Torus Knots and q, t-Catalan Numbers

Eugene Gorsky Stony Brook University

Simons Center For Geometry and Physics April 11, 2012

Outline

q, t-Catalan numbers

Compactified Jacobians

Arc spaces on singular curves

Rational Cherednik algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knot homology

Catalan numbers

$$c_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduced by Eugène Charles Catalan (1814–1894).

Catalan numbers

$$c_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduced by Eugène Charles Catalan (1814–1894). First values: 1, 2, 5, 14, 42, 132...

Catalan numbers

$$c_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$$

Introduced by Eugène Charles Catalan (1814–1894).

First values: 1, 2, 5, 14, 42, 132...

Catalan numbers appear in many combinatorial problems (see "Catalan addendum" by R. P. Stanley). Most important for the present talk: the Catalan number is the number of **Dyck paths**, i. e. lattice paths in $n \times n$ square that never go above the diagonal:

Generalizations

Let *m* and *n* be two coprime numbers. The number of lattice paths in $m \times n$ rectangle that never go above the diagonal equals to

$$c_{m,n} = \frac{(m+n-1)!}{m!n!} = \frac{1}{m+n} \binom{m+n}{n}$$

Generalizations

Let *m* and *n* be two coprime numbers. The number of lattice paths in $m \times n$ rectangle that never go above the diagonal equals to

$$c_{m,n} = \frac{(m+n-1)!}{m!n!} = \frac{1}{m+n} \binom{m+n}{n}$$

When m = n + 1, we get Catalan numbers. When m = kn + 1, we get Fuss-Catalan numbers (paths in $n \times kn$ rectangle).

Generalizations

Let *m* and *n* be two coprime numbers. The number of lattice paths in $m \times n$ rectangle that never go above the diagonal equals to

$$c_{m,n} = \frac{(m+n-1)!}{m!n!} = \frac{1}{m+n} \binom{m+n}{n}$$

When m = n + 1, we get Catalan numbers. When m = kn + 1, we get Fuss-Catalan numbers (paths in $n \times kn$ rectangle). Finally, the number of lattice paths in $m \times n$ rectangle with k marked corners equals to

$$S_{m,n,k} = rac{(m+n-k-1)!}{n\cdot m\cdot k!\cdot (m-k-1)!(n-k-1)!}$$

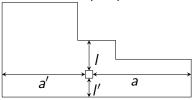
When m = n + 1, $S_{n,n+1,k}$ is the number of k-dimensional faces of the *n*-dimensional associahedron.

q, t-Catalan numbers: definition

In 1996 A. Garsia and M. Haiman introduced the following bivariate function:

$$C_n(q,t) = \sum_{|\lambda|=n} \frac{t^{2\sum l} q^{2\sum a} (1-t)(1-q) \prod^{0,0} (1-q^{a'}t^{l'}) \sum q^{a'}t^{l'}}{\prod (q^a - t^{l+1})(q^{a+1} - t')}$$

Here l, l', a, a' denote the lengths of leg, co-leg, arm and co-arm of a box in a Young diagram λ , and $\prod^{0,0}$ indicates that the box (0,0) does not contribute to the product.



q, t-Catalan numbers: properties

The functions $c_n(q, t)$ have many remarkable properties:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

q, t-Catalan numbers: properties

The functions $c_n(q, t)$ have many remarkable properties:

 c_n(q, t) is a polynomial with non-negative integer coefficients

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

q, t-Catalan numbers: properties

The functions $c_n(q, t)$ have many remarkable properties:

 c_n(q, t) is a polynomial with non-negative integer coefficients

► The polynomials are symmetric in q and t: c_n(q, t) = c_n(t, q)

q, t-Catalan numbers: properties

The functions $c_n(q, t)$ have many remarkable properties:

- c_n(q, t) is a polynomial with non-negative integer coefficients
- The polynomials are symmetric in q and t: $c_n(q, t) = c_n(t, q)$
- They "deform" the Catalan numbers: $c_n(1,1) = c_n$

q, t-Catalan numbers: properties

The functions $c_n(q, t)$ have many remarkable properties:

