Jet spaces in link homology

Eugene Gorsky
University of California, Davis

AMS Special Session on Integer Partitions, Arc Spaces and Vertex
Operators
JMM 2024

Jet schemes

Let X be an affine scheme defined in \mathbb{C}^{A} by some equations

$$
F_{1}\left(z_{1}, \ldots, z_{A}\right)=\ldots=F_{B}\left(z_{1}, \ldots, z_{A}\right)=0
$$

Recall that the n-th jet scheme $\operatorname{Jet}^{n} X$ is defined as

$$
\operatorname{Spec} \frac{\mathbb{C}\left[z_{i}^{(j)}: 1 \leq i \leq A, 0 \leq j \leq n\right]}{F_{k}\left(z_{1}(t), \ldots, z_{A}(t)\right)=0 \bmod t^{n+1}, 1 \leq k \leq B}
$$

where $z_{i}(t)=z_{i}^{(0)}+z_{i}^{(1)} t+\ldots+z_{i}^{(n)} t^{n}$. The reduced jet scheme plays an important role in motivic integration, and is controlled by the singularities of X.

Jet schemes

In particular, if X is smooth then $\operatorname{Jet}^{n} X$ is a rank $(n+1)$ vector bundle over X and $\operatorname{dim} \operatorname{Jet}^{n} X=(n+1) \operatorname{dim} X$. The work of de Fernex, Ein, Lasarsfeld, Mustata et al. related the invariants of singularities of X to those of the jet schemes.

The work of Bruschek, Mourtada and Schepers initiated the study of the non-reduced structure of $\operatorname{Jet}^{n} X$, in particular, they studied the Hilbert series of the corresponding rings of functions.

In this talk, I will descrive some results and conjectures in link homology which suggest that there is a "derived" generalization of the above constructions.

Jet schemes

For simplicity，assume that X is a complete interesection，consider the Koszul complex：

$$
\mathcal{K}=\left(\mathbb{C}\left[z_{1}, \ldots, z_{A}, \xi_{1}, \ldots, \xi_{B}\right], d\right), d\left(\xi_{k}\right)=F_{k}\left(z_{1}, \ldots, z_{A}\right), d\left(z_{i}\right)=0
$$

By our assumptions，$H^{0}(\mathcal{K})=\mathbb{C}[X]$ and all higher homology vanish．

Definition

Define

$$
\begin{aligned}
\operatorname{Jet}^{n} \mathcal{K} & =\left(\mathbb{C}\left[z_{i}^{(j)}, \xi_{k}^{(j)}\right], d\right), 1 \leq i \leq A, 1 \leq k \leq B, 0 \leq j \leq n, \\
d\left(\xi_{k}(t)\right) & =F_{k}\left(z_{1}(t), \ldots, z_{A}(t)\right) \bmod t^{n+1}, d\left(z_{i}(t)\right)=0 .
\end{aligned}
$$

Problem

Compute the homology of $\mathrm{Jet}^{n} \mathcal{K}$ ．

Jet schemes

The following will be our motivating example.

Example

Let $X=\mathbb{C}[z] /\left(z^{N}\right)$ and $n=1$. We have two even variables $z^{(0)}, z^{(1)}$ and two odd variables $\xi^{(0)}, \xi^{(1)}$ with

$$
d\left(\xi^{(0)}+\xi^{(1)} t\right)=\left(z^{(0)}+z^{(1)} t\right)^{N} \bmod t^{2} .
$$

That is,

$$
d\left(\xi^{(0)}\right)=\left(z^{(0)}\right)^{N}, d\left(\xi^{(1)}\right)=N\left(z^{(0)}\right)^{N-1} z^{(1)} .
$$

Let $\mu=N z^{(1)} \xi^{(0)}-z^{(0)} \xi^{(1)}$, then it is easy to see that

$$
d(\mu)=0, d\left(\xi^{(0)} \xi^{(1)}\right)=-\left(z^{(0)}\right)^{N-1} \mu
$$

The homology of $\operatorname{Jet}^{1} \mathcal{K}$ is generated by $z^{(0)}, z^{(1)}$ and μ modulo relations

$$
\left(z^{(0)}\right)^{N}=N\left(z^{(0)}\right)^{N-1} z^{(1)}=\left(z^{(0)}\right)^{N-1} \mu=0 .
$$

Jet schemes

Example

We have $H^{0} \operatorname{Jet}^{n} \mathcal{K}=\mathbb{C}\left[\operatorname{Jet}^{n} X\right]$.

