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The Random Vortex Method with Vorticity Creation:
Introduction and Guide to Parameter Selection

ELBRIDGE GERRY PUCKETT

Abstract. The random vortex method is a numerical method for ap-
proximating solutions of the incompressible Navier-Stokes equations.
The method is a grid free particle method and hence does not intro-
duce the types of diffusive errors found in finite difference schemes.
This facilitates relatively inexpensive computations at large Reynolds
numbers. In the random vortex method the no-slip boundary con-
dition is satisfied by creating particles on the boundary. There are
several particle creation algorithms cuwrrently in use. The most com-
mon of these is the vortex sheet method. The purpose of this paper
is to provide the reader with a detailed introduction to the random
vortex method and the vortex sheet method.

1. Introduction. The raidom vortex method is a numerical method
for approximating solutions of the incompressible Navier-Stokes equations
Let © denote a domain containing a viscous, incompressible fluid. In gen-
eral, Q will have a solid boundary 92 upon which boundary conditions
must be satisfied. For example ©Q might be the inside of a pipe, or the
region surrounding an airplane. In the random vortex method the compu-
tational domain is divided into two regions: an interior (or exterior) region
Qns located away from 092 and a sheet layer Qp, located adjacent to 99.
In Qns we use the random vortex method [Chorin (1973)] to approximate
solutions of the incompressible Navier-Stokes equations, while in Qp, we
use the vortex sheet method [Chorin (1978)] to approximate solutions of
the Prandtl boundary layer equations.
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568 ELBRIDGE GERRY PUCKETT

We use the term sheet layer to distinguish the computational boundary
layer from the physical boundary layer. While the justification for dividing
the computational domain into the two regions Qns and Qp, is soundly
based on the theory of boundary layers [Schlichting], it is sometimes the
case that the sheet method is used in regions where the underlying assump-
tions implicit in the use of the Prandtl equations are in doubt.

Both the random vortex method and the vortex sheet method are par-
ticle methods. The particles carry concentrations of vorticity; the velocity
field within each of the regions is uniquely determined by the particle po-
sitions and their concentrations together with the appropriate boundary
conditions. Both methods are fractional step methods. One of the frac-
tional steps consists of evolving the particles and their concentrations in
this velocity field. The other step consists of letting the particle positions
undergo a random walk to account for the diffusive effects of viscosity.

In Qns the particles are called vortices or vortez blobs. In Qp, they are
called vortez sheets. The no-flow boundary condition is satisfied on 92 by
imposing a potential flow on Qps which cancels the normal component of
the velocity due to the blobs. The no-slip boundary condition is satisfied
by creating vortex sheets on 92 which subsequently participate in the flow.
The two solutions are matched by converting sheets that leave the sheet
layer into blobs with the same circulation, converting blobs that enter the
sheet layer into sheets with the same circulation, and letting the velocity
at infinity in the Prandtl equations be the tangential component of the
velocity on 92 due to the vortices in Qxng. The sheet creation process
and subsequent movement of the sheets into the interior of the flow mimics
the physical process of vorticity creation at a boundary and is one of the
attractive features of this numerical method.

2. The Navier-Stokes Equations. Let Q be some domain in RV
where N = 2 or 3. We wish to approximate solutions of the incompressible
Navier-Stokes equations,

(2.1a) u + (u-V)u=-Vp+vAu
(2.1b) Veu=0 ,
(2.1c) u=0 on 9Q ,

in Q where u is the velocity, p is the pressure, and v is the kinematic
viscosity. We let z = (z,y), v = (u,v) for N = 2 and z = (z,y9,2),
u = (u,v,w) for N = 3. Note that equation (2.1a) is a vector equation
with N components.

The vorticity is defined by

(2.2) g=ng

In two dimensions the vorticity vector points in the direction perpendicular
to the (z,y) plane and hence is usually considered a scalar, w = 9;v — Jyu.
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Provided that € is a simply connected domain, equations (2.1b) and (2.2)
imply the existence of some ¢ such that

(2.3) u=Vxy ,

(2.4) AYy=—-w

e

(see [Marsden and Tromba]). As with the vorticity, in two dimensions
¥ points in the direction perpendicular to the (z,y) plane and hence is
generally thought of as a scalar, .

Let G denote the fundamental solution of the Laplace operator in RV.
Then we have

(2:5) Y(z,t) = (G rw)(z,t) = / G(z-2) w(& t)de.

