
RESEARCH STATEMENT

EUGENE GORSKY

My research is mainly focused on algebraic and algebro-geometric aspects of knot theory.
A knot is a closed loop in three-dimensional space, a link is a union of several such loops,
possibly linked with each other. Besides the immediate mathematical applications, knot
theory has implications in physics of quantum systems and in the study of chemical and
biological properties of long knotted molecules (such as DNA).

The central questions in knot theory are the classification problem (Can a knot be
transformed to another knot without tearing its strands? Can it be pulled apart to look
like an ordinary circle?) and the study of the geometric properties of knots or links, such
as finding the minimal number of handles of a surface with boundary on a given link.
Both of these questions can be partially answered with the help of knot invariants: two
knots are different if their invariants are different; the minimal genus is bounded by by
certain values of knot invariants. Among the classical knot invariants are the Alexander,
Jones and HOMFLY polynomials.

More recently, the concept of link homology theory was developed and led to new
powerful knot invariants. To a given knot or link, such a theory associates a collection of
vector spaces (knot homology groups) whose dimensions are encoded in the coefficients
of a given knot polynomial. In my research I use a variety of methods from algebraic
geometry, representation theory, topology and combinatorics to study the structure of
link homology. The central questions are:

(1) Computing link homology: in a series of papers [16, 32, 31, 36, 41], my collabora-
tors and I proposed a series of conjectures describing HOMFLY homology of torus
links and relating it to combinatorics of Rational Shuffle Conjecture. These
conjectures were later confirmed by Elias, Hogancamp and Mellit [10, 46, 56]. In
[40], Némethi and I have computed the Heegaard Floer homology for algebraic
links with arbitrary number of components.

(2) Building geometric models for link homology: these include sheaves on Hilbert
schemes of points on the plane [36, 37], braid varieties [6, 7, 8, 57] and affine
Springer fibers [26, 34, 41, 47, 48, 67]. We describe these models in more details
below. In many cases, they lead to explicit computations and predictions of link
invariants.

(3) Operations in link homology: various flavors of link homology are modules over
some polynomial rings. In [21], Hogancamp and I proposed a deformation, or
“y-ification” of link homology, and used it to compute both deformed and
undeformed homology of many links as modules over the corresponding rings.
Furthermore, in [22] the y-ification was used to define a family of interesting op-
erators in link homology, parallel to the action of tautological classes in some
of the above geometric models. The study of these operators opens up a plethora
of questions on the structure of link homology.

(4) General properties of link homology: while [23] explains the relation between
the “top” and “bottom” HOMFLY homology, in [22] Hogancamp, Mellit and I
recently proved the symmetry property for this homology. This resolved a long-
standing conjecture. In a more categorical direction, in [24, 43] I have studied
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the homological invariants of links in the annulus, and their relation to symmetric
functions and categorical traces.

(5) Applications of link homology: my collaborators and I have used Heegaard Floer
homology to study splitting numbers [2], Sato-Levine and Milnor invariants [28,
29], and Dehn surgeries [38] for links with several components. In particular,
Lidman, Liu, Moore and I recently proved that Heegaard Floer homology detects
Whitehead link and Borromean rings [29].

(6) Using topological ideas to obtain new results in algebraic geometry and repre-
sentation theory: the most significant result is the construction of cluster struc-
ture on braid varieties [8] (joint with Casals, my brother M. Gorsky, Le, Shen
and Simental) which, in particular, resolves a conjecture of Leclerc about the
existence of cluster structure on Richardson varieties.

I elaborate on the details of some of these results and research directions below. A more
complete picture and more examples and references are described in the lecture notes [27]
from my course at the 2021 IHES summer school.

In recent years, I have actively organized working groups, conferences and research
communities to share and discuss all these results and ideas. These brought together
both the leading experts in categorification, algebra, geometry and combinatorics, and the
graduate students and early career researchers from all over the world. These activities
include NSF Focused Research Group “Algebra and Geometry Behind Link Homology”:

https://www.math.ucdavis.edu/~egorskiy/FRG/index.html

An online seminar on torus knots homology:

https://www.math.ucdavis.edu/~egorskiy/TorusKnots/

AIM research community on link homology:

https://aimath.org/programs/researchcommunities/linkhom/

1. Khovanov–Rozansky homology

1.1. Let L be a link with r components. Khovanov and Rozansky defined [50] the triply
graded link homology

HHH(L) =
⊕
i,j,k

HHHi,j,k(L)

and proved that it is a link invariant which categorifies the HOMFLY polynomial:∑
(−1)jqiak dimHHHi,j,k(L) = PL(a, q).

