Joint w. M. Hogan camp
A. Mellit

1. Results
\(K = \text{knot} \Rightarrow \overline{\text{HHH}(K)} = \text{reduced HOMFLYPT}\)
finite dim., triply graded (Khovanov-Rozansky) homology

Thm. \(\overline{\text{HHH}(K)} \) is symmetric:
\(\overline{\text{HHH}}_{i,-z,j,k}(K) \cong \overline{\text{HHH}}_{-i,-z,j,k+z,j} \)

Conjectured by Dunfield, Gukov, Rasmussen 2005

Other approaches: Oblomkov-Rozansky (HF in \(\text{Hilb}^n \mathbb{C}^2 \))
Galashin-Law (graded Koszul duality)

What about links (unreduced homology?)
\(L \rightarrow \text{link with } c \text{ components} \Rightarrow \)
\(\text{HHH}(L) \) is a module over \(\mathbb{C}[x_1, \ldots x_c] \)
\(\text{HHH}(L) \) is a module over \(\mathbb{C}[x_1, \ldots, x_n] \)

Problem: Symmetry would break the action of \(x_i \).

Solution: "yification" (6.-Hogancamp)

\[\text{HY}(L) = \text{"yified" link homology, module over } \mathbb{C}[x_1, \ldots, x_n] \]

Thm 2 There exists a family of operators \(F_k, k \geq 1 \) in \(\text{HY}(L) \) such that:

- \([F_k, F_k] = 0 \)
- \([F_k, x_i] = 0, \quad [F_k, y_i] = i x_i^{k-1} \)
- \(F_2 \) satisfies "hard lefschetz condition" \(\odot \) and lifts to an action of \(\mathfrak{sl}(2) \)

Cor \(\text{HY}(L) \) is symmetric for any link,

- Symmetry exchanges \(x_i \leftrightarrow y_i \): \([F_2, y_i] = 2x_i \)

Cor For knots, \(\text{HY}(K) = \overline{\text{HHH}(K)} \otimes \mathbb{C}[x, y] \)

\[F_k = k x_i^{k-1} \frac{\partial}{\partial y} + F_k \]

for some operator \(F_k \) in \(\text{HHH} \)

- \(F_2 \) lifts to an action of \(\mathfrak{sl}(2) \) on \(\overline{\text{HHH}(K)} \) \(\Rightarrow \) symmetry.

Ex: (6.-Hogancamp) \(\overline{\text{HY}(T(u, v))} = \overline{\mathbb{C}(u, v) \text{ torus link}} \)

\[= \bigwedge (x_i - x_i, y_i - y_i, \Theta_i - \Theta_i) \mathbb{C}[x_i - x_i, y_i - y_i] \]
\[\bigwedge_{i \neq j} (x_i - x_j, y_i - y_j, \Theta_i - \Theta_j) \subset \mathbb{C}[x_1, x_2, y_1, y_2, \Theta_1, \Theta_2] \]

\[F_k = \sum_{z_1} k^s \frac{\partial}{\partial y^s}, \text{ symmetry } x \leftrightarrow y \text{ is clear} \]

(1) Hard Left: \[\deg F_2 = (0, 1, 2) \]

\[F^+_2 : \mathcal{H}_i \mathcal{V}_j(L) \xrightarrow{\sim} \mathcal{H}_{i, z_1, k} \]

is an isomorphism.

(2) Idea of construction:

\[\beta = \text{br} = \text{Rouquier construct} \]

\[\text{a complex } A \text{- Soergel bimodule} \]

\[(R-R \text{ bimodule}, R = \mathbb{C}[x_1, \ldots, x_n]) \]

such that:

(a) For any symmetric function \(f \)

\[f(x_1, \ldots, x_n) = f(x_1', \ldots, x_n') \]

(b) Actions of \(x_i \) and \(x_i' \) are homotopic

\[x_i - x_i' = [d, \xi_i] \]

\(w \) - permutation for \(\beta \)

\(3_i = \text{chain homotopy} \)

Note: One can think of \(x_i, x_i' \)

as action of \(H^0(\text{unrav}) \) on braid

[211] \(\xrightarrow{\text{connect}} \) [2]
More abstractly: \(B = R \otimes R = \mathbb{C} \left[x_1 - x_n^* \right] \to R^g \), \(f(x) = f(x^*) \) for symmetric \(f \).