Let K =V x G. Since 8;(G * w) = (9:G) * w and similarly for 9, (G * w)
and 8,(G * w) we find from (2.3) and (2.5) that

(26)  u(z,?) = (K+w)(z,t) = / K@-z) w t)dz

Note that in two dimensions K is a vector,

which has a singularity of order O(|z|~!) at z = 0. In three dimensions K

is a matrix,
1 0 z -y
K(z)=——7 -z 0 =z
4r|z| y -z 0

with a singularity of order O(|z|~%) at z = 0. The singularity in K has
played a central role in the mathematical theory of vortex methods.

We now take the curl of (2.1a) to obtain the Navier-Stokes equations in
vorticity form,

(2.7a) %f—' =(w-V)u+rvAw
(2.7b) V.ou=0
(2.7¢) u=Kx*w

(2.7d) u=0 on 00
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where D/Dt = 0, + (u - V) is the material derivative. Note that by taking
the curl of (2.1a) we have eliminated the pressure from the set of equations
to be solved. This greatly simplifies the task of finding approximations to
. Furthermore, by (2.7¢), we see that the velocity depends linearly on the
vorticity. The vortex method takes advantage of this fact by discretizing
the vorticity field as a linear superposition of patches of vorticity. (Usually,
but not always, these patches have compact support.) Each vortex patch
induces a velocity field via (2.7c) which can easily be computed, and the
total velocity field is simply the sum of these velocities plus a correction
for boundary conditions.

Solutions of (2.7a-d) may be approximated by solving two distinct sys-
tems of partial differential equations; using the solution of one of these
systems as the initial data for the other. The first of these systems is the
incompressible Euler equations,

(2.8a) %‘f:(g-vm ,
(2.8b) Vou=0
(2.8¢) u=K+*w ,
(2.8d) u-n=0 on 8Q ,

where 7 is a unit vector normal to Q2. Equations (2.8a-d) describe the flow
of an incompressible, inviscid fluid in ©. The boundary condition (2.8d) is
commonly referred to as the no-flow boundary condition.

The second system of partial differential equations is the heat equation,

(2.9a) w, =VvAw

with the boundary condition u = 0 on Q2. However, the no-flow portion of
this boundary condition is usually satisfied by the addition of a potential
flow after both fractional steps. Hence, the boundary condition that must
to be satisfied during the second fractional step is

(2.9b) (u-r)=0 on 90 ,

where 7 is tangent to 9Q2. Equation (2.9a) describes the rate at which the
vorticity is diffusing in the flow. Equation (2.9b) is commonly referred to
as the no-slip boundary condition.

The idea of solving Euler equations for a small time step At and then the
heat equation for the same time step and using the result as an approxima-
tion to the solution of the Navier-Stokes equations at time At is sometimes
called viscous splitting. This is a special case of a technique known as op-
erator splitting. Viscous splitting for the Navier-Stokes equations in the
absence of boundaries has been given a rigorous justification by [Beale and
Majda (1981)]. The problem is much more difficult when boundaries are
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included. Work on this problem appears in [Benfatto and Pulverenti] and
[Alessandrini, Douglis, and Fabes].

Numerical methods based on operator splitting are often called fractional
step methods. Such methods are applicable to a wide variety of partial dif-
ferential equations. The random vortex method is a fractional step method.
The first step consists of a vortex method approximation to the solution of
the Euler equations (2.8a-d); the second step is a random walk approxima-
tion to the solution of the heat equation (2.9a) and the no-slip boundary
condition (2.9b).

In the next section we describe the vortex method for approximating
solutions of the incompressible Euler equations when Q = RY . This allows
us to ignore the issue of satisfying the boundary condition (2.8d). We then
discuss the modifications necessary for satisfying this boundary condition.
Following this we then introduce the random walk approximation of solu-
tions of the heat equation (2.9a). If  contains solid boundaries then this
must include a technique for approximately satisfying the no-slip boundary
condition (2.9b) on 9 and in this context we introduce the vortex sheet
method.

3. The Vortex Method. The vortex method is a particle method
in which fluid particles carrying concentrations of vorticity are followed
as their positions and concentrations evolve with the motion of the fluid.
Fundamental to all particle methods is the notion of the fluid flow map
z: RN x [0,T] — RY defined so that the z(a,t) is the trajectory of the
fluid particle which at time ¢ = 0 is at the point a. For fixed a this
trajectory may be found by solving the ordinary differential equation,

(3.1) %(Q, t) = u(z(a,t),t), z(at)=c

Perhaps the simplest way to explain the vortex method is to begin with
the manner in which the vorticity is discretized. As a consequence of the
scalar character of the vorticity in two dimensions the two dimensional
version of the vortex method is much simpler than its three dimensional
counterpart. Therefore we begin by describing the vortex method in RZ.

