}^{6} \pi f(x)^{2} d x=\pi \int_{0}^{6} \frac{x^{2}}{12^{2}}\left(36-x^{2}\right) d x=\frac{\pi}{144} \int_{0}^{6}\left(36 x^{2}-x^{4}\right)= \\
\left.\frac{\pi}{144}\left(36 \frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{0} ^{6}=\frac{\pi}{144}\left(12 \cdot 6^{3}-6^{5} / 5\right)=\pi(18-10.8)=7.2 \pi \simeq 22.6 \mathrm{~cm}^{3}
\end{gathered}
$$

Therefore the mass equals $22.6 \cdot 8.5 \simeq 192.3 g$.

