
RESEARCH STATEMENT

EUGENE GORSKY

My research is mainly focused on algebraic and algebro-geometric aspects of knot theory.
A knot is a closed loop in three-dimensional space, a link is a union of several such loops,
possibly linked with each other. Besides the immediate mathematical applications, knot
theory has implications in physics of quantum systems and in the study of chemical and
biological properties of long knotted molecules (such as DNA).

The central questions in knot theory are the classification problem (Can a knot be
transformed to another knot without tearing its strands? Can it be pulled apart to look
like an ordinary circle?) and the study of the geometric properties of knots or links, such
as finding the minimal number of handles of a 2-dimensional surface in 3-dimensional
(or 4-dimensional) space with boundary on a given link. Both of these questions can
be partially answered with the help of knot invariants: two knots are different if their
invariants are different; various theorems bound the minimal genus by certain values
of knot invariants. Among the classical knot invariants are the Alexander polynomial
(defined in 1920’s) and further polynomial knot invariants (such as Jones or HOMFLY
polynomials) defined in 80’s-90’s. To a given knot, these invariants associate a polynomial
in one or more variables.

More recently, the concept of knot homology theory was developed and led to new
powerful knot invariants. To a given knot or link, such a theory associates a collection of
vector spaces (knot homology groups) whose dimensions are encoded in the coefficients of
a given knot polynomial. Some of knot homologies, such as Heegaard–Floer homology [40]
(generalizing the Alexander polynomial), are defined in geometric terms and carry deep
geometric information about the link. Other invariants, such as Khovanov and Khovanov–
Rozansky homology [33, 34] (generalizing the Jones and HOMFLY polynomials), are more
combinatorial in nature, but still can be used to check if a given knot is trivial or to provide
genus bounds. For example, Rasmussen used Khovanov homology to give an elementary
proof [44] of the Milnor conjecture on minimal genus of a surface with boundary on a
torus knot.

My research was mostly focused on building and analyzing algebraic and geometric
models for various knot homology theories. They turn out to be related to the spaces of
algebraic functions on plane curve singularities, coherent sheaves on the Hilbert schemes
of points on the plane and representations of rational Cherednik algebras. Further models
are related to the combinatorics of matroids, hyperplane arrangements, multi-dimensional
semigroups, motivic Poincaré series, Macdonald polynomials and weighted lattice paths in
rectangles. Please see below a more detailed description of the research results, organized
by topics.

1. Heegaard–Floer homology

Let C = C1 ∪ . . . ∪ Cn be a plane curve singularity in C2 with n components. Its
intersection with a small sphere centered at the origin is a link L = L1 ∪ . . . ∪ Ln with n
components, such links are called algebraic. For example, the curve x2 = y2 corresponds
to a pair of linked circles, and the curve x2 = y3 corresponds to the trefoil knot. In
joint project with András Némethi we have computed the Heegaard–Floer homology of
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Figure 5. The link bp8, ´5q. Its two components are unknots.

7.3. Example: the two-bridge link bp8, ´5q. We will discuss an example of the two-
bridge link bp8, ´5q which was shown by Liu [23, Example 3.8] to be an L-space link. It is
presented in Figure 5. The orientation of bp8, ´5q is as in [23]. The two components have
linking number 0. In the notation of LinkInfo [9] it is the link L9a40. It was shown in [8,
Section 7.1] that the splitting number of this link is 4. The tool was studying the smooth
four genus of the link obtained by taking a double branch cover of one of the components
of bp8, ´5q. The splitting number of bp8, ´5q can be also detected by the signatures as in
[10]. We will show that sppbp8, ´5qq “ 4 using the J-function.

The Alexander polynomial of bp8, ´5q can be found on the LinkInfo web page [9] or
calculated using the SnapPy package [11]. We have

∆pt1, t2q “ ´pt1 ` t2 ` 1 ` t´1
1 ` t´1

2 qpt1{2
1 ´ t

´1{2
1 qpt1{2

2 ´ t
´1{2
2 q.

By Corollary 3.32 the generating function for the rJ-function equals

(7.9) rJpt1, t2q “ t1 ` t2 ` 1 ` t´1
1 ` t´1

2 .

Theorem 7.4 implies that we need to make at least one positive crossing change to unlink
bp8, ´5q. As the original linking number is zero and a positive crossing change increases
the linking number, we have to compensate the positive crossing change with a negative
crossing change, so the splitting number is at least 2. That is all we can deduce from
Theorem 7.4.

