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Counting Dyck paths
Catalan numbers

The Catalan number is the number of Dyck paths, that is,
lattice paths in n × n square that never cross the diagonal:

Named after Belgian mathematician Eugène Charles Catalan
(1814–1894), probably discovered by Euler.
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1

n + 1

(
2n

n
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(2n)!

n!(n + 1)!
.

First values: 1, 2, 5, 14, 42, 132 . . .

Catalan numbers have many different combinatorial
interpretations (counting trees, triangulations of a polygon,
noncrossing partitions etc).



Counting Dyck paths
Rational Catalan numbers

An (m, n) Dyck path is a lattice path in m× n rectangle which
never crosses the diagonal. Here’s an example of a (5, 7) Dyck
path:

Let cm,n be the number of (m, n) Dyck paths. Clearly,

cm,n = cn,m and cn,n+1 = cn,n = cn

If GCD(m, n) = 1, then

cm,n =
(m + n − 1)!

m!n!



Counting Dyck paths
Non-coprime case

The formula for cm,n in the non-coprime case is much more
complicated.

Theorem (Bizley,Grossman)
Given a pair of coprime integers (m, n), the generating
function for cdm,dn has the form:

∞∑
d=0

cdm,dnzd = exp

(
∞∑
d=1

(km + kn − 1)!

(km)!(kn)!
zk

)
.

Remark
For k > 1, (km+kn−1)!

(km)!(kn)!
usually is not an integer. However, these

rational numbers together with the coefficients of the Taylor
series for exp(x) blend into a series with integer coefficients.



Equivalent descriptions
Simultaneous cores

From now on, we focus on cm,n for coprime (m, n).

A Young diagram is called an n–core, if neither of the
hook-lengths of its cells is divisible by n.

Theorem (J. Anderson)
For coprime m, n there is a bijection between the set of (m, n)
Dyck paths and the set of (m, n)-cores (that is, partitions with
are both m-cores and n-cores). In particular, the number of
(m, n)-cores is finite and equals cm,n.

Here’s a list of (3, 4)-cores:

∅



Equivalent descriptions
Semigroup modules

Theorem (G., Mazin)
There is a bijection between (m, n) Dyck paths and subsets
M ⊂ Z such that min(M) = 0, M + n ⊂ M , M + m ⊂ M .
Such subsets can be interpreted as (semi)-modules over the
integer semigroup generated by m and n.

Example
For (m, n) = (3, 4) one has the following modules:

0, 3, 4, 6, . . . , 0, 3, 4, 5, 6, . . . , 0, 2, 3, 4, 5, 6, . . . ,

0, 1, 3, 4, 5, 6, . . . , 0, 1, 2, 3, 4, 5, 6, . . .

Moyano-Fernández and Uliczka studied these modules from the
viewpoint of commutative algebra (generators, syzigies etc).



Equivalent descriptions
Lattice points in a simplex

Theorem (G.,Mazin,Vazirani; P. Johnson)
There is a bijection between the set of (m, n) Dyck paths and
the set of lattice points in a certain (n − 1)-dimensional
simplex of size m.



Equivalent descriptions
Connections to algebra

Theorem (Berest,Etingof,Ginzburg)
The rational Cherednik algebra has a unique finite-dimensional
representation Lm/n, and

dim Lm/n = mn−1, dim(Lm/n)Sn =
(m + n − 1)!

m!n!
= cm,n.

Problem: find a basis in (Lm/n)Sn labeled by (m, n) Dyck paths.

Theorem (Gordon)
For m = n + 1, the space Lm/n is isomorphic to the space of
diagonal harmonics:

L n+1
n
' DHn =

C[x1 . . . , xn, y1 . . . , yn]

C[x1 . . . , xn, y1 . . . , yn]Sn+
.



Statistics
There are many interesting statistics on rational Dyck paths:

I Area above the Dyck path

I Area of the corresponding (m, n)–core
(studied by Armstrong, Johnson and others)

I dinv statistics (motivated by the work of Garsia, Haglund,
Haiman on q, t-Catalan numbers)

dinv(D) = ]
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Statistics
Dinv and geometry

It turns out that dinv statistics has an important geometric
meaning. Let C be a plane curve singularity defined by the
equation {xm = yn}, and let Xm,n be the Hilbert scheme of N
points on C for N large enough. The variety Xm,n is also
known as compactified Jacobian of C or affine Springer fiber.

Theorem (G.,Mazin)
The algebraic variety Xm,n has a paving by affine cells ΣD ,
which are naturally labeled by the (m, n) Dyck paths D. The
dimension of such a cell equals

dim ΣD =
(m − 1)(n − 1)

2
− dinv(D).



Conjectures
Symmetry conjecture

Let δm,n = (m−1)(n−1)
2

. Define

cm,n(q, t) =
∑
D

qδm,n−area(D)tdinv(D).

Conjecture
This polynomial is symmetric : cm,n(q, t) = cm,n(t, q).

For m = n + 1, the polynomial cn,n+1(q, t) is known as
q, t-Catalan polynomial, and the symmetry was proved by
Garsia and Haglund.

Theorem (Lee,Li,Loehr)
Conjecture holds for min(m, n) ≤ 4.

Theorem (G.Mazin)
For m = kn ± 1, one has cm,n(q, 1) = cm,n(1, q).



Conjectures
Rational q, t-Catalan conjecture

Conjecture (G., Negut,)
The polynomial cm,n(q, t) can be computed as follows:

cm,n(q, t) = (Pm,n · 1, en),

where Pm,n is a certain operator acting on symmetric functions.

The right hand side is manifestly symmetric in q and t, and
can be computed as an explicit sum of rational functions over
standard Young tableaux of size n (or m).

The operators Pm,n generate the so-called elliptic Hall algebra,
which has been an object of active study in representation
theory (by Burban, Feigin, Schiffmann, Tsymbaliuk,
Vasserot...).



Further directions

I Generalization to non-coprime case:
Bergeron, Garsia, Leven, Xin....

I Rational parking functions:
Armstrong, Loehr, Warrington ...

I Rational associahedra:
Armstrong, Rhoades, Williams.....

I Connections to LLT polynomials:
Haglund, Haiman, Loehr, Ulyanov, Remmel; G., Mazin

I Connections to knot invariants:
G., Negut,, Oblomkov, Rasmussen, Shende....



Thank you
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