For example, the Khovanov-Rozansky homology of the knot 11n126 is shown in the fol-
lowing figure:

https://www.math.ucdavis.edu/~egorskiy/FRG/index.html
https://www.math.ucdavis.edu/~egorskiy/TorusKnots/
https://aimath.org/programs/researchcommunities/linkhom/
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It is visualized by slicing the three-dimensional lattice of gradings using so called ∆-
grading, and (q, a)-gradings are represented by vertical and horizontal axis in each slice.
The numbers indicate the rank of homology group in each degree, so the total dimension
equals 51.

It is clear in this example that the ranks of homology are symmetric around the vertical
axis in each ∆-grading, and a more careful inspection reveals that they are unimodular
in each horizontal line and each remaider of q-grading modulo 4. This motivates the
following result which was conjectured by Dunfield, Gukov and Rasmussen in [9] and
remained open for over 15 years:

Theorem 1 ([22]). For any knot K, there is an action of the Lie algebra sl(2) on HHH(K)
which implies this symmetry and unimodality.

For links with r > 1 components, HHH(L) is infinite-dimensional and naturally a
module over the polynomial ring C[x1, . . . , xr]. In [21] Hogancamp and I defined a defor-
mation, or “y-ification” of this construction denoted by HY(L). which is a module over
a larger polynomial ring C[x1, . . . , xr, y1, . . . , yr]. The results of [21] prove that HY(L)
often behaves better than HHH(L) and is easier to compute. For example:

Theorem 2 ([21]). (a) Let L = T (n, kn) be the torus link with n unknotted components,
which have pairwise linking number k ≥ 0. Then

HY(T (n, kn)) ≃
⋂
i ̸=j

(xi − xj, yi − yj, θi − θj)
k ⊂ C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

where the variables xi and yi are even and the variables θi are odd. The isomorphism
preserves the three gradings and agrees with the action of C[x1, . . . , xn, y1, . . . , yn].

(b) Furthermore,

HHH(T (n, kn)) ≃ HY(T (n, kn))

(y)HY(T (n, kn))

where (y) = (y1, . . . , yn). This isomorphism agrees with the action of C[x1, . . . , xn].

Theorem 2 demonstrates that sometimes the easiest way to compute and describe
HHH(L) would be to present it as a quotient of HY(L). Another striking feature of this
result is the symmetry between xi and yi which becomes transparent only after y-ification.
This symmetry is not a coincidence, and is, in fact, a general phenomenon.

Theorem 3 ([22]). There exist operators Fk on HY(L) such that the following equations
hold:

(a) We have [Fk, Fl] = 0, [Fk, xi] = 0, [Fk, yi] = kxk−1
i . In particular, Fk define a family

of commuting operators on HY(L).
(b) The operator F2 satisfies a “hard Lefschetz” condition and lifts to an action of sl2

on HY(L). As a corollary, HY(L) is symmetric.
(c) The symmetry exchanges the actions of xi and yi in HY(L).

The construction of the operators Fk opens up a natural problem:

Problem 4. Describe the action of Fk explicitly for knots and links where HHH(K) and
HY(L) are known, in particular, for all torus links.

It is worth to mention that several other interesting operators in link homology were
recently constructed. In particular, Khovanov and Rozansky defined a Witt algebra action
[51] while Elias and Qi defined [11] an action of sl2 which is different from the one in
Theorem 3.

Problem 5. Find a precise relation between the operators Fk and the actions of Witt
algebra and sl2 from [11, 51].
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1.2. The above results are motivated by the ongoing work in building algebro-geometric
models for link homology. The first one uses the Hilbert scheme of points on the
plane. It is a complex manifold which plays a prominent role in modern geometric
representation theory, algebraic combinatorics and mathematical physics. I have been
working on a large collaborative project focused on understanding the relations between
the knot homology and Hilbert scheme. It started with the following conjecture that I
first formulated in 2010.

Conjecture 6. [16] The bigraded dimensions of Khovanov-Rozansky homology of the
(n, n+ 1) torus knot are described by the q, t-Catalan numbers cn(q, t).

The conjecture was proved by Matthew Hogancamp in 2017 [45]. The q, t-Catalan num-
bers were introduced by Garsia and Haiman in their work on combinatorics of Macdonald
polynomials. They are closely related to the spaces of sections of certain line bundles on
the Hilbert scheme of points. More precisely, let T denote the tautological vector bundle
of rank n on Hilbn(C2) and let O(1) = ∧n(T ). Let Hilbn(C2, 0) denote the punctual
Hilbert scheme of points, then

cn(q, t) = H0(Hilbn(C2, 0),O(1)).

This was generalized in [36, 56, 46] to other torus links, where the Poincaré polynomial
of HOMFLY homology can be expressed in terms of Elliptic Hall Algebra and rational
Catalan combinatorics.

