Motivic Poincare series and knot homology

E. Gorsky

Second workshop on Zeta functions in Algebra and Geometry Palma de Mallorca, May 2010

Outline

Motivic Poincare series

Poincare series and zeta functions Motivic Poincare series Irreducible case Properties General case: examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knot homology

Heegard-Floer homology Conjectures

Poincare series and zeta functions

 $C = \bigcup_{i=1}^{r} C_i$ - plane curve singularity at the origin in \mathbb{C}^2 . $\gamma_i : (\mathbb{C}, 0) \to (C_i, 0)$ - uniformisations of its components.

$$v_i(f) = \operatorname{Ord}_0(f(\gamma_i(t)))$$

One can define \mathbb{Z}^r -indexed filtration

$$J_{\underline{v}} = \{f \in \mathcal{O} | v_i(f) \geq v_i\}.$$

Consider the Laurent series

$$L_C(t_1,\ldots,t_r) = \sum_{\underline{v}} t_1^{v_1} \ldots t_r^{v_r} \cdot \dim J_{\underline{v}}/J_{\underline{v}+\underline{1}}.$$

The Poincare series of the curve C is defined by the formula

$${\mathcal P}_C(t_1,\ldots,t_r)=rac{L_C(t_1,\ldots,t_r)\cdot\prod_{i=1}^r(t_i-1)}{t_1\cdot\ldots\cdot t_r-1}$$

If r = 1, we get

$$P_C(t) = \sum_{\nu=0}^{\infty} t^{\nu} \cdot \dim J_{\nu}/J_{\nu+1}.$$

Proposition(Campillo, Delgado, Gusein-Zade)

$$P_C(t_1,\ldots,t_r) = \int_{\mathbb{P}\mathcal{O}} t_1^{v_1}\cdot\ldots\cdot t_r^{v_r} d\chi$$

(日) (日) (日) (日) (日) (日) (日) (日)

 $\Delta_C(t_1,\ldots,t_r)$ - multi-variable Alexander polynomial of the link of C

Theorem (CDG)

If r = 1, then

$$P_C(t)(1-t) = \Delta_C(t),$$

and if r > 1, then

$$P_C(t_1,\ldots,t_r)=\Delta_C(t_1,\ldots,t_r).$$

In analogy to the construction of the motivic measure on the space of arcs, one can define a motivic measure on the ring O approximating it by jet spaces.

Motivic Poincare series is the motivic integral

$$P_g^C(t_1,\ldots,t_r)=\int_{\mathbb{PO}}t_1^{\mathbf{v}_1}\cdot\ldots\cdot t_r^{\mathbf{v}_r}d\mu$$

Let $q = \mathbb{L}^{-1}$ be a formal variable. Let $h(\underline{v}) = \operatorname{codim} J_{\underline{v}}$, and

$$L_g(t_1,\ldots,t_r,q) = \sum_{\underline{v}\in\mathbb{Z}^r} rac{q^{h(\underline{v})}-q^{h(\underline{v}+\underline{1})}}{1-q}\cdot t_1^{v_1}\ldots t_r^{v_r}.$$

Theorem (CDG)

$$P_g^C(t_1,...,t_r;q) = rac{L_g^C(t_1,...,t_r) \cdot \prod_{i=1}^r (t_i-1)}{t_1 \cdot \ldots \cdot t_r - 1}$$

If r = 1, we have

$$P_g^{\mathcal{C}}(t) = \sum_{v=0}^{\infty} t^v \cdot rac{q^{\mathit{codim}J_v} - q^{\mathit{codim}J_{v+1}}}{1-q}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Irreducible case

One can prove that

$$P_C(t) = 1 + t^{\sigma_1} + t^{\sigma_2} + t^{\sigma_3} + \dots,$$

where $\{0, \sigma_1, \sigma_2, \ldots\}$ form the semigroup of *C*. Then

$$P_g^{\mathcal{C}}(t;q) = 1 + qt^{\sigma_1} + q^2t^{\sigma_2} + q^3t^{\sigma_3} + \dots$$

Example. $\mathcal{C} = \{x^3 = y^5\}.$

$$P_C(t) = 1 + t^3 + t^5 + t^6 + t^8 + t^9 + \ldots = \frac{(1 - t^{15})}{(1 - t^3)(1 - t^5)},$$

Therefore

$$P_g^C(t;q) = 1 + qt^3 + q^2t^5 + q^3t^6 + q^4t^8 + q^5t^9 + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Properties