Two Dimensions. In two dimensions the fluid velocity u is perpendicular
to the vorticity and hence the right hand side of (2.8a) is zero, (w-V)u = 0.
Thus (2.8a) becomes

Dw
(3.2) i = 0

Equation (3.2) states that the vorticity is passively convected by the flow;
i.e. that the vorticity is constant along particle trajectories,

d
Ew(ﬁ(g, t),t) = 0.

This is probably the most significant difference between the fluid flow
equations in two and three dimensions. In general, when N = 3 we have
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(w - V)u # 0. This provides a mechanism for the vorticity to change as it
travels in the flow. In particular, the vorticity may now stretch and fold.
It is generally believed that this is the mechanism by which turbulence
is created and driven [Chorin (1982)]. This explains why the phrase ‘two
dimensional turbulence’ is often considered an oxymoron.

Let fs5 : R?> — R be some scalar function on R? and let

(3.3) G(z,t) =) filz - ;1)

be an approximation to the vorticity at some time ¢ = kAt. The jth term
on the right hand side of (3.3) is referred to as the jth vortex or jth vortex
blob, Z;(t) is its position at time t and T; its strength. For times t = kAt
we will often write i;‘ for z; (t) and similarly for other computed quantities
that depend on time such as the velocity @* and the vorticity @*. Given the
approximate vorticity (3.3) we can use (2.6) to obtain an approximation &

to the velocity wu,

(34)  Ez,t) =) (K* fo)z— &)l = Y Ksle—Z;O);

where K; = K * f5. Note that the smoothness of K; depends on fs. In
particular, for appropriately chosen fs the kernel K will be continuous or
even differentiable at £ = 0 in contrast to K. For this reason fs is known
as the smoothing function.

If we let f5 be the Dirac delta function, then the approximate vorticity
(3.3) becomes a collection of point masses and the approximate velocity

becomes
i(z) =Y K(z - z;)T;
J

This is the classical point vortezx method originally considered by [Rosen-
head]. The singularity in K gives rise to an arbitrarily large velocity when
one attempts to evaluate it near a vortex. For this reason it was generally
believed that this method was unstable and would not converge to solutions
of the incompressible Euler equations. However, in recent work [Goodman,
Hou, and Lowengrub] and [Hou and Lowengrub] have shown that the point
vortex method is indeed convergent, given the appropriate assumptions.
In [Chorin (1973)] Chorin originally suggested using

(5) o=l TEG

This yields a velocity of the form (3.4) with

(—y,z)/27|z]6 |z] <6,

(3.6) K4(z) = { (—y,z)/2x|z®> |z| > 6.

This has perhaps been the most widely used velocity kernel in two dimen-
sional implementations of the vortex method.
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In general one may choose

(37) o(2) = gy 1(2/9)

for some function f. Often f is chosen to be radially symmetric and of com-
pact support. Then the parameter § determines the support of fs. For this
reason 4 is frequently referred to as the cutoff radius. Generally, assuming
the exact solution u of (2.7a-c) is sufficiently smooth, then the properties
of f will determine the accuracy of the vortex method approximation to u.
There is an extensive theory concerning the choice of f and its effect on the
convergence of & to u [Anderson and Greengard] [Beale and Majda (1982a,
1982b, 1985)] [Hald (1979, 1987)] [Hald and del Prete (1978)] [Perlman].

We evolve the computed particle positions Z;(¢) in time according to
(3.1) with u replaced by & from (3.4). Thus the new particle positions at
time ¢ = (k + 1) At are given by

(3.8) =z + Ata(E) kAt

and the vorticity at time ¢ = (k + 1)At is now

o (2) =Y filz - B
i

This is simply a first order Euler’s method solution of (3.1). Higher order
time discretizations are possible and have been studied in some detail by
[Anderson and Greengard] and [Hald (1987)].

Note that since the vortex strengths T'; have not changed we are approxi-
mately satisfying (3.2). Since @+l = K&k explicitly satisfies (2.8b) the
new velocity field #**! is a consistent approximation to the exact solution
of (2.8a-c) at time t = (k 4+ 1)At with initial data &@* at time t = kAt.

We have neglected two issues in our discussion of the vortex method in
two dimensions. The first issue concerns the question of how to choose
the initial particle positions and strengths. We will discuss this at the end
of Section 3 below. The other issue is the problem of satisfying the no-
flow boundary condition (2.8d), which we discuss in Section 4 immediately
afterward. We will now describe the vortex method for approximating
solutions of (2.8a-c) in three dimensions.