In a joint work with Andrei Negut, and Jacob Rasmussen, we have developed a blueprint
for a more general framework which includes all of the above results as special cases. In
short, our main conjecture reads as follows:

Conjecture 7. [37] Given a braid β on n strands, there exists a vector bundle (or a
coherent sheaf) Fβon the Hilbert scheme of n points such that the Khovanov-Rozansky
homology HHH(β) of the closure of β is isomorphic to

HHH(β) = H∗(Hilbn(C2),Fβ ⊗ ∧•T ∗),

where T , as above, denotes the tautological bundle on the Hilbert scheme. Furthermore,
adding a full twist to β corresponds to the tensor product of Fβ with O(1).

There is also a similar conjecture for the y-ified link homology. Note that the action
of xi and yi in link homology is very clear in this model as (x1, y1), . . . , (xn, yn) are the
coordinates of n points on C2. The linear action of the Lie group SL(2) on C2 yields
an action of the Lie algebra sl2 in link homology from Theorem 3. The ideals appearing
in Theorem 2 also have a natural interpretation in terms of the Procesi bundle on the
Hilbert scheme [44].

A series of papers by Oblomkov and Rozansky [59, 60, 61, 62, 63, 64, 65, 66] proved
Conjecture 7 on the level of link homology, the comparison of various more subtle struc-
tures (such as the tautological classes Fk) remains an important open direction of research.
Another approach was proposed in my joint work with Hogancamp and Wedrich [24, 43]
which uses the formalism of derived categorical traces illustrated by the following figure:
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1.3. Another model of HOMFLY homology uses braid varieties X(β) which can be
defined for arbitrary positive braids β. These varieties were first defined by Mellit in [57],
my collaborators and I have further studied them in [6, 7, 8]. They are also closely related
to other varieties appearing earlier in Deligne-Lusztig theory. As shown in [7], examples
of braid varieties include all open Richardson and positroid varieties [52]. For example,
torus links correspond to the maximal positroid cells in the Grassmannians.

In the examples of interest, the braid varieties are smooth but noncompact, and hence
carry an interesting weight structure in cohomology. They also admit a natural torus
action, and the equivariant cohomology with weight filtration grWH∗

T (X(β)) is isomorphic
to the subspace of HHH(β) of maximal a-degree [69]. An extension of this construction
to all a-degrees was recently proposed by Trinh [69]. Finding an explicit basis in this
cohomology remains an important open problem.

The action of the operators xi corresponds to the equivariant parameters H∗
T (pt). The

tautological operators Fk from Theorem 3 correspond to differential forms on X(β) which
have been constructed by Mellit [57].

In a different direction, braid varieties turn out to have remarkable geometric properties:

Theorem 8 ([8]). For any positive braid β the braid variety X(β) has a structure of a
cluster variety.

Geometrically, a cluster structure provides X(β) with a (possibly infinite) collection
of open algebraic tori with a specific choice of coordinates, and the transition functions
between them are given by cluster mutations. Combinatorally ,the cluster structure
assigns a quiver to each of these tori, and the quivers for different charts are related by
quiver mutations.

The construction of these tori is motivated by topology and is represented by planar
diagrams (called weaves):

The egdes in such a weave correspond to generators of the braid group, while the vertices
correspond to various ways to simplify a braid. Namely, the 6-valent and 4-valent vertices
correspond to braid relations while 3-valent vertices correspond to moves σiσi → σi. Said
differently, a weave encodes a “movie” of braids which corresponds to a 2-dimensional
surface in R4. In [8] we define a collection of 1-cycles in a surface (colored on the right),
and the quiver encodes the intersections between these cycles:
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For example,the vertices A1 and A3 in the quiver correspond, respectively, to purple
and green cycles in the weave, which intersect twice.

Problem 9. How does the cluster structure on X(β) influence its homology (and hence
HHH(β))?

As an example of such a relation, the cluster structure yields a natural 2-form on X(β).
It turns out that this form is closed and hence define a class in H2(X(β)) which agrees
with the tautological class F2 from Theorem 3.

1.4. Finally, yet another model for HOMFLY homology is related to Hilbert schemes of
points on singular curves and affine Springer fibers. These can be defined for arbitrary
algebraic links, that is, intersections of (complex) plane curve singularities with a small
sphere. For example, the curve x2 = y2 corresponds to a pair of linked circles, and the
curve x2 = y3 corresponds to the trefoil knot. The number of connected components of a
link equals the number of (local) irreducible components of a curve.

