Rational Catalan Combinatorics

Eugene Gorsky UC Davis

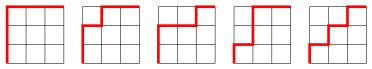
Bay Area Discrete Math Day October 17, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counting Dyck paths

Catalan numbers

The Catalan number is the number of Dyck paths, that is, lattice paths in $n \times n$ square that never cross the diagonal:



Named after Belgian mathematician Eugène Charles Catalan (1814–1894), probably discovered by Euler.

$$c_n = \frac{1}{n+1} {\binom{2n}{n}} = \frac{(2n)!}{n!(n+1)!}$$

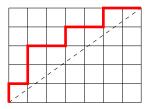
First values: 1, 2, 5, 14, 42, 132...

Catalan numbers have many different combinatorial interpretations (counting trees, triangulations of a polygon, noncrossing partitions etc).

Counting Dyck paths

Rational Catalan numbers

An (m, n) Dyck path is a lattice path in $m \times n$ rectangle which never crosses the diagonal. Here's an example of a (5, 7) Dyck path:



Let $c_{m,n}$ be the number of (m, n) Dyck paths. Clearly,

$$c_{m,n}=c_{n,m}$$
 and $c_{n,n+1}=c_{n,n}=c_n$

If GCD(m, n) = 1, then

$$c_{m,n}=\frac{(m+n-1)!}{m!n!}$$

Counting Dyck paths

Non-coprime case

The formula for $c_{m,n}$ in the non-coprime case is much more complicated.

Theorem (Bizley, Grossman)

Given a pair of coprime integers (m, n), the generating function for $c_{dm,dn}$ has the form:

$$\sum_{d=0}^{\infty} c_{dm,dn} z^d = \exp\left(\sum_{d=1}^{\infty} \frac{(km+kn-1)!}{(km)!(kn)!} z^k\right)$$

Remark

For k > 1, $\frac{(km+kn-1)!}{(km)!(kn)!}$ usually is not an integer. However, these rational numbers together with the coefficients of the Taylor series for $\exp(x)$ blend into a series with integer coefficients.

Simultaneous cores

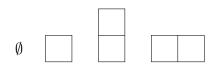
From now on, we focus on $c_{m,n}$ for coprime (m, n).

A Young diagram is called an *n*-core, if neither of the hook-lengths of its cells is divisible by n.

Theorem (J. Anderson)

For coprime m, n there is a bijection between the set of (m, n)Dyck paths and the set of (m, n)-cores (that is, partitions with are both m-cores and n-cores). In particular, the number of (m, n)-cores is finite and equals $c_{m,n}$.

Here's a list of (3, 4)-cores:



Semigroup modules

Theorem (G., Mazin)

There is a bijection between (m, n) Dyck paths and subsets $M \subset \mathbb{Z}$ such that $\min(M) = 0$, $M + n \subset M$, $M + m \subset M$. Such subsets can be interpreted as (semi)-modules over the integer semigroup generated by m and n.

Example

For (m, n) = (3, 4) one has the following modules:

$$0, 3, 4, 6, \ldots, 0, 3, 4, 5, 6, \ldots, 0, 2, 3, 4, 5, 6, \ldots,$$

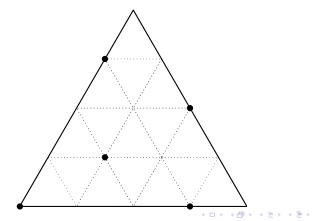
 $0, 1, 3, 4, 5, 6, \ldots, 0, 1, 2, 3, 4, 5, 6, \ldots$

Moyano-Fernández and Uliczka studied these modules from the viewpoint of commutative algebra (generators, syzigies etc).

Lattice points in a simplex

Theorem (G., Mazin, Vazirani; P. Johnson)

There is a bijection between the set of (m, n) Dyck paths and the set of lattice points in a certain (n - 1)-dimensional simplex of size m.



