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q, t-Catalan numbers
Catalan numbers

cn =
1

n + 1

(
2n

n

)
=

(2n)!

n!(n + 1)!

Introduced by Eugène Charles Catalan (1814–1894).

First values: 1, 2, 5, 14, 42, 132 . . .

Catalan numbers appear in many combinatorial problems (see
”Catalan addendum” by R. P. Stanley). Most important for
the present talk: the Catalan number is the number of Dyck
paths, i. e. lattice paths in n × n square that never go above
the diagonal:
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q, t-Catalan numbers
Generalizations

Let m and n be two coprime numbers. The number of lattice
paths in m × n rectangle that never go above the diagonal
equals to

cm,n =
(m + n − 1)!

m!n!
=

1

m + n

(
m + n

n

)

When m = n + 1, we get Catalan numbers. When m = kn + 1,
we get Fuss-Catalan numbers (paths in n × kn rectangle).
Finally, the number of lattice paths in m × n rectangle with k
marked corners equals to

Sm,n,k =
(m + n − k − 1)!

n ·m · k! · (m − k − 1)!(n − k − 1)!

When m = n + 1, Sn,n+1,k is the number of k-dimensional
faces of the n-dimensional associahedron.
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q, t-Catalan numbers
q, t-Catalan numbers: definition

In 1996 A. Garsia and M. Haiman introduced the following
bivariate function:

Cn(q, t) =
∑
|λ|=n

t2
∑

lq2
∑

a(1− t)(1− q)
∏0,0(1− qa′t l

′
)
∑

qa′t l
′∏

(qa − t l+1)(qa+1 − t l)
.

Here l , l ′, a, a′ denote the lengths of leg, co-leg, arm and
co-arm of a box in a Young diagram λ, and

∏0,0 indicates
that the box (0, 0) does not contribute to the product.

a′ a

l

l ′



q, t-Catalan numbers
q, t-Catalan numbers: properties

The functions cn(q, t) have many remarkable properties:

I cn(q, t) is a polynomial with non-negative integer
coefficients

I The polynomials are symmetric in q and t:
cn(q, t) = cn(t, q)

I They ”deform” the Catalan numbers: cn(1, 1) = cn
I More precisely, there is an interesting degeneration:

cn(q, q−1) = q−(n
2) [2n!]q

[n!]q[(n + 1)!]q
,

where

[k!]q :=
(1− q) · · · (1− qk)

(1− q)k
.
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q, t-Catalan numbers
q, t-Catalan numbers: examples

Another interesting degeneration: cn(q, 1) is a sum over all
Dyck paths weighted by the area between a path and the
diagonal:

cn(q, 1) =
∑
D

q(n
2)−|D|.

Examples:
c1(q, t) = 1, c2(q, t) = q + t,

c3(q, t) = q3 + q2t + qt + t2q + t3.

We have 1 path with |D| = 0, 1 path with |D| = 1, 2 paths
with |D| = 2 and 1 path with |D| = 3:

c3(q, 1) = 1 + 2q + q2 + q3.
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q, t-Catalan numbers
q, t-Catalan numbers: Hilbert scheme

Hilbn(C2) – Hilbert scheme of n points on C2.

T – tautological bundle of rank n on it

Z = Hilbn(C2, 0) – Hilbert scheme of n points supported at 0

Theorem
(M. Haiman)

1. H i(Z ,ΛnT ) = 0 for i > 0

2. χ(C∗)2(Z ,ΛnT ) = cn(q, t).

Corollary
The function cn(q, t) is a character of (C ∗)2 action on
H0(Z ,ΛnT ), so it is a polynomial with nonnegative
coefficients.
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Compactified Jacobians
Construction

Consider a plane curve singularity C = Cm,n = {xm = yn}, m
and n coprime. The compactified Jacobian of C is the
moduli space of rank 1 degree 0 torsion-free sheaves on a
projective rational curve with unique singularity C .

Local description: consider R = C[[tm, tn]] – the ring of
functions on C . The JC is the moduli space of R-modules
inside R = C[[t]].

If (m, n) = (2, 3), we get a Jacobian of a cuspidal cubic. It is
a cuspidal cubic itself, topologically JC ' P1.



Compactified Jacobians
Construction

Consider a plane curve singularity C = Cm,n = {xm = yn}, m
and n coprime. The compactified Jacobian of C is the
moduli space of rank 1 degree 0 torsion-free sheaves on a
projective rational curve with unique singularity C .

Local description: consider R = C[[tm, tn]] – the ring of
functions on C . The JC is the moduli space of R-modules
inside R = C[[t]].

If (m, n) = (2, 3), we get a Jacobian of a cuspidal cubic. It is
a cuspidal cubic itself, topologically JC ' P1.



Compactified Jacobians
Construction

Consider a plane curve singularity C = Cm,n = {xm = yn}, m
and n coprime. The compactified Jacobian of C is the
moduli space of rank 1 degree 0 torsion-free sheaves on a
projective rational curve with unique singularity C .

Local description: consider R = C[[tm, tn]] – the ring of
functions on C . The JC is the moduli space of R-modules
inside R = C[[t]].