Higher homology $H^{i} \operatorname{Jet}^{n} \mathcal{K}$ are modules over $H^{0} \mathrm{Jet}^{n} \mathcal{K}$, and hence correspond to some sheaves on $\mathrm{Jet}^{n} X$. It would be interesting to know if these sheaves carry some geometric information about $\mathrm{Jet}^{n} X$ or X.

Now we take a digression to discuss link invariants. As we will see, the above example of $\mathrm{Jet}^{1} \mathcal{K}$ corresponds to the $\mathfrak{g l}(N)$ Khovanov-Rozansky homology of two-strand torus knots.

Link invariants

Given a semisimple Lie algebra \mathfrak{g} and a representation V of the corresponding quantum group $U_{q} \mathfrak{g}$, one can define Reshetikhin-Turaev link invariants. To any link L in \mathbb{R}^{3}, this assigns a polynomial $P_{\mathfrak{g}, V}(L ; q)$ which depends on a single variable q. Some examples include:

- For $\mathfrak{g}=\mathfrak{g l}(2)($ or $\mathfrak{g}=\mathfrak{s l}(2))$ and $V=\mathbb{C}^{2}$, one gets the Jones polynomial.
- For $\mathfrak{g}=\mathfrak{g l}(2)$ and $V=S^{k} \mathbb{C}^{2}$, one gets the colored Jones polynomial.
- For $\mathfrak{g}=\mathfrak{g l}(N)$ and $V=\mathbb{C}^{N}$, the polynomial can be computed recursively using skein relation:

$$
q^{-N} P(\kappa \nearrow)-q^{N} P\left(\nwarrow^{\nearrow}\right)=\left(q^{-1}-q\right) P(\ulcorner\widetilde{ })
$$

- For $\mathfrak{g}=\mathfrak{g l}(N)$ and $V=\wedge^{k} \mathbb{C}^{N}$, there are more complicated recursions due to Murakami-Ohtsuki-Yamada (MOY), reinterpreted via web diagrams of Cautis-Kamnitzer-Morrison.

Link invariants

Some basic properties of Reshetikhin-Turaev invariants:

- The invariant of the unknot is given by the q-character of V.
- In particular, for $\mathfrak{g}=\mathfrak{g l}(N)$ and $V=\mathbb{C}^{N}$ the invariant of the unknot equals (up to normalization)

$$
P(O ; q)=\frac{1-q^{N}}{1-q}=1+q+\ldots+\ldots+q^{N-1}
$$

- For $\mathfrak{g}=\mathfrak{g l}(N)$ and any V, the invariants of torus knots $T(m, n)$ are known (Rosso-Jones)
- Given a Young diagram λ, there exists a colored HOMFLY-PT link invariant $P_{\lambda}(L ; a, q)$ such that

$$
P_{\lambda}\left(L ; a=q^{N}, q\right)=P_{\mathfrak{g}(f), V_{\lambda}}(L ; q)
$$

where V_{λ} is the irreducible representation of $\mathfrak{g l}(N)$ labeled by λ.

- For example, for the unlink and $\lambda=\square$ we get

$$
P(O ; a, q)=\frac{1-a}{1-q} \xrightarrow{a=q^{N}} \frac{1-q^{N}}{1_{\square} q} .
$$

Link invariants

In recent decades, Khovanov, Rozansky and their collaborators developed the idea of link homology which categorify Reshetikhin-Turaev invariants:

- For $\mathfrak{g}=\mathfrak{g l}(2)$ and $V=\mathbb{C}^{2}$, the original Khovanov homology is a bigraded vector space $\operatorname{Kh}(L)=\oplus_{i, j} \mathrm{Kh}^{i, j}(L)$ such that its graded Euler characteristic $\sum(-1)^{i} q^{j} \operatorname{dim} \mathrm{Kh}^{i, j}(L)$ recovers the Jones polynomial.
- Khovanov and Rozansky defined $\mathbf{g l}(N)$ homology $\mathcal{H}_{N}(L)$ whose Euler characteristics recovers $\left(\mathfrak{g l}(N), \mathbb{C}^{N}\right)$ link invariant.
- Separately, Khovanov and Rozansky defined triply graded HOMFLY-PT homology $\operatorname{HHH}(L)$ whose Euler characteristics recovers HOMFLY-PT link invariant for $\lambda=\square$.
Lots of other constructions (Cautis-Kamnitzer, Queffelec-Rose, Robert-Wagner, Webster-Williamson...) generalize this to other representations V and other \mathfrak{g}. In particular, one can define HOMFLY-PT homology for arbitrary color λ.