On the other hand, Jp1, 0q “ 1, so by Theorem 7.7 one needs at least two positive
crossing changes to split bp8, ´5q. As each such crossing change increases the linking
number between the two components of bp8, ´5q, we also need two negative crossing
changes. Therefore we have proved the following result.

Proposition 7.10. The splitting number of bp8, ´5q is at least 4.

It is quite easy to split the bp8, ´5q in four moves.

Remark 7.11. SnapPy and and the LinkInfo webpage [9] give the Alexander polynomial
of bp8, ´5q with opposite sign. To choose the sign we notice that the other choice of sign

of the Alexander polynomial yields rJ with negative coefficients only, hence, for example
Jp0, 0q “ ´1. This contradicts the property of non-negativity of the J-function. Liu’s
algorithm in [22, Section 3.3] gives the proper sign of the Alexander polynomial.

Figure 1. The splitting number of this link equals 4.

all algebraic links and related them to certain hyperplane arrangements in the space of
algebraic functions on C and to the multi-dimensional semigroup of C.

Theorem 1. [27] Let H(v1, . . . , vn) be the space of algebraic functions on C which have
order v1 on the component C1, order v2 on the component C2 etc. Then:

(a) The space H(v1, . . . , vn) is either empty or it is a complement to a hyperplane
arrangement.

(b) The homology of H(v1, . . . , vn) is isomorphic to the (minus-version of) Heegaard-
Floer homology of the link L in Alexander grading (v1, . . . , vn).

Since the homology of a hyperplane arrangement is determined by its combinatorics,
this theorem combined with the results of [10] provides an explicit method of computing
the Heegaard-Floer homology of algebraic link.

This work is closely related to the study of L-space links. A 3-manifold is called an
L-space if its Heegaard Floer homology has minimal possible rank. A link L ⊂ S3 is
called an L-space link if all Dehn surgeries S3

d(L) are L-spaces for d � 0. A remarkable
conjecture of Boyer, Gordon and Watson [2] characterizes L-spaces in terms of orders
on their fundamental groups. It was proved by Hanselman, Rasmussen, Rasmussen and
Watson [31, 30] for graph manifolds. Némethi [39] proved that a negative definite graph
manifold is an L-space if and only if it is a link of a rational surface singularity (and hence
the graph is rational in the sense of Artin).

In joint works with Jennifer Hom and András Nemethi, we proved the following:

Theorem 2. a) [26] All algebraic links are L-space links.
b) [15] A (dn, dm)-cable link of a knot K with d components is an L-space link if and

only if K is an L-space knot and m/n > 2g(K)− 1.

In both of these cases, we were able to explicitly compute the Heegaard-Floer homology
of L-space links. In particular, this proved a conjecture of Joan Licata (first formulated
in 2007) on the structure of this homology for (n, n) torus links. We also studied the
structure of the set of L-space surgery coefficients for a given L-space link [25].

In a joint work with Maciej Borodzik [1], we used Heegaard Floer homology to bound
the splitting numbers of links (minimal number of crossings that should be changed to
separate the components of a link). For L-space links, we computed this bound explicitly
and proved that it is sharp in many examples, see Figure 1.

2. Khovanov–Rozansky homology and Hilbert schemes

The Hilbert scheme of points on C2 is a complex manifold which plays a prominent role
in modern geometric representation theory, algebraic combinatorics and mathematical
physics. I have been working on a large collaborative project focused on understanding



RESEARCH STATEMENT 3

the relations between the knot homology and Hilbert scheme. It started with the following
conjecture that I first formulated in 2010.

Conjecture 3. [9] The bigraded dimensions of Khovanov-Rozansky homology of the (n, n+
1) torus knot are described by the q, t-Catalan number cn(q, t).

The conjecture was proved by Matthew Hogancamp in 2017 [32]. The q, t-Catalan num-
bers were introduced by Garsia and Haiman in their work on combinatorics of Macdonald
polynomials. They are closely related to the spaces of sections of certain line bundles on
the Hilbert scheme of points. More precisely, let T denote the tautological vector bundle
of rank n on Hilbn(C2) and let O(1) = ∧n(T ). Let Hilbn(C2, 0) denote the punctual
Hilbert scheme of points, then

cn(q, t) = H0(Hilbn(C2, 0),O(1)).

