MAT 21B, Spring 2019
 Solutions to homework 6

Section 7.2: Solve the differential equations:
12. (10 points) $\frac{d y}{d x}=3 x^{2} e^{-y}$.

Solution: This is a separable equation, and we can write

$$
\int e^{y} d y=\int 3 x^{2} d x
$$

so

$$
e^{y}=x^{3}+C, y=\ln \left(x^{3}+C\right) .
$$

18. (10 points) $\frac{d y}{d x}=\frac{e^{2 x-y}}{e^{x+y}}$.

Solution: Let us simplify the right hand side first:

$$
\frac{e^{2 x-y}}{e^{x+y}}=e^{2 x-y} \cdot e^{-x-y}=e^{x} e^{-2 y}
$$

Now $d y / d x=e^{x} e^{-2 y}$, so

$$
\begin{gathered}
\int e^{2 y} d y=\int e^{x} d x \\
\frac{1}{2} e^{2 y}=e^{x}+C, e^{2 y}=2\left(e^{x}+C\right), 2 y=\ln \left(2\left(e^{x}+C\right)\right)
\end{gathered}
$$

and

$$
y(x)=\frac{1}{2} \ln \left(2\left(e^{x}+C\right)\right) .
$$

32.(10 points) The concentration of the antibiotic in blood is modeled by the differential equation $y^{\prime}=r-k y$.
(a) If $y(0)=y_{0}$, find $y(t)$ at any time t.
(b) Assume that $y_{0}<r / k$ and find $\operatorname{limit}^{\lim } t_{t \rightarrow \infty} y(t)$. Sketch the solution curve for $y(t)$.

Solution: We have $\frac{d y}{d t}=r-k y$, so

$$
\int \frac{d y}{r-k y}=\int d t
$$

$$
\begin{gathered}
\frac{-1}{k} \ln |r-k y|=t+C, \ln |r-k y|=-k t-k C \\
r-k y= \pm e^{-k t-k C}=A e^{-k t} \quad\left(A= \pm e^{-k C}\right)
\end{gathered}
$$

Therefore $k y=r-A e^{-k t}$ and

$$
y(t)=\frac{1}{k}\left(r-A e^{-k t}\right)
$$

Now we need to find the constant A from the initial condition. We have

$$
k y(0)=r-A, A=r-k y_{0}
$$

so

$$
y(t)=\frac{1}{k}\left(r-\left(r-k y_{0}\right) e^{-k t}\right)=\frac{r}{k}-\frac{r}{k} e^{-k t}+y_{0} e^{-k t}
$$

(b) Since $\lim _{t \rightarrow \infty} e^{-k t}=0$, we have $\lim _{t \rightarrow \infty} y(t)=\frac{r}{k}$.

36.(10 points) The price $p(x)$ for x units satisfies the differential equation

$$
\frac{d p}{d x}=\frac{-p}{100}, p(100)=20.09
$$

(a) Find the formula for $p(x)$.
(b) Find $p(10)$ and $p(90)$.
(c) Show that the revenue $r(x)=x p(x)$ has maximum at $x=100$.
(d) Graph the revenue $r(x)$.

Solution: (a) We have $p(x)=A e^{-x / 100}$, so $p(100)=A e^{-100 / 100}=A e^{-1}$. We have

$$
A e^{-1}=20.09, A=20.09 e
$$

so

$$
p(x)=20.09 e \cdot e^{-x / 100}=20.09 e^{1-\frac{x}{100}}=20.09 e^{\frac{100-x}{100}} .
$$

(b) If $x=10$ we have $p(x)=20.09 e^{0.9} \approx 49.41$. If $x=90$ then $p(x)=$ $20.09 e^{0.1} \approx 22.20$.
(c) We have $r(x)=A x e^{-x / 100}$, so

$$
r^{\prime}(x)=A e^{-x / 100}+A x \cdot \frac{-1 / 100^{-x / 100}}{e}=A\left(1-\frac{x}{100}\right) e^{-x / 100}
$$

The derivative is positive if $1-\frac{x}{100}>0$, so $100-x>0, x<100$. Therefore the function $r(x)$ increases for $x<100$ and decreases for $x>100$, so it has a maximum at $x=100$.
(d)

