Singular curves and link invariants

Eugene Gorsky Columbia University

Congress of Royal Spanish Mathematical Society February 5, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Singular curves and links

Let (C, 0) be a complex plane curve singularity. Its intersection with a small sphere S^3 is a knot or a link L.

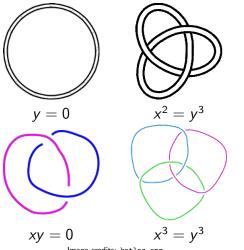


Image credits: katlas.org

Classical question: how to relate the topological invariants of L to the algebro–geometric invariants of C?

This problem was studied by Milnor, Eisenbud, Neumann, A'Campo and others. For example, for a unibranched curve one gets an iterated torus knot, and its cabling parameters match the Puiseaux pairs of the singularity.

Singular curves and links

I will discuss some new developments which can be described (sometimes conjecturally) as follows:

- One constructs a family of moduli spaces defined by the algebraic geometry of C
- The Euler characteristics of these spaces match the coefficients of *polynomial invariants* (Alexander and Jones polynomials...) of L
- Furthermore, the homology of these spaces are expected to match the *homogical invariants* (Heegaard Floer and Khovanov homologies...) of L

Alexander polynomial

Suppose that *C* has *r* irreducible components C_1, \ldots, C_r , let $\gamma_i : (\mathbb{C}, 0) \to (C_i, 0)$ denote their uniformizations. For $g \in \mathbb{C}[[x, y]]$ we define its order on C_i as

$$u_i(g) = \operatorname{Ord}_0 g(\gamma_i(t)).$$

For $v \in \mathbb{Z}^r$ consider the space

$$\mathcal{H}(\mathbf{v}) := \{ g \in \mathbb{C}[[x, y]] : \nu_i(g) = \mathbf{v}_i \ \forall i \}.$$

Theorem (Campillo, Delgado, Gusein-Zade) The following identity holds:

$$\sum_{\mathbf{v}\in\mathbb{Z}^r}\chi(\mathcal{H}(\mathbf{v})/\mathbb{C}^*)t^{\mathbf{v}} = \begin{cases} \Delta(t_1,\ldots,t_r) & \text{if } r>1\\ \Delta(t)/(1-t) & \text{if } r=1 \end{cases}$$

where $\Delta(t)$ is the Alexander polynomial of L.

Alexander polynomial

For example, consider the Hopf link, corresponding to the singularity $\{xy = 0\}$. A function $g \in \mathbb{C}[x, y]$ has order 0 on one of the components if and only its constant term is nonzero, and hence its order on the second component also equals 0. Therefore

 $\mathcal{H}(0,0) = \{ \alpha + \text{higher order terms} | \alpha \neq 0 \} \sim \mathbb{C}^*,$

$$\mathcal{H}(a,0) = \mathcal{H}(0,a) = \emptyset$$
 for $a > 0$.

Furthermore, for a, b > 0 one has

 $\mathcal{H}(a, b) = \{\alpha x^a + \beta y^b + \text{higher order terms} | \alpha, \beta \neq 0\} \sim (\mathbb{C}^*)^2.$ Therefore

$$\sum_{oldsymbol{v}\in\mathbb{Z}^2}\chi(\mathcal{H}(oldsymbol{v})/\mathbb{C}^*)t^{oldsymbol{v}}=1=\Delta(t_1,t_2)$$

HOMFLY-PT polynomial

The HOMFLY-PT polynomial P(a, q) is a more subtle invariant of links. The specializations P(1, q) and $P(q^2, q)$ give the Alexander and Jones polynomials respectively.

Theorem (Maulik, conj. by Oblomkov–Shende) The following identity holds:

$$P_L(a,q)=(1-q)\sum_{n=0}^{\infty}q^n\int_{\mathrm{Hilb}^n(C,0)}(1-a)^{m-1}d\chi,$$

where $Hilb^n C$ is the punctual Hilbert scheme of n points on C and m is the minimal number of generators for an ideal.

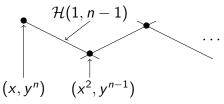
Remark At a = 1 only principal ideals (with m = 1) survive.

HOMFLY-PT polynomial

Let us describe the *n*-th Hilbert scheme of the singularity $\{xy = 0\}$. We have

$$\mathsf{Hilb}^0(\mathcal{C},0)=\mathsf{Hilb}^1(\mathcal{C},0)=\{*\}$$

Hilb²(*C*, 0) contains two monomial ideals (x, y^2) and (y, x^2) and a $\mathbb{C}^* = \mathcal{H}(1, 1)/\mathbb{C}^*$ of principal ideals $(\alpha x + \beta y)$, which glue together to \mathbb{P}^1 . Similarly, Hilb^{*n*}(*C*, 0) is a chain of (n - 1)projective lines:



Note that each of these lines contains $\mathcal{H}(v)/\mathbb{C}^* = \mathbb{C}^*$ for some v.

Heegaard Floer homology

Theorem (G., Némethi)

For all $v \in \mathbb{Z}^r$, one has $H_*(\mathcal{H}(v)) \simeq HFL^-(L, v)$, where $HFL^$ denotes a certain version of the Heegaard Floer link homology defined by Ozsváth and Szabó.