If (m, n) = (2, 3), we get a Jacobian of a cuspidal cubic. It is
a cuspidal cubic itself, topologically JC ' P1.



Compactified Jacobians
Cell decomposition

Theorem
(E. G., M. Mazin, 2011) The compactified Jacobian of Cm,n

admits an affine cell decomposition. The cells are parametrized
by the lattice paths in m × n rectangle below the diagonal,
and the dimension of such a cell is given by the formula:

dim ΣD =
(m − 1)(n − 1)

2
− h+(D),

where

h+(D) = ]

{
c ∈ D

a(c)

l(c) + 1
≤ m

n
<

a(c) + 1

l(c)

}
.



Compactified Jacobians
q, t-Catalan numbers

It turns out that in the case (m, n) = (n, n + 1) the statistics
h+ is related to q, t-Catalan numbers.

Theorem
(A. Garsia, M. Haiman, J. Haglund) The q, t-Catalan numbers
admit a combinatorial interpretation:

cn(q, t) =
∑
D

q(n
2)−|D|th+(D).

Corollary
The Poincaré polynomial of JCn,n+1 equals to

P(t) =
∑
D

t(n
2)−h+(D) = t(n

2)cn(1, t−1) = t(n
2)cn(t−1, 1) =

∑
D

t |D|.

We conjecture that the similar symmetry holds for general
(m, n).
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Arc spaces on singular curves
Construction

Let us parametrize the singularity as (x , y) = (tn, tm) and
perturb this parametrization:

x(t) = tn + u2tn−2 + . . .+ un, y(t) = tm + v2tm−2 + . . .+ vm.

We regard ui and vi as free parameters, and require that the
perturbed parameterization satisfies the equation of our curve:

Am,n = C[ui , vi ]/(tn+u2tn−2+. . .+un)m = (tm+v2tm−2+. . .+vm)n.

We require the identity of x(t)m and y(t)m in all orders of
t-expansion.



Arc spaces on singular curves
Construction cont’d

Theorem
(B. Fantechi, L. Göttsche, D. van Straten)

I Am,n is a ring of functions on a 0-dimensional complete
intersection

I dim Am,n = (m+n−1)!
m!n!

I Am,n is naturally graded and its Hilbert series equals to

H(q) =
[(m + n − 1)!]q

[m!]q[n!]q
.

Conjecture(L. Göttsche) The ring Am,n is isomorphic to the
cohomology ring of JCm,n.
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Rational Cherednik algebras
Dunkl operators

Consider the polynomial ring C[x ] in variables xi with
condition

∑
xi = 0.

Definition
The Dunkl operator on C[x ] is defined by a formula

Di f =
∂f

∂xi
− c

∑
j 6=i

f − sij f

xi − xj
,

where sij is an transposition of xi and xj .

Lemma

[Di ,Dj ] = 0.

Dunkl operators play important role in the study of the
quantum rational Calogero-Moser system.



Rational Cherednik algebras
Finite-dimensional representations

Dunkl operators, multiplications by xi and permutations
produce the representation of the rational Cherednik algebra
Hc on C[x ].

Theorem
(Y. Berest, P. Etingof, V. Ginzburg)

1. If c 6= m
n

, m ∈ Z, (m, n) = 1, then C[x ] is irreducible and
there are no finite-dimensional representations of Hc

2. If c = m
n

, then C[x ] has a subrepresentation with a
finite-dimensional quotient Lm

n
and this is a unique

finite-dimensional representation of Hm
n

.

3.

dim Lm
n

= mn−1, dim(Lm
n

)Sn =
(m + n − 1)!

m!n!
.
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Rational Cherednik algebras
Rank-level duality

Theorem
(D. Calaque, B. Enriquez, P. Etingof)

(Lm
n

)Sn ' (L n
m

)Sm .

Theorem
(E. G.,2011)

1. (Lm
n

)Sn = Am,n.

2. HomSn(ΛkV , Lm
n

) = Ωk(Spec Am,n), where V is the
(n − 1)-dimensional representation of Sn.
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Knot homology
Torus knots

The intersection of singularity Cm,n with a small 3-sphere
centered at the origin is the (m, n) torus knot.



Knot homology
Conjecture

In 2005 M. Khovanov and L. Rozansky introduced triply
graded knot homology theory, whose (bigraded) Euler
characteristic gives the HOMFLY-PT polynomial.
Conjecture (E.G., A. Oblomkov, J. Rasmussen, V. Shende)
The triply graded Khovanov-Rozansky homology of (m, n)
torus knot is isomorphic to

H(Tm,n) '
⊕
k

HomSn(ΛkV , Lm
n

),

where V is the (n − 1)-dimensional representation of Sn.

For k = 0 we get (Lm
n

)Sn .
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Knot homology
Example: (3,4) torus knot

For (3,4) torus knot the triply graded homology were
computed by S. Gukov, N. Dunfield and J. Rasmussen:

•0 •2 •4 •4 •6

•3 •5 •5 •7 •7

•8

q

a

In the lowest a-grading we see slightly regraded c3(q, t).
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Thank you.


	q,t-Catalan numbers
	Compactified Jacobians
	Arc spaces on singular curves
	Rational Cherednik algebras
	Knot homology