Three Dimensions. As pointed out previously, in R the vorticity is a
vector that may point in any direction. Hence the right hand side of (2.8a)
is, in general, nonzero, (w-V)u # 0. One can think of (2.8a) as an evolution
equation for the vorticity in which the vorticity is transported along particle
paths by the flow,

(3.9a) — =0 ,
and then ‘stretched’ by the flow,
(3.9b) w = (@ V)
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Once again we discretize the vorticity as in (3.3), but now the strengths,
L;(t), are vector quantities which depend on the time . So

(3.10) Gz, t) =) fslz— & ())L;(),
J

where f5 is again given by (3.7) but with N = 3.

As with the two dimensional vortex method we approximate the solu-
tion of (3.9a) with initial data (3.10) by advancing the particle positions
according to (3.1). And once again the new particle positions are given by
(3.8) but with

iz, kAt) = ) Ks(z — )L
j

where L;’ = I;(kAt). We must also update the vortex strengths _ij ac-
cording to (3.9b). To this end we discretize the right hand side of (3.9b)
by writing

(3.11) LY =7 + At (@8 (2f) - Vo) @ (zf) -

For many cutoff functions fs one can can explicitly write down K, and
hence its derivatives. Thus, by using

Veiil* (z) = E V. Ks(z — 25)L;(t)

we can explicitly evaluate the right hand side of (3.11).

This is only one of several methods that have been suggested for updating
the vortex strengths in three dimensions. In fact, many of these methods
have been shown to converge to the exact solution of (2.8a-c) for suffi-
ciently short times. We refer the reader to the literature for further details
([Anderson and Greengard], [Beale and Majda (1982a, 1982b)], [Fishelov],
[Greengard], and [Knio and Ghoniem]).

We should also mention that there is a an alternative approach, originally
due to Chorin [Chorin (1980,1982)], which is sometimes called the vortez
filament method. This method essentially discretizes the vorticity vector
by tracking two points considered to be at the head and at the tail of
the vector with the magnitude of the vorticity being proportional to the
distance between the two points. In this method the stretching term is
automatically handled as these points move apart from one another. One
generally finds it necessary to divide the vortices in two when the distance
between these two points becomes sufficiently large. The filament method
has been shown to be equivalent to a method of the sort described above,
and hence is also convergent under the appropriate conditions [Anderson
and Greengard], [Greengard].

Initial Conditions. We have yet to specify how one chooses the initial
vortex positions and strengths at time ¢ = 0. In practice vortex methods
tend to be used in one of two ways. In many applications no initial vorticity
field is specified. In other words at time ¢ = 0 the domain Qxg contains
no vortices. The vortices at later times arise from vortex sheets which
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have entered Qns from Qp, or some other analogous vorticity creation
mechanism. When the vortex sheet method is used the vortex positions
are determined by the positions of the sheets as they enter Qs and their
strengths are a function of the sheet strengths. We will discuss this in more
detail below.

In other applications one is given an initial vorticity field w(z) with
compact support which must be approximated by a sum of the form (3.3).
Typically, this is accomplished by creating a grid of spacing h and letting
the initial vortex positions if,-’ be the centers of the grid cells and letting
the initial particle strengths be

I3 = w(&))h",

for N = 2,3. Most, if not all proofs that the vortex method converges to
solutions of Euler’s equations assume this type of initial condition. In this
context the grid spacing h plays a central role in the accuracy of the method.
It, together with the cutoff radius &, determines the accuracy of the initial
discretization and the accuracy of the subsequent approximation @ to the
flow field at later times t. Generally these convergence proofs require that
h and é be chosen so that

§="h? | for some ¢ € (0,1)

From a standpoint of computational efficiency ¢ = 1 would be preferable.
However, in general, ¢ depends on the function f and what underlying
assumptions have been made about the smoothness of the exact solution
u. For Chorin’s kernel (3.5) [Hald (1979)] has suggested choosing ¢ = 1/2.

4. The No-Flow Boundary Condition. We now discuss the modifi-
cations to the computed flow field which are required to satisfy the no-flow
boundary condition (2.8d). Let us begin by assuming that we have a so-
lution u,, of (2.7a-c) with w = V x u,, but for which (2.8d) does not hold,
u, -1 # 0. We seek a scalar function ¢ such that

(4.1a) Ap=0 in Q ,

(4.1b) Vé-n=—-u,-n, on ON.