- c_n(q, t) is a polynomial with non-negative integer coefficients
- ► The polynomials are symmetric in q and t: c_n(q, t) = c_n(t, q)
- They "deform" the Catalan numbers: $c_n(1,1) = c_n$
- More precisely, there is an interesting degeneration:

$$c_n(q,q^{-1}) = q^{-\binom{n}{2}} \frac{[2n!]_q}{[n!]_q[(n+1)!]_q},$$

where

$$[k!]_q := \frac{(1-q)\cdots(1-q^k)}{(1-q)^k}.$$

q, t-Catalan numbers: examples

Another interesting degeneration: $c_n(q, 1)$ is a sum over all Dyck paths weighted by the area between a path and the diagonal:

$$c_n(q,1) = \sum_D q^{\binom{n}{2} - |D|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

q, t-Catalan numbers: examples

Another interesting degeneration: $c_n(q, 1)$ is a sum over all Dyck paths weighted by the area between a path and the diagonal:

$$c_n(q,1) = \sum_D q^{\binom{n}{2} - |D|}$$

Examples:

$$egin{aligned} & c_1(q,t) = 1, \quad c_2(q,t) = q+t, \ & c_3(q,t) = q^3 + q^2t + qt + t^2q + t^3. \end{aligned}$$

q, t-Catalan numbers: examples

Another interesting degeneration: $c_n(q, 1)$ is a sum over all Dyck paths weighted by the area between a path and the diagonal:

$$c_n(q,1) = \sum_D q^{\binom{n}{2} - |D|}$$

Examples:

$$egin{aligned} c_1(q,t) &= 1, \quad c_2(q,t) = q+t, \ c_3(q,t) &= q^3 + q^2t + qt + t^2q + t^3. \end{aligned}$$

We have 1 path with |D| = 0, 1 path with |D| = 1, 2 paths with |D| = 2 and 1 path with |D| = 3:

$$c_3(q,1) = 1 + 2q + q^2 + q^3$$
.

< ∃ ► = √ < (~

q, t-Catalan numbers: Hilbert scheme

 $Hilb^n(\mathbb{C}^2)$ – Hilbert scheme of *n* points on \mathbb{C}^2 .

T – tautological bundle of rank n on it

 $Z = Hilb^n(\mathbb{C}^2, 0)$ – Hilbert scheme of *n* points supported at 0

q, t-Catalan numbers: Hilbert scheme

 $Hilb^n(\mathbb{C}^2)$ – Hilbert scheme of *n* points on \mathbb{C}^2 .

T – tautological bundle of rank n on it

 $Z = Hilb^n(\mathbb{C}^2, 0)$ – Hilbert scheme of *n* points supported at 0

Theorem (M. Haiman) 1. $H^i(Z, \Lambda^n T) = 0$ for i > 02. $\chi_{(C^*)^2}(Z, \Lambda^n T) = c_n(q, t)$.

Corollary

The function $c_n(q, t)$ is a character of $(C^*)^2$ action on $H^0(Z, \Lambda^n T)$, so it is a polynomial with nonnegative coefficients.

Construction

Consider a plane curve singularity $C = C_{m,n} = \{x^m = y^n\}$, *m* and *n* coprime. The **compactified Jacobian** of *C* is the moduli space of rank 1 degree 0 torsion-free sheaves on a projective rational curve with unique singularity *C*.

Construction

Consider a plane curve singularity $C = C_{m,n} = \{x^m = y^n\}$, *m* and *n* coprime. The **compactified Jacobian** of *C* is the moduli space of rank 1 degree 0 torsion-free sheaves on a projective rational curve with unique singularity *C*.

Local description: consider $R = \mathbb{C}[[t^m, t^n]]$ – the ring of functions on *C*. The *JC* is the moduli space of *R*-modules inside $\overline{R} = \mathbb{C}[[t]]$.

