Khovanov-Rozansky homology and the flag Hilbert scheme (joint with Andrei Neguț, Jacob Rasmussen and Paul Wedrich)

> Eugene Gorsky University of California, Davis

Mathematical Congress of the Americas July 26, 2017

Khovanov-Rozansky homology

Let $R = \mathbb{C}[x_1, \dots, x_n]$, define R - R bimodules $B_i = R \otimes_{R^{s_i}} R$. Theorem (Rouquier)

The complexes $T_i = [B_i \rightarrow R], T_i^{-1} = [R \rightarrow B_i]$ satisfy braid relations up to a homotopy:

$$T_i \otimes T_i^{-1} \sim \mathbf{1} = R, T_i \otimes T_j \simeq T_j \otimes T_i \ (|i-j| > 1),$$

$$T_i \otimes T_{i+1} \otimes T_i \simeq T_{i+1} \otimes T_i \otimes T_{i+1}.$$

As a consequence, to every braid β one can associate a complex (which we will also denote by β) in the *homotopy* category of Soergel bimodules $K(SBim_n)$.

Theorem (Khovanov)

The Khovanov-Rozansky homology $HHH(\beta) = R Hom(\mathbf{1}, \beta)$ is a topological invariant of the closure of β .

Flag Hilbert scheme

The Hilbert scheme of points in \mathbb{C}^2 is defined as the moduli space of codimension *n* ideals in $\mathbb{C}[x, y]$. We define an algebraic variety FHilbⁿ as the moduli space of flags of ideals $\{\mathbb{C}[x, y] \supset I_1 \supset \ldots \supset I_n\}$ such that dim $\mathbb{C}[x, y]/I_k = k$ for all k and $\mathbb{C}[x, y]/I_k$ is set-theoretically is supported on $\{y = 0\}$. It can be also defined as the space of triples (X, Y, v) where X is a lower-triangular $n \times n$ matrix, Y is a strictly lower-triangular $n \times n$ matrix such that [X, Y] = 0, $v \in \mathbb{C}^n$ satisfies a certain stability condition, modulo the equivalence relation $(X, Y, v) \sim (gXg^{-1}, gYg^{-1}, gv)$.

Example

For n = 2 one can pick v = (1, 0),

$$X = \begin{pmatrix} x_1 & 0 \\ z & x_2 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}, w(x_1 - x_2) = 0.$$

Main conjecture

There is a pair of adjoint functors

$$\iota_* : K(\mathsf{SBim}_n) \leftrightarrow D(\mathsf{FHilb}^n) : \iota^*$$

satisfying the following:

$$\iota^*(A \otimes B) = \iota^*(A) \otimes \iota^*(B)$$
 $\iota_*(\iota^*(A) \otimes B) = \iota_*(B \otimes \iota^*(A)) = A \otimes \iota_*(B)$
 $\iota_*(1) = O$
 $\iota^*(C) = I$, where C are certain line bundles.

ℓ^{*}(L_i) = L_i, where L_i are certain line bundles on FHilbⁿ
 and
 and

$$L_i =$$

▶ $\iota_*(\beta)$ coincides with the Oblomkov-Rozansky homology

Application

One can compute Khovanov-Rozansky homology of some links using algebraic geometry:

$$\begin{aligned} \mathsf{HHH}(\prod L_i^{a_i}) &= \mathsf{Hom}(\mathbf{1},\bigotimes L_i^{a_i}) = \mathsf{Hom}(\iota^*(\mathcal{O}),\bigotimes L_i^{a_i}\otimes \mathbf{1}) = \\ \mathsf{Hom}(\mathcal{O},\iota_*(\bigotimes L_i^{a_i}\otimes \mathbf{1})) &= \mathsf{Hom}(\mathcal{O},\bigotimes \mathcal{L}_i^{a_i}\otimes \iota_*(\mathbf{1})) = \\ \mathsf{Hom}(\mathcal{O},\bigotimes \mathcal{L}_i^{a_i}) &= H^*(\mathsf{FHilb}^n,\bigotimes \mathcal{L}_i^{a_i}) \end{aligned}$$

In some cases, this is confirmed by recent computations of Elias, Hogancamp and Mellit.