Can write \(x_1^r + \ldots + x_n^r = (x_1^r)^r + \ldots + (x_n^r)^r \) for symmetric \(f \).

\[A = \text{resolution of } R \text{ over } B : \]

\[d(\xi_i) = x_i - x_i' \]

\[B \langle \xi_i \rangle \to B \to R = \mathbb{C} \left[x_1^r \ldots x_n^r, x_i - x_i' \right] \]

\[(x_i = x_i') \]

Observe: \(d \left(\sum \xi_i (x_i + x_i') \right) = \sum (x_i - x_i') (x_i + x_i') = \]

\[= \sum (x_i^2 - (x_i')^2) = 0 \]

\(\Rightarrow \) use \(d \) as an element \(\omega_2 : d(\omega_2) = \sum \xi_i (x_i + x_i') \)

More generally, use \(\omega_k : d(\omega_k) = \sum \xi_i (x_i^{k-1} + \ldots + x_i) \)

\[x_i^{k-1} = \frac{(x_i - x_i')^k}{x_i - x_i'} \]

Thus, \(A = \text{free commutative dga generated over } B \)

by \(\xi_i, \omega_k : d(\xi_i) = x_i - x_i' \)

\[d(\omega_k) = \sum \xi_i \cdot \omega_{k-1}(x_i, x_i') \]

Thus \(A \cong A \otimes A \) homotopy equivalence

\(\Rightarrow \) coproduct \(\Delta : A \to A \otimes A \)

coassociative up to homotopy.
Thus, for any braid β, the corresponding Rouquier complex T_β has an action of A:

- x_i: act as above
- x_i: are twisted by $w \mapsto x_i w_i$
- z_i: "dot-string homotopies"
- u_k: some assembly operators.

Proof: Can check for $\chi - \chi$, $u_k = 0$ for all k.

We reproduce to extend to arbitrary braids β.

y-ification: $T_\beta \sim T_\beta \otimes \mathbb{C} \{ y_1, -y_n \}$

$$D = d + \sum \xi_i y_i$$

$$HY = H^0(HH^+(T_\beta \otimes \mathbb{C} \{ y_1, -y_n \}))$$

$$F_K = \sum \frac{1}{k-1} (x_i, x_i) \frac{\partial}{\partial y_i} + u_k$$

Exercise: $[D, F_K] = 0$! $[d, u_k] = 0$, equally.

Checking commutation relations: straightforward.

We are well defined up to homotopy \Rightarrow
we are well defined up to homotopy \(\Rightarrow\)
\[\Rightarrow F_x \text{ well defined up to homotopy.} \]

Hard Leftshtz: \(A^\circ \) is bigraded complex \(\otimes \) F chain map of degree \((q,2)\)

\[d = (0,1) \]

Say that \(F \) is leftshtz if \(F^j : H_z(A) \to H_z(A) \)

\[F(Q) \cdot F(Q) = Q \text{ is an iso.} \]

Lemma: If \(0 \to A \to B \to C \to 0 \)

exact triple commute with \(F \)

\(F \) is leftshtz for \(A \) and \(C \) \(\Rightarrow \) leftshtz for \(B \).

Proof: \(5 \text{-lemma!} \)

Use seair relations (seair exact triangles)

+ Markov towers

+ to reduce \(L \) to unlinics.

\(\bigotimes (HY(\text{unlinic}) \otimes \text{exterior algebra}) \)

Check for such "building blocks", use lemma to conclude in general.

Q: Is it possible to construct \(E \) on chain level.

\[V = \text{vector space w. symm. form} \ W \]

\[\wedge V \otimes W \text{ leftshtz.} \]