In later joint works with Andrei Negut, , Alexei Oblomkov, Jacob Rasmussen, Vivek Shende
and others [23, 28, 29, 8, 5, 16, 13], we developed more general algebraic and geometric
models for the Khovanov-Rozansky homology of general torus knots. Algebraically, they
are related to the representation theory of the Rational Cherednik Algebra and Elliptic
Hall Algebra. On decategorified level, we proved the following.

Theorem 4. [5] Let P λ
T (m,n)(a, q) denote the HOMFLY-PT invariant of the (m,n) torus

knot colored by a partition λ. Then P λ
T (m,n)(−a, q) is equal to the bigraded character of an

irreducible representation Lm/n(nλ) of the rational Cherednik algebra and, in particular,
all of its coefficients are nonnegative.

On categorified level, we conjectured the following

Conjecture 5. [29] The Khovanov-Rozansky homology of the (uncolored) (m,n) torus
knot is isomorphic to a certain subspace of Lm/n(n), equipped with an additional filtration.

Geometrically, these models are related to the spaces of sections of certain line bundles
on the flag Hilbert scheme. We proved a direct relation to the “refined Chern-Simons”
invariants which attracted a lot of attention in mathematical physics. In joint works with
Andrei Negut, , Monica Vazirani and Mikhail Mazin [23, 19, 18, 17, 21, 20], we studied com-
binatorial models of these invariants and conjectured a generalization of the celebrated
“Shuffle conjecture” in combinatorics. This conjecture and our generalization were re-
cently proved by Erik Carlsson and Anton Mellit [3, 36]. The connection between all
these algebraic, geometric and combinatorial models to the actual knot invariants re-
mained conjectural until 2017, when most of these conjectures were proven by Ben Elias,
Matthew Hogancamp and Anton Mellit [4, 32, 37]. In summer 2016 University of Oregon
organized a graduate school focused exclusively on this topic:

http://pages.uoregon.edu/belias/WARTHOG/torus/index.html.

Finally, in 2016 in joint work with Andrei Negut, and Jacob Rasmussen, we have devel-
oped a blueprint for a more general framework which includes all of the above results as
special cases. In short, our main conjecture reads as follows:

Conjecture 6. [24] Given a braid β on n strands, there exists a vector bundle (or a
coherent sheaf) Fβon the Hilbert scheme of n points such that the Khovanov-Rozansky
homology HHH(β) of the closure of β is isomorphic to

HHH(β) = H∗(Hilbn(C2),Fβ ⊗ ∧•T ∗),

where T , as above, denotes the tautological bundle on the Hilbert scheme. Furthermore,
adding a full twist to β corresponds to the tensor product of Fβ with O(1).

http://pages.uoregon.edu/belias/WARTHOG/torus/index.html
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If true, this conjecture provides a concrete and very explicit way of computing knot
homology using algebraic geometry of Hilbert schemes. It clarifies the structure of the
categorified Jones-Wenzl projectors in the Hecke algebra, and related them to the fixed
points of torus action on the Hilbert scheme. We proved this conjecture in lots of special
cases, and outlined the construction of Fβ and a detailed strategy for the proof in general.
We are actively working on completing this proof.

Furthermore, Oblomkov and Rozansky [41, 42, 43] proposed yet another construction
of Fβ using completely different ideas. They proved that their approach yields a knot
invariant, but it is currently unknown if it agrees with the original definition of the
Khovanov-Rozansky homology. We plan to compare our construction of Fβ with theirs.

3. Further results

1) I have obtained an explicit formula for the generating function of Sn–equivariant
Euler characteristics of the moduli spaces Mg,n of genus g curves with n marked points
[6]. I have also obtained a similar formula for the moduli spaces of hyperelliptic curves
[11, 12].

2) In a joint work with Andrei Negut, [22] we studied K-theoretic stable bases (in
the sense of Maulik-Okounkov [38]) for the Hilbert schemes of points, and conjectured a
precise relation between the wall-crossing matrices for these bases and the involutions on
the q-Fock space studied by Leclerc and Thibon [35].

3) In a joint work [14] with my advisor Sabir M. Gusein-Zade, we have proposed a
construction of local characteristic numbers of singular varieties using homological algebra.
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