Link invariants

Some basic properties of link homology:

- The $\mathbf{g l}(N)$ homology of the unknot is a graded algebra.
- For $\left(\mathfrak{g l}(N), \mathbb{C}^{N}\right)$ we get $H^{*}\left(\mathbb{C P}^{N-1}\right)=\mathbb{C}[x] /\left(x^{N}\right)$.
- For $\left(\mathfrak{g l}(N), \wedge^{k} \mathbb{C}^{N}\right)$ we get $H^{*}(\operatorname{Gr}(k, N))=\mathbb{C}\left[e_{1}, \ldots, e_{k}\right] /\left(f_{1}, \ldots, f_{k}\right)$.

Theorem (Rasmussen)

For each N and anly link L, there is a spectral sequence from $\operatorname{HHH}(L)$ to $\mathcal{H}_{N}(L)$. In many cases there is only one nontrivial differential d_{N} such that

$$
H^{*}\left(\operatorname{HHH}(L), d_{N}\right)=\mathcal{H}_{N}(L)
$$

Link invariants

Example

For example, for the unknot and $\lambda=\square$ we get $\operatorname{HHH}(O)=\mathbb{C}[x, \xi]$ and $d_{N}(\xi)=x^{N}$. The homology of d_{N} is precisely $\mathbb{C}[x] /\left(x^{N}\right)$.

Example

For example, for the unknot and $\lambda=\wedge^{k}$ we get $\mathrm{HHH}_{\wedge^{k}}(O)=\mathbb{C}\left[e_{1}, \ldots, e_{k}, \xi_{1}, \ldots, \xi_{k}\right]$ and

$$
d_{N}\left(e_{i}\right)=0, d_{N}\left(\xi_{i}\right)=f_{i}\left(e_{1}, \ldots, e_{k}\right)
$$

where f_{i} are the defining equations of $H^{*}(\operatorname{Gr}(k, N))$. In other words, d_{N} defines a Koszul complex and here we use the fact that $H^{*}(\operatorname{Gr}(k, N))$ is a zero-dimensional complete intersection.

Main problem

Problem

Open problem: Compute Khovanov (Khovanov-Rozansky...) homology of torus knots $T(n, m)$.

Theorem (Stošić)

There is a well defined limit $\lim _{m \rightarrow \infty} \operatorname{Kh}(T(n, m))$, denoted by $\operatorname{Kh}(T(n, \infty))$.

Problem

Easier (?) open problem: Compute stable Khovanov (Khovanov-Rozansky...) homology of $T(n, \infty)$.

Main conjecture

The HOMFLY-PT homology of torus knots $T(n, m)$ is known due to the work of Elias, Hogancamp, Mellit and others. In particular:

Theorem (Hogancamp)

Stable HOMFLY-PT homology of $T(n, \infty)$ is isomorphic to

$$
\operatorname{HHH}(T(n, \infty))=\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n-1}, \xi_{0}, \ldots, \xi_{n-1}\right]
$$

Conjecture (G.,Oblomkov, Rasmussen)

Stable Khovanov homology of $T(n, \infty)$ is isomorphic to

$$
\operatorname{Kh}(T(n, \infty))=H^{*}\left(\operatorname{HHH}\left(T(n, \infty), d_{2}\right), \quad d_{2}\left(\xi_{k}\right)=\sum_{i+j=k} x_{i} x_{j}, d_{2}\left(x_{i}\right)=0\right.
$$

Main conjecture cont'd

Consider the generating series

$$
x(t)=x_{0}+x_{1} t+\ldots+x_{n-1} t^{n-1}, \quad \xi(t)=\xi_{0}+\xi_{1} t+\ldots+\xi_{n-1} t^{n-1}
$$

Then we can rephrase the conjecture as follows:

Conjecture (G.,Oblomkov, Rasmussen)

Stable Khovanov homology of $T(n, \infty)$ is isomorphic to

$$
\begin{gathered}
\operatorname{Kh}(T(n, \infty))=H^{*}\left(\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n-1}, \xi_{0}, \ldots, \xi_{n-1}\right], d_{2}\right), \\
d_{2}(\xi(t))=x(t)^{2} \bmod t^{n}, d_{2}(x(t))=0
\end{gathered}
$$

The conjecture is proved for $n \leq 3$ and agrees with all known data of Khovanov homology up to $n \leq 8$.