Now define u, = Vé¢. It is easy to check that the velocity field given by
u = u, + u, satisfies (2.8a-d) with w = V x u,,. The velocity u, is called
a potential flow [Chorin and Marsden].

Numerically we attempt to perform a discrete analog of the continuous
solution just described. In general, at the end of each time step we have
some function &, which does not satisfy (2.8d). The problem is to find some
é such that ¢ satisfies (4.1a,b) with u,, replaced by &, . In other words we
wish to solve Laplace’s equation for ¢ subject to Neumann boundary con-
ditions. There is a vast body of literature devoted to both the theoretical
and numerical solution of this problem. Effective numerical techniques for
finding u, may often be found there. We describe several simple examples
here.
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To begin note that the solution of the potential flow problem is dictated
in large part by the shape of the domain. For example, let N = 2 and
suppose that € is the upper half plane {(z,y) : y > 0}. If u,, is the velocity
due to a collection of vortices at (z;j,y;) with strengths T;, j = 1,..., M
then it is a simple matter to check that the potential flow u, we seek is
precisely the flow due to a collection of vortices at (zj, —y;) with strengths
=I;, 5 =1,...,M. Here we have employed the well known method of
tmages to find a solution of (4.1a,b).

As another example consider flow past a circle of radius r centered at
the origin in two dimensions. So Q@ = {z : |z| > r} and 0Q = {z : |z| = r}.
Suppose u,, is the flow induced by a collection of vortices at z; € Q with
strengths I';, j=1,..., M. Let

o L s
HT R Y

be the radial image of the point z;. Then a potential flow u, which cancels
the normal component of u,, on 92 is the flow due to a collection of vortices
with positions gf, and strengths —I';, j = 1,..., M. However note that the

total circulation about 9%,

(4.2) I‘nzfywwls ,

C

has changed. Here C'is any circle of radius R > max|z;| centered at the
origin. Another potential flow which will satisfy

Yp =~ 7

and yet leave (4.2) unchanged is the flow due to the radial images at posi-
tions _:g; with strengths —I'; for j = 1,..., M together with M additional
vortices, all located at the origin, and with strengths T';.

This illustrates an important fact about the potential flow. Sometimes
it is necessary to consider other properties of the flow field, such as total
circulation, when choosing u,. Also note that in general ¢ in not unique.
Given any ¢ which works, then for any constant ¢, the function ¢ + ¢ also
works.

Of course for more general domains the method of images is not always
practical, or necessarily even possible. In these cases one can resort to one of
several different strategies. Often it is possible to conformally map 2 onto
another domain Q' for which the method of images will work. However,
there are potential! pitfalls with such a solution. Large numerical errors
can occur due to the conformal map; for example in regions where 92 is
not differentiable, such as at a corner. Accurate numerical algorithms for
conformal mapping are currently a very active area of research and results
in this area will ultimately impact vortex methods. (See e.g. [Howell] and

[Howell and Trefethen].)

1no pun intended
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Another approach to solving the potential flow problem is to discretize
the domain with a grid and use a fast Poisson solver on the grid. Here one
must be careful of the errors introduced by the grid underlying the Poisson
solver. It is important to ensure that these errors do not introduce the
very numerical diffusion that the vortex method was designed to eliminate.
Other possible approaches include finite element or multigrid solutions of
the potential flow problem (4.1a,b).

5. The Random Walk Solution of the Heat Equation. The second
fractional step in the random vortex method is the solution of the heat

equation (2.9a) subject to the no-slip boundary condition (2.9b). Let :_L‘_;+%
denote the vortex positions after the first of the two fractional steps, i.e.
as a result of (3.8). The solution of the diffusion equation (2.9a) with
initial data given by vortices at positions Q;H'% with strengths L;"H is
approximated by letting the vortices undergo a random walk
3

(5.1) _:g;f'H = g}”’ +Q].
where 0 = (n},...,n}-v) and the {7;; :4=1,...,N, all j} are inde-
pendent, Gaussian distributed random numbers with mean 0 and variance
2vAt. Any vorticies that end up in the sheet layer Qp, or in the image of
the sheet layer (with respect to Q) as a result of the random walk become
sheets, and any that end up beyond the image of the sheet layer are dis-
carded. The no-slip boundary condition (2.9b) is approximately satisfied
by using the vortex sheet method to cancel the tangential velocity on 0
induced by the blobs with positions g}‘“.