The reduced motivic Poincare series is the power series $\overline{P}_g(t_1, \ldots, t_r) = (1 - qt_1) \cdot \ldots \cdot (1 - qt_r) \cdot P_g(t_1, \ldots, t_r).$ Theorem (-)

- **1.** Polynomiality. $\overline{P}_g(t_1, \ldots, t_n; q)$ is a polynomial in t_1, \ldots, t_n and q.
- **2.** Reduction to the Alexander polynomial. If n = 1, then

$$\overline{P}_g(t; q=1) = \Delta(t),$$

where Δ denote the Alexander polynomial of the link of the corresponding plane curve singularity. If n > 1, then

$$\overline{P}_g(t_1,\ldots,t_n;q=1) = \Delta(t_1,\ldots,t_n) \cdot \prod_{i=1}^n (1-t_i).$$

3. Forgetting components. Let *C* be a curve with *n* components, and C_1 be an irreducible curve. Then

$$\overline{P}_g^{C\cup C_1}(t_1,\ldots,t_n,t_{n+1}=1)=(1-q)\overline{P}_g^C(t_1,\ldots,t_n).$$

If C has only one component, then

$$\overline{P}_g^C(t=1)=1.$$

4. Symmetry. Let μ_{α} be the Milnor number of C_{α} , $(C_{\alpha} \circ C_{\beta})$ is the intersection index of $C_{\alpha} \circ C_{\beta}$, $\mu(C)$ is the Milnor number of *C*. Let

$$I_{\alpha} = \mu_{\alpha} + \sum_{eta
eq lpha} (C_{lpha} \circ C_{eta}), \quad \delta(C) = (\mu(C) + r - 1)/2.$$

Then

$$\overline{P}_g(\frac{1}{qt_1},\ldots,\frac{1}{qt_r})=q^{-\delta(C)}\prod_{\alpha}t_{\alpha}^{-l_{\alpha}}\cdot\overline{P}_g(t_1,\ldots,t_r).$$

General case: algorithm

For a proper everywhere set P we define H_P - explicitly given polynomial divisible by $\prod_{i \in E(P)} (1 - u_i)$

Theorem

For a proper everywhere set P define the numbers $d_P(n)$ by the equation

$$H_P(u) = \sum_n d_P(n)u^n d_P(n) =$$

$$\frac{\prod_{i\in P}[(1-qu_i)^{k_i-p_i-1}(1-u_i)^{p_i-1}]}{\prod_{i\in E(P)}(1-u_i)}\widetilde{H}_P(u_1,\ldots,u_s).$$

Then

$$\overline{P}_g(t_1,\ldots,t_r)=\sum_{P\in\mathcal{P}}(-1)^{|P|}q^{|P|}t_P\times\sum_n d_P(n)t^{Mn}q^{F(n)-\sum n_i}.$$

General case: examples

Consider the singularity $x^{k_0} - y^{k_0} = 0$. For $0 < k < k_0$ let the numbers $c_k(n)$ be defined by the equation

$$A_k(u) = \sum_{n=0}^{\infty} u^n c_k(n) = (1 - uq)^{k_0 - k - 1} (1 - u)^{k - 1},$$

and for k = 0 let the numbers $c_0(n)$ be defined by the equation

$$A_0(u) = \sum_{n=0}^{\infty} u^n c_0(n) = \frac{(1-uq)^{k_0-1} - u(u-q)^{k_0-1}}{1-u}.$$

$$\overline{P}_{g}(t_{1},\ldots,t_{k_{0}})=\sum_{K\subset\neq K_{0}}(-1)^{|K|}q^{|K|}t_{K}\sum_{n=0}^{\infty}c_{|K|}(n)(t_{1}\ldots t_{k_{0}})^{n}q^{\frac{n(n+1)}{2}}.$$

For example, if $k_0 = 2$,

$$A_1(u) = 1, A_0(u) = \frac{1 - uq - u(u - q)}{1 - u} = 1 + u,$$

SO

$$\overline{P}_g(t_1,t_2)=1-qt_1-qt_2+qt_1t_2.$$

If $k_0 = 3$, $A_1(u) = 1 - qu, A_2(u) = 1 - u, A_0(u) = 1 + (1 - 2q - q^2)u + u^2$,

SO

$$\begin{aligned} \overline{P}_g(t_1, t_2, t_3) &= 1 - q(t_1 + t_2 + t_3) + q^2(t_1t_2 + t_1t_3 + t_2t_3) + \\ q(1 - 2q - q^2)t_1t_2t_3 + q^3t_1t_2t_3(t_1 + t_2 + t_3) - \\ q^3t_1t_2t_3(t_1t_2 + t_1t_3 + t_2t_3) + q^3t_1^2t_2^2t_3^2. \end{aligned}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Heegard-Floer homology

Heegard-Floer homology were introduced by P. Ozsvath and Z. Szabo. To each link $L = \bigcup_{i=1}^{r} K_i$ they assign the collection of homology groups $\widehat{HFL}_d(L,\underline{h})$, where d is an integer and \underline{h} belongs to some r-dimensional lattice.