Example

For $n=2$ we have two even variables x_{0}, x_{1} and two odd variables ξ_{0}, ξ_{1} with

$$
d_{2}\left(\xi_{0}\right)=x_{0}^{2}, d_{2}\left(\xi_{1}\right)=2 x_{0} x_{1}
$$

Note that $d_{2}\left(\mu_{0}\right)=0$ where $\mu_{0}=2 x_{1} \xi_{0}-x_{0} \xi_{1}$, so this Koszul complex has higher homology. At the same time, $x_{0} \mu_{0}=d_{2}\left(\xi_{0} \xi_{1}\right)$. We get:
$H^{0}(T(2, \infty))=\mathbb{C}\left[x_{0}, x_{1}\right] /\left(x_{0}^{2}, 2 x_{0} x_{1}\right), H^{1}(T(2, \infty))=\mathbb{C}\left[x_{0}, x_{1}\right]\left\langle\mu_{0}\right\rangle /\left(x_{0} \mu_{0}\right)$.
The complex is bigraded as follows:

$$
\operatorname{deg}\left(x_{0}\right)=q^{2}, \operatorname{deg}\left(x_{1}\right)=q^{4} t^{2}, \operatorname{deg}\left(\xi_{0}\right)=q^{4} t, \operatorname{deg}\left(\xi_{1}\right)=q^{6} t^{3} .
$$

The differential preserves the q-degree and decreases the t-degree by 1 . The Hilbert series of the homology equals:

$$
H^{0}: q^{2}+\frac{1}{1-q^{4} t^{2}}, H^{1}: \frac{q^{8} t^{3}}{1-q^{4} t^{2}}
$$

In general we get

$$
H^{0}=\mathbb{C}\left[x_{0}, \ldots, x_{n-1}\right] /\left(x(t)^{2}=0 \quad \bmod t^{n}\right)
$$

The is the ring of functions at the $(n-1)$-st jet scheme Jet ${ }^{n-1}$ Spec $\mathbb{C}[x] /\left(x^{2}\right)$ considered by Bruschek, Mourtada and Schepers. At $n=\infty$ it also agrees with the " principal subspace" of a certain $A_{1}^{(1)}$ module defined by Capparelli-Lepowski-Milas et al, and Feigin-Stoyanovsky, and its Hilbert series is related to the Rogers-Ramanujan identity.

Theorem (Bai,G., Kivinen)

1) The Hilbert series $H_{n}^{0}=H^{0}(T(n, \infty))$ is given by the recursion

$$
H_{n}^{0}(Q, T)=\frac{H_{n-2}^{0}(Q, Q T)+t H_{n-3}^{0}\left(Q, Q^{2} T\right)}{1-Q^{n-1} T}
$$

2) The projective dimension of H_{n}^{0} equals $\left\lceil\frac{2 n}{3}\right\rceil$ while the dimension of Jet ${ }^{n-1} \operatorname{Spec} \mathbb{C}[x] /\left(x^{2}\right)$ equals $\left\lceil\frac{n-1}{2}\right\rceil$.

We also have two closed formulas for H^{0}, comparing these leads to a finite version of the Rogers-Ramanujan identity:

Theorem (Bai,G., Kivinen)

a) We have

$$
H_{n}^{0}(Q, T)=\sum_{p=0}^{\infty} \frac{\binom{h(n, p)+1}{p}_{Q} \cdot Q^{p(p-1)} T^{p}}{\left(1-Q^{n-h(n, p)} T\right) \cdots\left(1-Q^{n-1} T\right)}
$$

where $h(n, p)=\left\lfloor\frac{n-p}{2}\right\rfloor$.
b) We have

$$
\begin{gathered}
H_{n}^{0}(Q, T)=\frac{1}{\prod_{i=0}^{n-1}\left(1-Q^{i} T\right)} \sum_{p=0}^{\infty}(-1)^{p} \prod_{k=0}^{p-1}\left(1-Q^{k} T\right) \times \\
\left(Q^{\frac{5 p^{2}-3 p}{2}} T^{2 p}\binom{n-2 p+1}{p}_{Q}-Q^{\frac{5 p^{2}+5 p}{2}} T^{2 p+2}\binom{n-2 p-1}{p}_{Q}\right)
\end{gathered}
$$

Here Q, T are related to q, t by a monomial change of yariables.

Higher homology

We have $d(\xi(t))=x(t)^{2}, d(\dot{\xi}(t))=2 x(t) \dot{x}(t)$, so

$$
d(\mu(t))=0, \mu(t)=2 \dot{x}(t) \xi(t)-x(t) \dot{\xi}(t)=\mu_{0}+\ldots+\mu_{n-1} t^{n-1} \bmod t^{n-1}
$$

Theorem (Bai, G.,Kivinen)

The syzygys between $d_{2}\left(\xi_{i}\right)$ (in other words, the first homology H^{1}) is generated by μ_{i} over $\mathbb{C}\left[x_{0}, \ldots, x_{n-1}\right]$.