Why do we random walk the particles? Suppose we wish to solve the
diffusion equation in all of RV,

(5.2) w, = VAW ,

with initial data

E+1
(5.3) wo(z) = Y fo(z —z;" F)LiH.
J
The exact solution is given by,

w(z,t) = (4mvt)™ ¥ / e~ @4ty (n)dy

= m) ¥ [T fie- @ ) d
J

= B[} file— (¥ +m) I})

where E denotes expectation over Gaussian random variables 7 on RN
with mean 0 and variance 2vAt. Thus, the exact solution of (5.2) with
initial data (5.3) is precisely the expected value of the function obtained
from (5.3) after each of the vortex positions has undergone a random walk,
as in (5.1).
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In other words, the computed solution consisting of the vortices with po-
sitions g}"“ given by (5.1) is ‘on average’ the exact solution to the diffusion
equation (5.2) in RN with initial data (5.3). More generally, when there
are boundaries present one must create particles to satisfy the boundary
conditions. The reader is referred to [Ghoniem and Sherman], [Hald], and
[Puckett (1989)] for an in depth account of particle creation algorithms for
satisfying boundary conditions. Here we restrict ourselves to a discussion
of the vortex sheet method which is the method most commonly used in
conjunction with the random vortex method to satisfy the no-slip boundary
condition (2.9b).

6. The Vortex Sheet Method. For simplicity we describe the vor-
tex sheet method in R2. The generalization to N = 3 is straightforward
[Chorin (1980)], [Fishelov]. Let (z,y) denote coordinates which are paral-
lel and perpendicular to the boundary respectively. Let (u,v) denote the
corresponding velocity components, w the vorticity, and v the kinematic
viscosity. Assume that the boundary is located at y = 0 and let U (z,t)
denote the ‘velocity at infinity’ which is imposed on the flow from outside
the boundary layer. In vorticity formulation the Prandtl equations are

(6.1a) Wi + Uwg + VWY =V Wyy
(6.1b) w=-uy ,

(6.1¢) uz+v,=0 ,
(6.1d) u(z,0,t) =0 ,
(6.1e) v(z,0,t) =0
(6.1f) yEn;o u(z,y,t) = Us(z,1)

Note that in the limiting process (v — 0) by which one derives the Prandtl
equations from the Navier-Stokes equations (2.1a-c) the vorticity w = v, —
u, has become w = —u, since v, = O(y/vuyy).

In the vortex sheet method the vorticity at time ¢ = kAt is approximated
by a sum of linear concentrations of vorticity,

(6.2) oF(z,y) = ijbz(l‘ —z§)6(yf — v).

Each term of the sum in (6.2) is referred to as a vortezr sheet. The jth
sheet has center (z¥,y¥) and strength or weight w;. Here 6 is the Dirac
delta function, and b; = b(z/l) is what we refer to as the smoothing or
cutoff function in analogy with the vortex method. The most commonly
used cutoff is the hat or tent function originally proposed by Chorin [Chorin
(1978)],

1-|z] |z| <1,
; b(z) = %
(02 (=) { 0 otherwise.
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The parameter [ is often referred to as the sheet length even though the
support of b, is typically of length nl for some integer n > 2. Since Y
has finite support and since é(y; — y) is 0 for y # y;, we see that the
jth sheet is simply a line segment parallel to the boundary which carries a
delta function concentration of vorticity. For b; with b defined by (6.3) each
sheet has length 2! and the vorticity concentration varies linearly along the
length of the sheet - having a value of w; at the center and 0 at the ends.
We briefly discuss other possible choices for b; at the end of this section.

We can use (6.1b) and (6.1f) to write the tangential velocity in terms of
the vorticity,

(6.4) u(z,y,t) = Uso(z,t) + /w(z,s,t)ds.
y
Our approximation to u at time kAt is determined by (6.2) and (6.4),

(65) @ (2,9) = Uno(z, kA8 + > wibi(z — 25)H(Yf - v),
J

where H(y) is the Heaviside function,

>
H(y)={(1) .
otherwise.
From (6.5) we see that the jump in @ along the jth sheet is w;bi(z — z;).
This is the motivation for referring to the computational elements as vortex
sheets. To find the velocity component normal to the boundary we first
use (6.1c) and (6.1e) to write

y
(6.6) v(z,y,t) = —/ur(:c,s,t)ds.
0

Then, by approximating u, with a centered divided difference, we obtain
our approximation to v,

1~’k(-"3ay) = —0;Uco(z,t)y

(6.7) _ _}_ij(b,(aﬁ — z¥) = bi(z™ — %)) min(y, y}) .
J

where zt =z +1/2 and 2~ =z — /2.