A conjecture of Oblomkov, Rasmussen and Shende [67] relates the Khovanov-Rozansky
homology of an algebraic link to the cohomology of Hilbert schemes of points on the
corresponding curve Hilb•(C). These are compact, but usually singular varieties. In many
examples of interest (for example, for all torus knots) the Hilbert schemes can be paved
by affine cells, and hence their homology can be described combinatorially. In [32, 31, 34]
my collaborators and I have compared the combinatorics of this cell decomposition to
q, t-Catalan numbers which allowed us to compare it with link homology [33].
A related variety is the affine Springer fiber Spγ in the affine Grassmannian, which

can be associated to an arbitrary C[[x]]-valued matrix γ. The characteristic polynomial
of such matrix then depends on two variables and defines a plane curve singularity as
above. The homology of the varieties Hilb•(C) and of Spγ are closely related, while the
latter has a natural pair of commuting actions of a torus and of a lattice, both of rank
equal to the number of components of the curve. This allows one to define the action of
two polynomial algebras in cohomology similar to y-ification. The case of the full twist
corresponds to the so-called unramified affine Springer fiber, see [47, 48] for details and
comparison with Theorem 2.

Both Hilb•(C) and of Spγ have deep connections to geometric representation theory. In
particular, Garner and Kivinen proved in [13] that Hilb•(C) has an action of the Coulomb
branch algebra defined by Braverman, Finkelberg and Nakajima [4]. The combinatorics
of this action for torus links was studied in my paper with Simental and Vazirani [42] (see
also [12, 41]).

Problem 10. Describe the action of the Coulomb branch algebra in HOMFLY homology
of algebraic links. Describe its relation with the operators Fk from Theorem 3.

Furthermore, in a paper with Kivinen and Oblomkov [26] I have studied the family of
affine Springer fibers Spγ, Sptγ, Spt2γ . . . which correspond to a sequence of algebraic links
related by powers of the full twist. We have proved that their homology together form a
graded module over a graded version of the Coulomb branch algebra, and a sheaf on the
associated projective variety. In type A, we identified the variety with the Hilbert scheme
of points on C×C∗, and expect the sheaf to be closely related to the one from Conjecture
7. This expectation is confirmed in many examples.

2. Heegaard–Floer homology

Unlike HOMFLY homology, Heegaard Floer homology [68] is defined in geometric terms
using the Heegaard decompositions of 3-manifolds and Lagrangian Floer homology. It
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categorifies the Alexander polynomial. In a series of joint papers with András Némethi
we have computed the Heegaard Floer homology of all algebraic links and related them
to certain hyperplane arrangements in the space of algebraic functions on C and to the
multi-dimensional semigroup of C.

Theorem 11. [40] Let H(v1, . . . , vn) be the space of algebraic functions on C which have
order v1 on the component C1, order v2 on the component C2 etc. Then:
(a) The space H(v1, . . . , vn) is either empty or it is a complement to a hyperplane

arrangement.
(b) The homology of H(v1, . . . , vn) is isomorphic to the (minus-version of) Heegaard

Floer homology of the link L in Alexander grading (v1, . . . , vn).

Since the homology of a hyperplane arrangement is determined by its combinatorics,
this theorem combined with the results of [17] provides an explicit method of computing
the Heegaard Floer homology of algebraic link. In particular, in [25] Hom and I proved a
conjecture of Joan Licata on the structure of this homology for (n, n) torus links. Némethi
and I also studied a surprising connection between the links of plane curve singularities
and of rational surface singularities via Dehn surgery [38, 39].

In a joint work with Maciej Borodzik [2], we used Heegaard Floer homology to bound
the splitting numbers of links (minimal number of crossings that should be changed to
separate the components of a link). In joint papers with Lidman, Liu and Moore [28, 29]
we described the relation between the Heegaard Floer homology and higher analogues
of the linking number such as Sato-Levine and Milnor triple linking invariants. We also
studied the Heegaard Floer homology of Dehn surgeries on links with several components
and proved that Heegaard Floer homology detects the Whitehead link and the Borromean
rings:

3. Further results

1) I have obtained an explicit formula for the generating function of Sn–equivariant
Euler characteristics of the moduli spaces Mg,n of genus g curves with n marked points
[14]. I have also obtained a similar formula for the moduli spaces of hyperelliptic curves
[18, 19].

2) In a joint work with Andrei Negut, [35] we studied K-theoretic stable bases (in
the sense of Maulik-Okounkov [58]) for the Hilbert schemes of points, and conjectured a
precise relation between the wall-crossing matrices for these bases and the involutions on
the q-Fock space studied by Leclerc and Thibon [54]. The conjecture has been recently
verified by Kononov and Smirnov [53].
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3) In a joint work with Erik Carlsson and Anton Mellit [5] we gave a geometric interpre-
tation of the Dyck path algebra Aq,t, which appeared in their proof of Shuffle Conjecture
[3], using parabolic Hilbert schemes of points on the plane.

4) In a joint work with Anna Beliakova [1] we have related Habiro’s cyclotomic expan-
sion of colored link invariants to the interpolation Macdonald polynomials and presented
explicit formulas for these invariants.
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