Conjecture (G., Oblomkov, Rasmussen)

The homology of d_{2} is generated (as an algebra) by x_{i} and μ_{i} modulo relations

$$
x(t)^{2}=0, x(t) \mu(t)=0, \ddot{x}(t) \mu(t)-\dot{x}(t) \dot{\mu}(t)=0, \mu(t) \dot{\mu}(t)=0 .
$$

We also have a precise, yet conjectural formulas for the Hilbert series of the homology of d_{2}.

More conjectures

Conjecture (G.,Oblomkov, Rasmussen)

Stable $\mathfrak{g l}(N)$ homology of $T(n, \infty)$ is isomorphic to

$$
\begin{gathered}
\mathcal{H}_{N}(T(n, \infty))=H^{*}\left(\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n-1}, \xi_{0}, \ldots, \xi_{n-1}\right], d_{N}\right) \\
d_{N}(\xi(t))=x(t)^{N} \quad \bmod t^{n}, d_{N}(x(t))=0
\end{gathered}
$$

For $N=3$ this was extensively checked agains link homology data by G.-Lewark. At level zero, we get $\mathrm{Jet}^{n-1} \operatorname{Spec} \mathbb{C}[x] /\left(x^{N}\right)$ which is related to "higher level" variants of Rogers-Ramanujan identity at $n=\infty$. There is also an analogue of $\mu(t)$ given by

$$
\mu_{N}(t)=N \dot{x}(t) \xi(t)-x(t) \dot{\xi}(t), d_{N}\left(\mu_{N}(t)\right)=0
$$

More conjectures cont'd

Conjecture (G.,Gukov,Stošić)

Suppose that $H^{*}(\operatorname{Gr}(k, N))=\mathbb{C}\left[e_{1}, \ldots, e_{k}\right] /\left(f_{1}, \ldots, f_{k}\right)$. Then stable \wedge^{k}-colored $\mathfrak{g l}(N)$ homology of $T(n, \infty)$ is isomorphic to

$$
\begin{gathered}
\mathcal{H}_{N, \wedge^{k}}(T(n, \infty))=H^{*}\left(\mathbb{C}\left[e_{1}(t), \ldots, e_{k}(t), \xi_{1}(t), \ldots, \xi_{k}(t)\right], d_{N}\right), \\
d_{N}\left(\xi_{i}(t)\right)=f_{i}\left(e_{1}(t), \ldots, e_{k}(t)\right) \bmod t^{n}, d_{N}\left(e_{i}(t)\right)=0
\end{gathered}
$$

Theorem (J. Wang, in progress)
Conjecture is true for $n=2$ (that is, $T(2, \infty)$) and arbitrary N and k.

Deformations

Khovanov homology has several deformations which are important in knot theory. The easiest is so-called equivariant Khovanov homology which assigns to the unknot

$$
\mathrm{Kh}_{\mathrm{eq}}(O)=\mathbb{C}[x] /\left(x^{2}-b x-c\right)
$$

Here b and c are formal parameters.

Conjecture

Stable equivariant Khovanov homology of $T(n, \infty)$ is isomorphic to

$$
\begin{gathered}
\mathrm{Kh}_{e q}(T(n, \infty))=H^{*}\left(\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n-1}, \xi_{0}, \ldots, \xi_{n-1}\right], d_{2, \mathrm{eq}}\right), \\
d_{2, \mathrm{eq}}(\xi(t))=x(t)^{2}-b x(t)-c \bmod t^{n}, d_{2, \mathrm{eq}}(x(t))=0
\end{gathered}
$$

There are also more subtle deformations such as " y-ification" (G.-Hogancamp) or Batson-Seed homology.

Questions

- Is there a VOA interpretation of higher homology of d_{N} ?
- Are there recursions/closed formulas for higher homology of d_{N} ?
- Is there a VOA interpretatoon of the equivariant Khovanov homology?
- There is a lot of torsion in the homology of d_{N}. Is it possible to use representation theory to control or predict the torsion?
- There is a growing list of homological operations in link homology, in particular, Witt algebra action of Khovanov-Rozansky and "tautological classes" of G.-Hogancamp-Mellit. Are these related to the VOA action?
- Is there some topological interepretation of the recursions?

Thank you!