Since ¥ and #* were constructed using (6.4) and (6.6) respectively the
velocity field (@*,*) automatically satisfies equations (6.1b,c) and the
boundary conditions (6.1e,f). Furthermore, given Ue, this velocity field is
completely determined by the sheet positions (z}, y¥) and their strengths
wj.

JThe vortex sheet method is also a fractional step method. The first step
is the numerical solution of the convective part of equation (6.1a)

(6.8) we + uwy + vwy = 0.
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The second step is the numerical solution of the diffusive part of (6.1a)
(6.9) Wi = Vwyy

subject to the no-slip boundary condition (6.1d). Given an approximation
(@*, 5*) to the velocity field at kth time step the velocity at the next time

step is determined as follows.

We first evaluate (@*, #%) at the center of each sheet. Denote the velocity
at the center of the jth sheet by (¥, #F). Our numerical approximation to
(6.8) is found by moving the center of each sheet one time step of length

At in this direction to obtain
k+%  k+1 ~k ~
(610) (.'CJ vaj 2) = (zf,yf)+At(uf,vf &

In order to approximate (6.9) subject to (6.1d) we first create sheets on
the boundary. Let a,, r = 1,..., M denote equally spaced grid points at
y = 0 with grid spacing I: a,41 —a, = I. The sheet positions given by
(6.10) in general induce an non-zero tangential velocity on the boundary,
which we denote by 1'2“%(1:, 0). Let u, = ﬁ”"'%(a,., 0) and let wpq, denote
a computational parameter called the mazimum sheet strength. Then for
each r we create g, = [|u,|/wmaz) sheets with centers (a,,0) and strengths
—sign(u,) wmazr Where [z] denotes the greatest integer less than or equal
to z.

The numerical solution of the diffusion equation (6.9) is found by letting
all sheets, new and old, undergo a random walk in the y direction, reflecting
those that go below the boundary. Therefore, the new sheet positions at
time (k + 1)At are given by

k kE+3 | k+3
L yrt) = (=72, 1y, % +05l)

where the 7; are independent, Gaussian distributed random numbers with
mean 0 and variance 2vAt.

We wish to make several comments regarding the sheet creation algo-
rithm here. First, note that in our presentation of the algorithm all sheets
have magnitude w4, and that we create no sheets at a, when |u,| < Wmaz.
Hence, the no-slip boundary condition is satisfied at a, only up to order
Wmaz- Originally Chorin [Chorin (1978, 1980)] created sheets at the rth
grid point whenever |u,| > € for some € € Wmaz such that w; < wpaes for
all j and the sum of the strengths of these sheets exactly cancel u,. For
example, ¢ might be chosen to be on the order of the computer’s round off
error. However, this algorithm creates more sheets than the one described
above, and since the work required to compute (@¥,95) at the center of
each sheet is, at best, O(In?) where n is the number of sheets in the flow,
this greatly increases the computational cost of the algorithm. Further-
more, numerical experiments to compare the two sheet creation algorithms
[Puckett (1989)], [Zhu] have shown that there is no tangible increase in the
accuracy of the numerical approximation when this latter, more expensive,
sheet creation algorithm is used.

The second point we would like to make here concerns the manner in
which the no-slip boundary condition is satisfied and its relation to the
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cutoff function ;. As noted above, ﬁ’“+'5'(.1:, 0) is, in general, non-zero. Ide-
ally one would like to add some function to #**% which can be represented
by the sum of sheets, and which cancels ﬁk‘*%(z,O) at all points z on the
boundary but leaves @#**3(z,y) unchanged for y > 0. In other words, we
wish to find some function of the form ) w;bi(x — z;)H(y; — y) such that

@*ti(z,y) y>0,

i+ (z,y) +Z wj bi(z —z;) H(y; —y) = { 0 y =0.

J

In general this is not possible. However, one can find w; and (z;,y;) so
that this holds exactly for y > 0 and within O(!) for y = 0. For example,
when b; is defined by (6.3) choosing (z;,y;) to be the grid points (a,,0)
reduces the problem to that of finding the coefficients of a piecewise linear
interpolant to —ii*+3(z,0) with node points at the a, (e.g. see [Schultz]).
In other words, we wish to find coefficients ¢, such that

(6.11) S ebi(z — ap) & —i* (2, 0).

For the piecewise linear basis functions given by (6.3) it turns out that
¢, = —u, is the correct choice, since then the left hand side of (6.11) is the
usual piecewise linear interpolant of —ak+3 at y = 0. In actual practice
we approximate the left hand side of this expression by creating g, sheets
at each point z = a, with strengths w, = *wmqaz such that ¢rw, ~ —u,.

