MAT 21B, Spring 2019 Solutions to homework 5

Section 6.2: 6. (10 points) Find the volume of the solid obtained by rotation of the region below the graph

$$
f(x)=\frac{9 x}{\sqrt{x^{3}+9}}, 0 \leq x \leq 3
$$

around the y-axis.
Solution: We have

$$
V=2 \pi \int_{0}^{3} x f(x) d x=2 \pi \int_{0}^{3} \frac{9 x^{2}}{\sqrt{x^{3}+9}} d x
$$

Let $u=x^{3}+9$, then $d u=3 x^{2}$ and

$$
V=2 \pi \int_{9}^{36} \frac{3 d u}{\sqrt{u}}=6 \pi \int_{9}^{36} u^{-1 / 2} d u=\left.6 \pi \cdot\left(2 u^{1 / 2}\right)\right|_{9} ^{36}=12 \pi(6-3)=36 \pi
$$

Section 6.4: 27. (10 points) Your company plans to coat 5000 woks inside and outside with 0.5 mm think enamel. Each wok is a part of the surface of the sphere of radius 16 between $x=-7$ and $x=-16$. How much enamel do you need?

Solution: Let us find the area of the surface first. We have

$$
S=2 \pi \int_{7}^{16} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

where $f(x)=\sqrt{256-x^{2}}$, so

$$
\begin{gathered}
f^{\prime}(x)=\frac{-2 x}{2 \sqrt{256-x^{2}}}=\frac{-x}{\sqrt{256-x^{2}}} \\
\left(f^{\prime}(x)\right)^{2}=\frac{x^{2}}{256-x^{2}}
\end{gathered}
$$

so

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\frac{x^{2}}{256-x^{2}}=\frac{256-x^{2}+x^{2}}{256-x^{2}}=\frac{256}{256-x^{2}}
$$

$$
\sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{\frac{256}{256-x^{2}}}=\frac{16}{\sqrt{256-x^{2}}}
$$

and finally

$$
f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{256-x^{2}} \cdot \frac{16}{\sqrt{256-x^{2}}}=16
$$

Therefore

$$
S=2 \pi \int_{7}^{16} 16 d x=\left.32 \pi x\right|_{7} ^{16}=32 \pi(16-7)=32 \pi * 9 \approx 905 \mathrm{~cm}^{2}
$$

Now for one wok we need to cover it with thickness $0.5 \mathrm{~mm}=0.05 \mathrm{~cm}$, so we need

$$
905 \cdot 0.05 \approx 45 \mathrm{~cm}^{3}
$$

of enamel. For 5000 woks we then need about $226,194 \mathrm{~cm}^{3} \approx 226$ liters of enamel of each color.
32. (10 points) Find the area of the surface generated by the rotation about the x-axis the graph of $y=\left(1-x^{2 / 3}\right)^{3 / 2}$ for $-1 \leq x \leq 1$.

Solution: We can restrict to $0 \leq x \leq 1$ and double the result. We have

$$
S=2 \pi \int_{0}^{1} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

so
$f(x)=\left(1-x^{2 / 3}\right)^{3 / 2}, f^{\prime}(x)=\frac{3}{2}\left(1-x^{2 / 3}\right)^{1 / 2} \cdot \frac{2}{3}\left(-x^{-1 / 3}\right)=-x^{-1 / 3}\left(1-x^{2 / 3}\right)^{1 / 2}$.
Now

$$
\left(f^{\prime}(x)\right)^{2}=x^{-2 / 3}\left(1-x^{2 / 3}\right)=x^{-2 / 3}-1,1+\left(f^{\prime}(x)\right)^{2}=x^{-2 / 3}
$$

and

$$
\sqrt{1+\left(f^{\prime}(x)\right)^{2}}=x^{-1 / 3}
$$

We have

$$
S=2 \pi \int_{0}^{1} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x=2 \pi \int_{0}^{1}\left(1-x^{2 / 3}\right)^{3 / 2} \cdot x^{-1 / 3} d x
$$

Let $u=1-x^{2 / 3}$, then $d u=-\frac{2}{3} x^{-1 / 3} d x$, so $x^{-1 / 3} d x=-\frac{3}{2} d u$. We have

$$
S=2 \pi \int_{1}^{0} u^{3 / 2}\left(-\frac{3}{2} d u\right)=6 \pi \int_{0}^{1} u^{3 / 2} d u=\left.3 \pi \cdot \frac{2}{5} u^{5 / 2}\right|_{0} ^{1}=3 \pi \cdot \frac{2}{5}=\frac{6 \pi}{5} .
$$

Now we double the answer and get total area $\frac{12 \pi}{5}$.