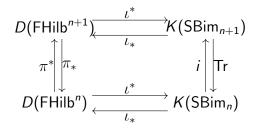
Theorem (Hogancamp, Mellit)

The Poincaré polynomial for the (a = 0) part of HHH for the torus knot T(m, n) equals $(P_{m,n} \cdot 1, e_n)$, where $P_{m,n}$ is the generator of the Elliptic Hall Algebra.

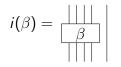
G., Neguț, Carlsson, Mellit gave a combinatorial description of this polynomial.

Inductive step

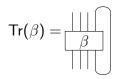
Moreover, we conjecture the existence of commutative diagrams:



where



Note that $HHH(\beta) = Tr^{n}(\beta)$.



- ロ ト - 4 回 ト - 4 □ - 4

Projective bundles, geometrically

Geometrically, we can factor the projection $\pi: \mathsf{FHilb}^{n+1} \to \mathsf{FHilb}^n$ into two steps:

 $\mathsf{FHilb}^{n+1} \xrightarrow{p} \mathsf{FHilb}^n \times \mathbb{C} \xrightarrow{q} \mathsf{FHilb}^n \,.$

Theorem

The fibers of the map p are projective spaces of various dimensions. More precisely,

$$\mathsf{FHilb}^{n+1} = \mathbb{P}(\mathcal{E}_n^{\vee}), \ \mathcal{E} = [q^*\mathcal{V}_n \xrightarrow{X - x_{n+1}} q^*\mathcal{V}_n],$$

where \mathcal{V}_n is a certain explicit sheaf on FHilb^n with an endomorphism X. Furthermore, $\mathcal{L}_{n+1} = \mathcal{O}(1)$ for this projective bundle.

Example

The projection $\text{FHilb}^2 \to \text{FHilb}^1 \times \mathbb{C}$ sends (X, Y) to (x_1, x_2) . For $x_1 \neq x_2$, the fiber is a point. For $x_1 = x_2$, the fiber is \mathbb{P}^1 .

Projective bundles, algebraically

How to write this algebraically? The category $D(\text{FHilb}^{n+1})$ is generated by the objects of the form $p^*(A) \otimes \mathcal{L}_{n+1}^k$ where $A \in D(\text{FHilb}^n)$. They satisfy certain relations similar to the Koszul complex, relating the powers of $\mathcal{O}(1)$ on \mathbb{P}^n .¹

For k > 0, one has

$$p_*(\mathcal{L}_{n+1}^k) = S^k \mathcal{E}_n.$$

Lemma

$$\pi_*(\mathcal{L}_{n+1}^k) = q_*p_*(\mathcal{L}_{n+1}^k) = q_*(S^k\mathcal{E}_n) \simeq$$

 $q_*[q^* \wedge^k \mathcal{V}_n \to q^* \wedge^{k-1} \mathcal{V}_n \otimes q^*\mathcal{V}_n \to \ldots \to q^*S^k\mathcal{V}_n] \simeq$
 $[\wedge^k \mathcal{V}_n \to \ldots \to \mathbb{S}^{k-1,1}\mathcal{V}_n \to S^k\mathcal{V}_n].$

Projective bundles, topologically

How to describe all this information in terms of braids?

$$\mathsf{Tr}(L_{n+1}) = \iota^* \mathcal{V}_n =$$

From above, this looks like a circle wrapping other *n* strands. Similarly, $Tr(L_{n+1}^k)$ from above looks like a *k*-stablized unknot:

To relate it to V_n as in the previous slide, we use the machinery of *annular Khovanov-Rozansky homology* developed by Queffelec and Rose.

Thank you