This idea can be generalized to make use of higher order interpolation
procedures. For example, one can replace b; with a basis function for cubic
splines (e.g. see [Schultz] or [DeBoor]). In [Puckett (1987)] we studied the
effect that this type of smoothing function has on the accuracy and rate of
convergence of the vortex sheet method. The interested reader is referred
there for further details.

Several studies have been made of the accuracy with which the vortex
sheet method approximates solutions of the Prandtl equations. The method
was used to approximate Blasius flow in both [Chorin] and [Puckett (1989)]
and to approximate Falkner-Skan flow in [Summers]. In particular, [Puck-
ett (1989)] contains an extensive tabulation of the error in approximating
Blasius flow as a function of the computational parameters At, I, and wmaz
while [Summers] examines the computed solutions for a family of flows,
some of which contain stagnation points or separation points.

7. Choosing the Computational Parameters. There are three
computational parameters in the vortex sheet method, the time step At,
the sheet length I, and the maximum sheet strength wyaz. The only gen-
erally agreed upon constraint that these parameters must satisfy is the so
called ‘CFL’ condition,

(7.1) At Upaz <1

where Uppar = max Us,. The justification usually given for (7.1) is that one
wants to ensure that sheets move downstream at a rate of no more that
one grid point per time step. This is an accuracy condition (as opposed
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to a stability condition) which ensures that information propagating in the
streamwise direction will influence all features which are at least O(1).
We also propose another accuracy condition,

(7.2) At Wpae < O

where C' is a constant with dimensions 1/L and L is a typical length scale.
(Usually L is the length of the boundary.) This condition is a consequence
of requiring that the degree with which we refine u as a function of y be of
the same order as the degree with which we refine features in the streamwise
direction, O(Upaz /wmaz) = O(L/1), and then using (7.1).

Note that since

d
ijbz(:c - :L‘j) = O(wmag;/l),

sheets induce local (non-physical) streamwise gradients in % which are
O(Wmaz/1). Condition (7.2) relates the size of these gradients to the ratio
l/At.

We wish the circulation about a vortex element to remain constant when
a sheet leaves the sheet layer and becomes a vortex or vice-versa. If 4 is
the piecewise linear smoothing function with b given by (6.3), then this
implies that,

|FJ| = Iwma, .

There are two other computational parameters which remain to be cho-
sen, the cutoff radius § and the sheet layer thickness e. We would like to
relate the cutoff radius § to the vortex sheet parameters wy, 4, and l. Let
us assume that we are using Chorin’s cutoff function (3.5), and hence the
velocity kernel is given by (3.6). We seek 6 so that a vortex at the edge of
the boundary layer and its image with opposite sign will induce the same
tangential velocity on the boundary as a sheet with the same position and
strength. (Note that the sheet does not require an image since, by (6.7),
the no-flow boundary condition is satisfied exactly at y = 0.) If we set

b= —,
™
then we find that a vortex at (z,y) and its image at (z, —y) will induce the
same tangential velocity on the boundary at (z,0) as a sheet with center
(z,y) provided |z| < 6.

Recall that the random walks have standard deviation v/2vAt. One
wishes to avoid having random walks which travel the length of the sheet
layer in one time step and this principle is generally taken into account when
choosing the sheet layer thickness €. Usually € is taken to be ¢ = CvVrAt
for some constant C. Typically C = 2 or 3. This yields a boundary
layer which has the appropriate scale, O(1/v) (see [Schlichting]). We reit-
erate that e represents the thickness of a numerical boundary layer which
should be distinguished from the physical boundary layer. Many aspects
of the combined random vortex / vortex sheet algorithm remain to be rig-
orously justified - such as the use of the vortex sheet method near points
of separation - and this may take some time. Nonetheless, many work-
ers have successfully used this hybrid method to model a wide variety
of flows. For example see [Baden and Puckett], [Cheer (1983), (1989)],
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[Chorin (1980)], [Ghoniem, Chorin and Oppenheim], [Sethian], [Sethian
and Ghoniem), [Summers, Hanson, and Wilson], [Tiemroth] and [Zhu].

The interested reader should consult [Baden and Puckett], [Chorin (1980)],
[Sethian], [Sethian and Ghoniem], [Tiemroth], [Puckett (1989)], and [Zhu]
for a more detailed discussion regarding the relationship between the vari-
ous parameters.
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