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Introduction Equivariant Euler characteristics

History and overview

Hg.n — moduli space of the hyperelliptic curves of genus g with n
marked points. Natural action of S, permutes marked points.
Homologies of H, , are representations of S,
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Definition
The equivariant Euler characteristic equals

X" (Hg,n) = Z(_l)iai,ASAa

B

where sy are Schur polynomials.
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Hg.n — moduli space of the hyperelliptic curves of genus g with n
marked points. Natural action of S, permutes marked points.
Homologies of H, , are representations of S,

) = Z ai Wi,

Definition
The equivariant Euler characteristic equals

X" (Hg,n) = Z(_l)iai,ASAa

B

where sy are Schur polynomials.

o k1 g k,—, g
XS”('Hgn Z( 1)’ Z 1)‘ |p1 ( )...p,,( )'TYU’H"(Hg,,,y

0'65[1

ki(o) — number of cycles of length i in o.
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Equivariant Euler characteristics

Introduction 3 A
History and overview

Specializations

Usual Euler characteristic:

Also
X(Hgyn/sn) = XS"(Hg,n)| pi =1,

X(Hg,n/Sn,£1) = x> (Hg,n)| pi = (-1)".
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Introduction Equivariant Euler characteristics

History and overview

» Genus 1, 2 — E. Getzler.
Resolving mixed Hodge modules on configuration spaces. Duke
Math. J. 96 (1999), no. 1, 175-203

Euler characteristics of local systems on M;,. Compos. Math. 132
(2002), 121-135
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» Non-equivariant Euler characteristics — G. Bini

The Euler characteristics of Hg, ,. Topology and its Applications,
155 (2007), 121-126.
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Introduction Equivariant Euler characteristics

History and overview

» Non-equivariant Euler characteristics — G. Bini

The Euler characteristics of Hg, ,. Topology and its Applications,
155 (2007), 121-126.
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O. Tommasi. Rational cohomology of the moduli space of genus 4
curves. Compos. Math. 141 (2005), no. 2, 359-384.
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Equivariant answer

Non-equivariant answer

The answer Sketch of the proof
Theorem
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Everywhere we assume n > 1.
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Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Corollary
If n > 2g + 2, then

(2g + n—3)!
2-2g(2g+1)(2g+2)-(2g —3)I

X(Hg.n) = (=1)"

If5<n<2g+42, then

(2g + n—3)! 1 (2g-1)!
22228 +1)(2g +2)-(2g—-3)! 2(2g+2—n)’

X(Hg,n) = (_1)n+1

Also
X(Hg,O) = 17X(Hg,1) = 2) X(Hg,2) = 27 X(Hg,3) = 07

X(Hg4) = =28, x(Hg5) = 0.
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Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Structure of the answer:

Zt o= 3 o [0+ 5205,

Cky,....k, — SOme rational coefficients.

Evgeny Gorsky Equivariant Euler characteristics of the moduli spaces of poin



Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Structure of the answer:

Zt o= 3 o [0+ 5205,

Cky,....k, — SOme rational coefficients.

Key idea: ¢k, . k, are orbifold Euler characteristics of certain
spaces, and hence can be calculated.
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Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Lemma

Suppose that a finite group G acts on a space X. Let F(X,n) be
the set of ordered n-tuples of distinct points of X. For g € G let
Xk(g) be the set of points of X with g-orbit of length k. Then

Ztn 5n X n /G) |G‘ Z H 1 +pktk)X(Xk(g)

geG k
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Lemma

Suppose that a finite group G acts on a space X. Let F(X,n) be
the set of ordered n-tuples of distinct points of X. For g € G let
Xk(g) be the set of points of X with g-orbit of length k. Then

Ztn Sn X n /G) |G‘ ZH 1+pktk)X(Xk(g),

geG k
Corollary
oo t”
b x(X1(g))
anx (X,n)/G) = ’G|Zl+t !
n=0 geai
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Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Consider the forgetful map
Tn: Hgn — Hg.
Its fiber is equal to

771(C) = F(C, n)/Aut(C).

Evgeny Gorsky Equivariant Euler characteristics of the moduli spaces of pointe



Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Consider the forgetful map
Tn: Hgn — Hg.
Its fiber is equal to
7} (C) = F(C,n)/Aut(C).

Let ©¢ be the stratum in Hg of curves with Aut(C) = G. Then

Ztn Sn Hg, Zx(eg)ﬁ; ZH(1+pktk)X(Ck )
G

geG k
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We conclude that ¢k, . «, is the orbifold Euler characteristic of the
moduli space of pairs

(C o),

where
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Equivariant answer
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The answer Sketch of the proof

We conclude that ¢k, . «, is the orbifold Euler characteristic of the
moduli space of pairs

(C ),
where
» C is a genus g hyperelliptic curve
> o is an automorphism of C of finite order

> x(G(#)) = jkj-
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Equi nt answer
Non-equivariant answer

The answer Sketch of the proof

We conclude that ¢k, . «, is the orbifold Euler characteristic of the
moduli space of pairs

(C ),
where
» C is a genus g hyperelliptic curve
> o is an automorphism of C of finite order
> X(Gi(p)) = Jk;.
Since C is hyperelliptic, structure of the orbits of ¢ can be

reconstructed from the structure of the orbits of its restriction on
CP!...
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Lemma
Consider a set of pairs (K, T) where

» K is an unordered N-tuple of points on C* considered modulo
the C*-action
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Lemma
Consider a set of pairs (K, T) where

» K is an unordered N-tuple of points on C* considered modulo
the C*-action

» 7 is an automorphism of K of order n (n > 1).

Evgeny Gorsky Equivariant Euler characteristics of the moduli spaces of pointe



Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

Lemma
Consider a set of pairs (K, T) where

» K is an unordered N-tuple of points on C* considered modulo
the C*-action

» 7 is an automorphism of K of order n (n > 1).

The orbifold Euler characteristics of this set equals
(=1)N7e(n)
N b
where p(n) is the Euler function of n, i. e. the number of integers
less than n and coprime with n.
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The equivariant Euler characteristic of Mg , (work in progress).
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Equivariant answer
Non-equivariant answer

The answer Sketch of the proof

The equivariant Euler characteristic of Mg , (work in progress).

Theorem. The generating function for the S,-equivariant Euler
characteristics of M, , has a form

Z £ (Mg.n) = Y. mem [JA+ )™
mJZO fOI‘ j<d,myg<0 J|d

where the coefficients ¢y, m, are defined in the following way.

Let
A N~ C10)
<(d::0) = 15 3) 676,70y
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Define h by the equation (it should be integer)

> mj=2-2h,

j<d
and let s =}, ; m;. Then

mylmo!l .. . mg_q!

b 2h—2
Cmy,...omg = X" (Mh»S) -d ' sl

S M o0) T cldso)™,

m|d s|d

jEm7 j<d

where

(2g — 1) ’ BZg
(2g —3)!
is the orbifold Euler characteristic of My, s.

X (M) = (-1)°
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