They give a "categorification" of the Alexander polynomial of *L*: if r = 1, then

$$\sum_{h} \chi(\widehat{HFL}_{*}(L,h))t^{h} = \Delta^{s}(t),$$

where $\Delta^{s}(t) = t^{-\deg \Delta/2} \Delta(t)$ is the symmetrized Alexander polynomial of *L*. If r > 1, then

$$\sum_{\underline{h}} \chi(\widehat{HFL}_*(L,h))\underline{t}^h = \prod_{i=1}^r (t_i^{1/2} - t_i^{-1/2}) \cdot \Delta^s(t_1,\ldots,t_r).$$

Theorem (Ozsvath,Szabo)

Let g(K) be the genus of a knot K, i.e. the minimal genus of a Seifert surface for K. Then

$$g(K) = \max\{n | \dim \widehat{HFL}_*(K, n) \neq 0\}$$

Theorem (Ni) A knot K is fibered if and only if

$$\dim \widehat{HFL}_*(L,g(K)) = 1.$$

Consider the ring $R = \mathbb{Z}[U_1, \ldots, U_r]$. For every *r*-component link *L* there exists a \mathbb{Z}^r -filtered chain complex $CFL^-(S^3, L)$ of *R*-modules, whose filtered homotopy type is an invariant of the link *L*. The operators U_i lowers the homological grading by 2 and the filtration level by <u>1</u>.

$$\widehat{CFL}(S^{3}, L) = CFL^{-}(S^{3}, L)/(U_{1} = ... = U_{r} = 0)$$

$$H^{*}(CFL^{-}(S^{3}, L)) = H^{*}(CFL^{-}(S^{3})) = \mathbb{Z}[U]$$

$$H^{*}(CFL^{-}(S^{3}, L, k)/CFL^{-}(S^{3}, L, k - 1)) = HFL^{-}(S^{3}, L, k)$$

$$H^{*}(\widehat{CFL}(S^{3}, L, k)/\widehat{CFL}(S^{3}, L, k - 1)) = \widehat{HFL}(S^{3}, L, k)$$

Let K be the link of an irreducible curve singularity C. Consider the Poincare polynomial for the Heegard-Floer homologies:

$$HFL_{C}(t, u) = \sum u^{d} t^{s} \dim \widehat{HFL}_{d,s}(K).$$

It categorifies the Alexander polynomial in the sense that

$$HFL_{C}(t,-1) = t^{-\deg \Delta/2} \Delta_{C}(t)$$

Theorem (-) Take $\overline{P}_{g}^{C}(t,q)$ and let us make a following change in it: $t^{\alpha}q^{\beta}$ is transformed to $t^{\alpha}u^{-2\beta}$, and $-t^{\alpha}q^{\beta}$ is transformed to $t^{\alpha}u^{1-2\beta}$. We get a polynomial $\widetilde{\Delta}_{g}^{C}(t,u)$. Then

$$\widetilde{\Delta}_{g}^{C}(t^{-1}, u) = t^{-\deg \Delta/2} HFL_{C}(t, u).$$
(1)

Suppose that a cochain complex C has a filtration C_k , $k \ge 0$ and an injective operator U of homological degree 2 acting on it such that

1) $U(\mathcal{C}_k) \subset \mathcal{C}_{k+1}$ and $U^{-1}(\mathcal{C}_k) \subset \mathcal{C}_{k-1}$ 2) $H^*(\mathcal{C}_k/U(\mathcal{C}_k))$ has rank 1 for all k, Then for all k the rank of $H^*(\mathcal{C}_k/\mathcal{C}_{k+1})$ is at most 1. Let $\{0, \sigma_1, \sigma_2, \ldots\}$ is the set of k such that this rank is 1. Then 3) $H^*(\mathcal{C}_{\sigma_k}/\mathcal{C}_{\sigma_{k+1}})$ belongs to degree 2k.