Construction

Consider a plane curve singularity $C = C_{m,n} = \{x^m = y^n\}$, *m* and *n* coprime. The **compactified Jacobian** of *C* is the moduli space of rank 1 degree 0 torsion-free sheaves on a projective rational curve with unique singularity *C*.

Local description: consider $R = \mathbb{C}[[t^m, t^n]]$ – the ring of functions on C. The *JC* is the moduli space of *R*-modules inside $\overline{R} = \mathbb{C}[[t]]$.

If (m, n) = (2, 3), we get a Jacobian of a cuspidal cubic. It is a cuspidal cubic itself, *topologically JC* $\simeq \mathbb{P}^1$.

Cell decomposition

Theorem

(E. G., M. Mazin, 2011) The compactified Jacobian of $C_{m,n}$ admits an affine cell decomposition. The cells are parametrized by the lattice paths in $m \times n$ rectangle below the diagonal, and the dimension of such a cell is given by the formula:

dim
$$\Sigma_D = \frac{(m-1)(n-1)}{2} - h_+(D),$$

where

$$h_+(D)=\sharp\left\{c\in D \mid \left| \begin{array}{c} a(c)\ l(c)+1 \leq rac{m}{n} < rac{a(c)+1}{l(c)}
ight\}.$$

q, t-Catalan numbers

It turns out that in the case (m, n) = (n, n + 1) the statistics h_+ is related to q, t-Catalan numbers.

Theorem

(A. Garsia, M. Haiman, J. Haglund) The q, t-Catalan numbers admit a combinatorial interpretation:

$$c_n(q,t) = \sum_D q^{\binom{n}{2}-|D|} t^{h_+(D)}.$$

q, t-Catalan numbers

It turns out that in the case (m, n) = (n, n + 1) the statistics h_+ is related to q, t-Catalan numbers.

Theorem

(A. Garsia, M. Haiman, J. Haglund) The q, t-Catalan numbers admit a combinatorial interpretation:

$$c_n(q,t)=\sum_D q^{\binom{n}{2}-|D|}t^{h_+(D)}.$$

Corollary

The Poincaré polynomial of $JC_{n,n+1}$ equals to

$$P(t) = \sum_{D} t^{\binom{n}{2}-h_{+}(D)} = t^{\binom{n}{2}}c_{n}(1, t^{-1}) = t^{\binom{n}{2}}c_{n}(t^{-1}, 1) = \sum_{D} t^{|D|}.$$

Construction

Let us parametrize the singularity as $(x, y) = (t^n, t^m)$ and perturb this parametrization:

$$x(t) = t^n + u_2 t^{n-2} + \ldots + u_n, \quad y(t) = t^m + v_2 t^{m-2} + \ldots + v_m.$$

We regard u_i and v_i as free parameters, and require that the perturbed parameterization satisfies the equation of our curve:

$$A_{m,n} = \mathbb{C}[u_i, v_i]/(t^n + u_2 t^{n-2} + \ldots + u_n)^m = (t^m + v_2 t^{m-2} + \ldots + v_m)^n.$$

We require the identity of $x(t)^m$ and $y(t)^m$ in all orders of *t*-expansion.

Construction cont'd

Theorem

(B. Fantechi, L. Göttsche, D. van Straten)

► A_{m,n} is a ring of functions on a 0-dimensional complete intersection

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Construction cont'd

Theorem

(B. Fantechi, L. Göttsche, D. van Straten)

► A_{m,n} is a ring of functions on a 0-dimensional complete intersection

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• dim
$$A_{m,n} = \frac{(m+n-1)!}{m!n!}$$

Construction cont'd

Theorem

(B. Fantechi, L. Göttsche, D. van Straten)

► A_{m,n} is a ring of functions on a 0-dimensional complete intersection

• dim
$$A_{m,n} = \frac{(m+n-1)!}{m!n!}$$

► *A_{m,n}* is naturally graded and its Hilbert series equals to

$$H(q) = \frac{[(m+n-1)!]_q}{[m!]_q[n!]_q}$$

Conjecture(L. Göttsche) The ring $A_{m,n}$ is isomorphic to the cohomology ring of $JC_{m,n}$.