For r = 1, this result follows from the earlier work of Hedden, but for r > 1 it is new. It provides an effective tool of computing HFL⁻ for some links where direct Floer-theoretic methods are hard to apply: for example, for the (n, n) torus link (corresponding to $\{x^n = y^n\}$) the homology are quite subtle.

Theorem (G., Némethi)

The Poincaré polynomial of $\mathcal{H}(v)$ is equivalent (up to some change of variables) to the "motivic Poincaré series" of C defined and studied by Campillo–Delgado–Gusein-Zade and Moyano-Zuñiga.

Khovanov-Rozansky homology

Khovanov and Rozansky defined a link homology theory "categorifying" HOMFLY-PT polynomial.

Conjecture (Oblomkov, Rasmussen, Shende) The a = 0 part of the Poincaré polynomial of the Khovanov-Rozansky homology of L equals

$$\sum_{n=0}^{\infty}\sum_{i}q^{n}t^{i} \operatorname{dim} H_{i}(\operatorname{Hilb}^{n}(C,0)).$$

The conjecture is open even for r = 1, since the homology (and the geometry) of Hilbⁿ(C, 0) are not known in general. If C has one Puiseaux pair, the answer was computed by Piontkowski, but the Khovanov-Rozansky homology for most torus knots is not known.

Let us give a more detailed description of the spaces $\mathcal{H}(v)$.

Lemma

The space $\mathcal{H}(v)$ is either empty or it is a complement to a hyperplane arrangement.

Indeed, let

$$J(\mathbf{v}) := \{ g \in \mathbb{C}[[x, y]] : \nu_i(g) \ge v_i \ \forall i \}.$$

Then $\mathcal{H}(v) = J(v) \setminus \bigcup_{u \succ v} J(u)$.

Theorem (Brieskorn, Orlik-Solomon)

The homology of a complement to a hyperplane arrangement are completely determined by its combinatorics, that is, by the codimensions of intersections of its hyperplanes.

Therefore, the answer is determined by the *Hilbert function* of the singularity

$$h(v) := \dim \mathbb{C}[[x, y]]/J(v).$$

A priori, h(v) is an analytic invariant of C, but it turns out that it depends only on the topology of L.

Theorem (Moyano-Fernández)

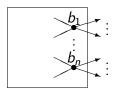
The function h(v) is determined by the collection of multi-variable Alexander polynomials of L and all its sublinks. Furthermore, h(v) determines and is determined by the multi-dimensional semigroup of C.

Idea of proof:

- 1. A sufficiently large surgery of S^3 along L is a link of a *rational* surface singularity.
- 2. (Némethi) Links of rational surface singularities have "easy" Heegaard Floer homology.
- 3. If a large surgery along L has "easy" homology then there is a spectral sequence with combinatorial E_2 page (determined by $\Delta(L)$) and $E_{\infty} = HFL^{-}(L)$.
- 4. For algebraic links, this spectral sequence collapses and $E_2 = E_{\infty}$.

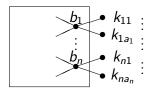
Step (3) uses "large surgery theorem" relating HFL⁻ for the link and its surgeries. Step (4) follows from the properties of hyperplane arrangements which imply the isomorphism $E_2 \simeq H_*(\mathcal{H}(v)/\mathbb{C}^*)$ and the vanishing of higher differentials – it is the most technical part of the proof.

Let us prove that the large surgery along the link is a link of rational surface singularity.



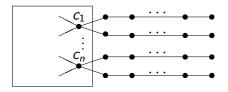
Embedded resolution graph of C

Let us prove that the large surgery along the link is a link of rational surface singularity.



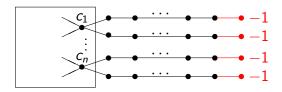
Plumbing graph for $S_d^3(L)$, $k_{ij} = d_{ij} - m_i$, where m_i are the multiplicities of the pullback of f_{ij} on the divisor E_i . We can assume $k_{ij} \ge 1$ for all $1 \le i \le n$, $1 \le j \le a_i$.

Let us prove that the large surgery along the link is a link of rational surface singularity.

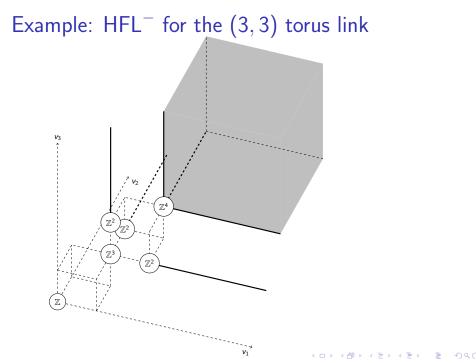


Here's an equivalent plumbing graph of $S_d^3(L)$. If we add extra (-1)-vertices, it will become smooth, so $S_d^3(L)$ is a link of a sandwiched singularity.

Let us prove that the large surgery along the link is a link of rational surface singularity.



Here's an equivalent plumbing graph of $S_d^3(L)$. If we add extra (-1)-vertices, it will become smooth, so $S_d^3(L)$ is a link of a sandwiched singularity.



Thank you