(日) (同) (三) (三) (三) (○) (○)

Key lemma cont'd

$$Q(t,q)=\sum_{k=0}^{\infty}q^kt^{\sigma_k}, \ \ \overline{Q}(t,q)=Q(t,q)(1-qt).$$

Let us make a following change in \overline{Q} : $t^{\alpha}q^{\beta}$ is transformed to $t^{\alpha}u^{2\beta}$, and $-t^{\alpha}q^{\beta}$ is transformed to $t^{\alpha}u^{2\beta-1}$. 4) The result is equal to

$$\sum_{k,n} t^k u^n \dim H^n(\mathcal{C}_k/(\mathcal{C}_{k+1}+U\mathcal{C}_{k-1})).$$

The last result can be reformulated as follows. Consider the complex $\widehat{C}_k = C_k/UC_{k-1}$, then the last homology are the homology of the quotient $\widehat{C}_k/\widehat{C}_{k-1}$. The multiplication by 1 - qt corresponds to the exact sequence

$$0 \to \mathcal{C}_{k-1}/\mathcal{C}_k \xrightarrow{U} \mathcal{C}_k/\mathcal{C}_{k+1} \to \widehat{\mathcal{C}}_k/\widehat{\mathcal{C}}_{k+1} \to 0.$$

Conjectures

N. Dunfield, S. Gukov and J. Rasmussen conjectured that all knot homology theories (Khovanov, Heegard-Floer, Khovanov-Rozansky) are parts, or specializations of a unified picture. They conjectured the existence of a triply-graded knot homology theory $\mathcal{H}_{i,j,k}(K)$ with the following properties:

Euler characteristic. Consider the Poincare polynomial

$$\mathcal{P}(\mathcal{K})(a,q,t) = \sum a^i q^j t^k \dim \mathcal{H}_{i,j,k}.$$

Its value at t = -1 equals to the value of the reduced HOMFLY polynomial of the knot K:

$$\mathcal{P}(K)(a,q,-1) = \mathcal{P}(K)(a,q).$$

- ▶ **Differentials.** There exist a set of anti-commuting differentials d_j for $j \in \mathbb{Z}$ acting in $\mathcal{H}_*(K)$. For N > 0, d_N has triple degree (-2, 2N, -1), d_0 has degree (-2, 0, -3) and for N < 0 d_N has degree (-2, 2N, -1 + 2N)
- **Symmetry.** There exists a natural involution ϕ such that

$$\phi d_N = d_{-N} \phi$$

for all $N \in \mathbb{Z}$.

Let

$$\mathcal{H}_{p,k}^{N}(K) = \oplus_{iN+j=p} \mathcal{H}_{i,j,k}(K).$$

Conjecture. There exists a homology theory with above properties such that for all N > 1 the homology of $(\mathcal{H}_*^N(K), d_N)$ is isomorphic to the sl(N) Khovanov-Rozansky homology. For N = 0, $(\mathcal{H}_*^0(K), d_0)$ is isomorphic to the Heegard-Floer knot homology. The homology of d_1 are one-dimensional.

Consider "stable limit" of torus knots $T_{n,m}$ at $m \to \infty$.

$$P_s(T_n) = \lim_{m\to\infty} P_s(T_{n,m}) = \prod_{k=1}^{n-1} \frac{(1-a^2q^{2k})}{(1-q^{2k+2})}.$$

Conjecture The limit homology $\mathcal{H}(T_n) = \lim_{m\to\infty} \mathcal{H}(T_{n,m})$ is a free polynomial algebra with n-1 even generators with gradings (0, 2k + 2, 2k) and n-1 odd generators with gradings (2, 2k, 2k + 1), therefore

$$\mathcal{P}_{s}(T_{n}) = \prod_{k=1}^{n-1} \frac{(1+a^{2}q^{2k}t^{2k+1})}{(1-q^{2k+2}t^{2k})}.$$

We denote the odd generators by ξ_1, \ldots, ξ_{n-1} , and even generators by e_1, \ldots, e_{n-1} .

The differentials send ξ_k to some polynomials in e_m , and they are extended to the whole algebra by the Leibnitz rule. Taking into account the gradings, one can uniquely guess the equations

$$d_{-n}(\xi_k) = \delta_{k,n}, d_0(\xi_k) = e_{k-1}, d_1(\xi_k) = e_k.$$

The construction of the higher differentials is less restricted by the grading, however for small degrees one has no choice but to define

$$d_2(\xi_2) = e_1^2, d_2(\xi_3) = e_1e_2, d_3(\xi_3) = e_1^3.$$

Vertical lines correspond to the differential d_0 , its homology has dimension 5, as expected for Heegard-Floer homology.

・ロト ・聞ト ・ヨト ・ヨト

э