Dunkl operators

Consider the polynomial ring $\mathbb{C}[x]$ in variables x_i with condition $\sum x_i = 0$.

Definition

The Dunkl operator on $\mathbb{C}[x]$ is defined by a formula

$$D_i f = rac{\partial f}{\partial x_i} - c \sum_{j \neq i} rac{f - s_{ij} f}{x_i - x_j},$$

where s_{ij} is an transposition of x_i and x_j .

Lemma

$$[D_i,D_j]=0.$$

Dunkl operators play important role in the study of the quantum rational Calogero-Moser system.

Finite-dimensional representations

Dunkl operators, multiplications by x_i and permutations produce the representation of the rational Cherednik algebra H_c on $\mathbb{C}[x]$.

Finite-dimensional representations

Dunkl operators, multiplications by x_i and permutations produce the representation of the rational Cherednik algebra H_c on $\mathbb{C}[x]$.

Theorem

(Y. Berest, P. Etingof, V. Ginzburg)

1. If $c \neq \frac{m}{n}$, $m \in \mathbb{Z}$, (m, n) = 1, then $\mathbb{C}[x]$ is irreducible and there are no finite-dimensional representations of H_c

Finite-dimensional representations

Dunkl operators, multiplications by x_i and permutations produce the representation of the rational Cherednik algebra H_c on $\mathbb{C}[x]$.

Theorem

(Y. Berest, P. Etingof, V. Ginzburg)

1. If $c \neq \frac{m}{n}$, $m \in \mathbb{Z}$, (m, n) = 1, then $\mathbb{C}[x]$ is irreducible and there are no finite-dimensional representations of H_c

2. If $c = \frac{m}{n}$, then $\mathbb{C}[x]$ has a subrepresentation with a finite-dimensional quotient $L_{\frac{m}{n}}$ and this is a unique finite-dimensional representation of $H_{\frac{m}{n}}$.

Finite-dimensional representations

Dunkl operators, multiplications by x_i and permutations produce the representation of the rational Cherednik algebra H_c on $\mathbb{C}[x]$.

Theorem

(Y. Berest, P. Etingof, V. Ginzburg)

- 1. If $c \neq \frac{m}{n}$, $m \in \mathbb{Z}$, (m, n) = 1, then $\mathbb{C}[x]$ is irreducible and there are no finite-dimensional representations of H_c
- 2. If $c = \frac{m}{n}$, then $\mathbb{C}[x]$ has a subrepresentation with a finite-dimensional quotient $L_{\frac{m}{n}}$ and this is a unique finite-dimensional representation of $H_{\frac{m}{n}}$.

dim
$$L_{\frac{m}{n}} = m^{n-1}$$
, dim $(L_{\frac{m}{n}})^{S_n} = \frac{(m+n-1)!}{m!n!}$

Finite-dimensional representations

Dunkl operators, multiplications by x_i and permutations produce the representation of the rational Cherednik algebra H_c on $\mathbb{C}[x]$.

Theorem

(Y. Berest, P. Etingof, V. Ginzburg)

- 1. If $c \neq \frac{m}{n}$, $m \in \mathbb{Z}$, (m, n) = 1, then $\mathbb{C}[x]$ is irreducible and there are no finite-dimensional representations of H_c
- 2. If $c = \frac{m}{n}$, then $\mathbb{C}[x]$ has a subrepresentation with a finite-dimensional quotient $L_{\frac{m}{n}}$ and this is a unique finite-dimensional representation of $H_{\frac{m}{n}}$.

dim
$$L_{\frac{m}{n}} = m^{n-1}$$
, dim $(L_{\frac{m}{n}})^{S_n} = \frac{(m+n-1)!}{m!n!}$

Rank-level duality

Theorem (D. Calaque, B. Enriquez, P. Etingof)

$$(L_{\frac{m}{n}})^{S_n}\simeq (L_{\frac{n}{m}})^{S_m}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Rank-level duality

Theorem (D. Calaque, B. Enriquez, P. Etingof)

$$(L_{\frac{m}{n}})^{S_n}\simeq (L_{\frac{n}{m}})^{S_m}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem
(E. G., 2011)
1.
$$(L_{\frac{m}{n}})^{S_n} = A_{m,n}$$
.