Connections to algebra

Theorem (Berest, Etingof, Ginzburg)

The rational Cherednik algebra has a unique finite-dimensional representation $L_{m/n}$, and

dim
$$L_{m/n} = m^{n-1}$$
, dim $(L_{m/n})^{S_n} = \frac{(m+n-1)!}{m!n!} = c_{m,n}$.

Problem: find a basis in $(L_{m/n})^{S_n}$ labeled by (m, n) Dyck paths. Theorem (Gordon)

For m = n + 1, the space $L_{m/n}$ is isomorphic to the space of diagonal harmonics:

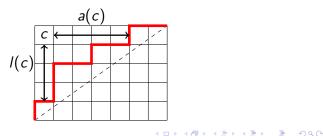
$$L_{\frac{n+1}{n}} \simeq DH_n = \frac{\mathbb{C}[x_1 \dots, x_n, y_1 \dots, y_n]}{\mathbb{C}[x_1 \dots, x_n, y_1 \dots, y_n]_+^{S_n}}.$$

Statistics

There are many interesting statistics on rational Dyck paths:

- Area above the Dyck path
- Area of the corresponding (m, n)-core (studied by Armstrong, Johnson and others)
- dinv statistics (motivated by the work of Garsia, Haglund, Haiman on q, t-Catalan numbers)

$$\operatorname{dinv}(D) = \sharp \left\{ c : \frac{a(c)}{l(c)+1} < \frac{m}{n} < \frac{a(c)+1}{l(c)} \right\}$$



Statistics

Dinv and geometry

It turns out that dinv statistics has an important geometric meaning. Let C be a plane curve singularity defined by the equation $\{x^m = y^n\}$, and let $X_{m,n}$ be the Hilbert scheme of N points on C for N large enough. The variety $X_{m,n}$ is also known as *compactified Jacobian* of C or *affine Springer fiber*.

Theorem (G., Mazin)

The algebraic variety $X_{m,n}$ has a paving by affine cells Σ_D , which are naturally labeled by the (m, n) Dyck paths D. The dimension of such a cell equals

$$\dim \Sigma_D = \frac{(m-1)(n-1)}{2} - \operatorname{dinv}(D).$$

Conjectures

Symmetry conjecture Let $\delta_{m,n} = \frac{(m-1)(n-1)}{2}$. Define $c_{m,n}(q,t) = \sum_{D} q^{\delta_{m,n}-\operatorname{area}(D)} t^{\operatorname{dinv}(D)}$.

Conjecture

This polynomial is symmetric : $c_{m,n}(q,t) = c_{m,n}(t,q)$. For m = n + 1, the polynomial $c_{n,n+1}(q,t)$ is known as

q, t-Catalan polynomial, and the symmetry was proved by Garsia and Haglund.

Theorem (Lee,Li,Loehr)

Conjecture holds for $\min(m, n) \leq 4$.

Theorem (G.Mazin)

For $m = kn \pm 1$, one has $c_{m,n}(q,1) = c_{m,n}(1,q)$.

Conjectures

Rational q, t-Catalan conjecture

Conjecture (G., Neguț)

The polynomial $c_{m,n}(q, t)$ can be computed as follows:

$$c_{m,n}(q,t) = (P_{m,n} \cdot 1, e_n),$$

where $P_{m,n}$ is a certain operator acting on symmetric functions. The right hand side is manifestly symmetric in q and t, and can be computed as an explicit sum of rational functions over standard Young tableaux of size n (or m).

The operators $P_{m,n}$ generate the so-called *elliptic Hall algebra*, which has been an object of active study in representation theory (by Burban, Feigin, Schiffmann, Tsymbaliuk, Vasserot...).

Further directions

- Generalization to non-coprime case: Bergeron, Garsia, Leven, Xin....
- Rational parking functions: Armstrong, Loehr, Warrington ...
- Rational associahedra: Armstrong, Rhoades, Williams.....
- Connections to LLT polynomials: Haglund, Haiman, Loehr, Ulyanov, Remmel; G., Mazin
- Connections to knot invariants:
 G., Neguţ, Oblomkov, Rasmussen, Shende....

Thank you