Rank-level duality

Theorem (D. Calaque, B. Enriquez, P. Etingof)

$$(L_{\frac{m}{n}})^{S_n} \simeq (L_{\frac{n}{m}})^{S_m}$$

Theorem (E. G.,2011) 1. $(L_{\frac{m}{n}})^{S_n} = A_{m,n}$. 2. $\operatorname{Hom}_{S_n}(\Lambda^k V, L_{\frac{m}{n}}) = \Omega^k(\operatorname{Spec} A_{m,n}), \text{ where } V \text{ is the}$ (n-1)-dimensional representation of S_n .

Rank-level duality

Theorem (D. Calaque, B. Enriquez, P. Etingof)

$$(L_{\frac{m}{n}})^{S_n}\simeq (L_{\frac{n}{m}})^{S_m}$$

Theorem (E. G.,2011) 1. $(L_{\frac{m}{n}})^{S_n} = A_{m,n}$. 2. $\operatorname{Hom}_{S_n}(\Lambda^k V, L_{\frac{m}{n}}) = \Omega^k(\operatorname{Spec} A_{m,n}), \text{ where } V \text{ is the}$ (n-1)-dimensional representation of S_n .

Knot homology

Torus knots

The intersection of singularity $C_{m,n}$ with a small 3-sphere centered at the origin is the (m, n) torus knot.

Knot homology

Conjecture

In 2005 M. Khovanov and L. Rozansky introduced triply graded knot homology theory, whose (bigraded) Euler characteristic gives the HOMFLY-PT polynomial. **Conjecture** (E.G., A. Oblomkov, J. Rasmussen, V. Shende) The triply graded Khovanov-Rozansky homology of (m, n) torus knot is isomorphic to

$$\mathcal{H}(T_{m,n})\simeq \bigoplus_k \operatorname{Hom}_{\mathcal{S}_n}(\Lambda^k V, L_{\frac{m}{n}}),$$

where V is the (n-1)-dimensional representation of S_n .

Knot homology

Conjecture

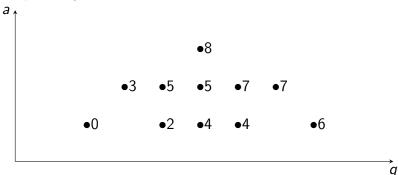
In 2005 M. Khovanov and L. Rozansky introduced triply graded knot homology theory, whose (bigraded) Euler characteristic gives the HOMFLY-PT polynomial. **Conjecture** (E.G., A. Oblomkov, J. Rasmussen, V. Shende) The triply graded Khovanov-Rozansky homology of (m, n) torus knot is isomorphic to

$$\mathcal{H}(T_{m,n})\simeq \bigoplus_k \operatorname{Hom}_{S_n}(\Lambda^k V, L_{\frac{m}{n}}),$$

where V is the (n-1)-dimensional representation of S_n . For k = 0 we get $(L_{\frac{m}{n}})^{S_n}$.

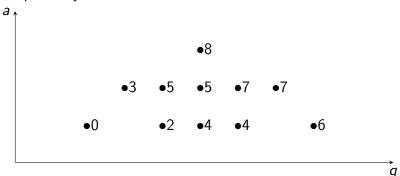
Knot homology Example: (3,4) torus knot

For (3,4) torus knot the triply graded homology were computed by S. Gukov, N. Dunfield and J. Rasmussen:



Knot homology Example: (3,4) torus knot

For (3,4) torus knot the triply graded homology were computed by S. Gukov, N. Dunfield and J. Rasmussen:



In the lowest *a*-grading we see slightly regraded $c_3(q, t)$.

Thank you.

<□ > < @ > < E > < E > E のQ @