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11.1 Introduction

Vortex methods are a type of numerical method for approximating the solution of the
incompressible Euler or Navier-Stokes equations. In general, vortex methods are char-
acterized by the following three features.

1. The underlying discretization is of the vorticity field, rather than the velocity field.
Usually this discretization is Lagrangian in nature and frequently it consists of a
collection of particles which carry concentrations of vorticity.

2. An approximate velocity field is recovered from the discretized vorticity field via
a formula analogous to the Biot-Savart law in electromagnetism.

3. The vorticity field is then evolved in time according to this velocity field.

In the past two decades a number of different numerical methods for computing the
motion of an incompressible fluid have been proposed that have the above features. In
this article we consider a class of such methods which are based on the work of Chorin
(1973, 1978, 1980, and 1982]. Members of this class are related by the manner in which a
vorticity field in an inviscid, incompressible flow is discretized and subsequently evolved.
It is common practice to use the term vortex method or the vortex method to refer to
a member of this class when it is used to model the incompressible Euler equations.
One can modify the vortex method and use it to model the incompressible Navier-Stokes
equations by adding a random walk. This is known as the random vortex method. One
can also replace the random walk by some non-random technique for solving the diffusion
equation. Such methods are generally referred to as deterministic vortex methods.

The vortex method can be regarded as a discretization of the equations of fluid motion
in vorticity form rather than in the usual velocity-pressure form. This has the advantage
of eliminating the pressure from the number of dependent variables to be computed. In
addition, as a consequence of the “Biot-Savart Law,” the velocity can be written as a
linear superposition of basic velocity functions, plus possible corrections for boundary
conditions. These velocity functions arise as the convolution of an integral kernel with
a concentrated mass of vorticity, usually referred to as a vortex or vortex blob. This
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representation of the velocity field as a linear combination of identical velocity functions
is both mathematically appealing and relatively straightforward to program. Furthermore,
the nature of this discretization is such that diffusive errors due to the numerical method
are small. This facilitates relatively inexpensive computations of inviscid or slightly
viscous flows — especially when the vorticity is concentrated in small regions of the
computational domain.

One of the goals of this article is to provide a reader who is familiar with computational
fluid dynamics but not necessarily vortex methods a clear and fairly comprehensive
introduction to the subject. We have included a short review of the mathematical theory
of vortex methods, especially as it relates to cutoff functions and the influence that
these functions have on the convergence rate of the method. We have also included
(without proof) the statements of several theorems that have been proved regarding the
accuracy and rate of convergence of various vortex method approximations to Euler and
Navier-Stokes flow.

In addition, we have endeavored to describe several currently active areas of research
in the field. This includes recent work on vorticity boundary conditions and numerical
methods for implementing these boundary conditions. We also discuss deterministic
vortex methods and describe several of these methods in detail. We briefly mention
the recent work on point vortex methods, especially concerning the convergence of
the point vortex method to solutions of the incompressible Euler equations in two and
three dimensions. Finally, we describe several techniques for reducing the cost of a
vortex method computation from O(N?) to O(N log N) or even O(N) where N is the
number of basic velocity functions in the computation. In particular, we describe the two
dimensional versions of the method of local corrections and the fast multipole method in
some detail. It is our hope that we have presented this material in sufficient detail that an
interested reader would be able to program many of these methods from our description
of them.

This article is not a survey of all vortex methods. It is intended to be a short intro-
duction to the field with a brief discussion of selected research topics of interest to the
author. Consequently, there has been no attempt to refer to all researchers in the field
or all “important work.” In fact, there are many aspects of the field which we have
not discussed at all. For example, there is no discussion of the vast body of literature
concerning the vortex method approximation of a vortex sheet (e.g., see Bernard and
Chorin [1973] or Krasny [1986a, 1986b and 1987]) or of the technique of contour dy-
namics (e.g., Zabusky, Hughes, and Roberts [1979] or Zabusky and Overman [1983])
and related ideas (e.g., Buttke [1990]). On the other hand, we have made a concerted
effort to provide as complete a bibliography as possible in those areas that are discussed.
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We apologize in advance for any omission or oversight that we have made in this regard.
For a more thorough review of vortex methods and more extensive bibliographies the
interested reader is referred to the excellent review articles of Beale and Majda [1984],
Hald [1991], Leonard [1981 and 1985], and Sethian [1991]. The author has benefited
tremendously from reading these articles.

In the following section we review the equations of incompressible fluid flow and
introduce various formulations of these equations that will be useful in the subsequent
discussion. In Section 11.3 we describe two and three dimensional versions of the vortex
method for approximating solutions of the incompressible Euler equations in unbounded
regions 2 of IR". This allows us to ignore the issue of satisfying the no-flow boundary
condition on 0€2. We discuss the modifications necessary in order to do so in Section 11.4.
In Section 11.5 we introduce the random vortex method for approximating solutions of
the Navier-Stokes equations in unbounded regions Q of JR". We also discuss current
research into alternatives to the random walk; i.e., deterministic vortex methods. If §2
has a solid boundary, then one must have a mechanism for approximately satisfying the
no-slip boundary condition on 9. In Section 11.6 we describe a technique for doing
this called the vortex sheet method. We also mention some recent work on alternatives
to this method. Section 11.6 also contains a short discussion on parameter selection for a
- hybrid random vortex / vortex sheet method computation. At the present this is probably
the most widely used type of vortex method for computing viscous flows with boundaries
in “engineering” applications. Finally, in Section 11.7 we end with a discussion of “fast
vortex methods.” This includes a detailed description of two techniques that have been
introduced in the past decade: the method of local corrections and the fast multipole
method.

The author is indebted to a number of individuals for freely discussing their work and
making suggestions during the writing of this article. He would especially like to thank
Bill Ashurst, Chris Anderson, Tom Beale, Alexandre Chorin, Claude Greengard, Leslie
Greengard, Ole Hald, and Steve Roberts for reading portions of the manuscript.

11.2  The Equations of Incompressible Fluid Flow in Vorticity Form

In this section we derive the Euler and Navier-Stokes equations in vorticity form from
the usual velocity-pressure formulation of the equations. We also discuss the issue
of boundary conditions, especially recent work on vorticity boundary conditions for the
Navier-Stokes equations. We end with a brief introduction to the notion of fractional step
methods. A more thorough account of the role that vorticity plays in the mathematical

theory of fluid flow may be found in Majda [1986].
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11.2.1 The Euler Equations

First we consider the incompressible Euler equations. Let 2 C IR" with n = 2 or 3.
The incompressible Euler equations are

u+ (u-Vju=-Vp, (11.2.1a)
V-ou=0, (11.2.1b)

u(x,0) = u’(x), (14.:2.1¢c)
u-n=0 on o0, (11.2.1d)

where u is the velocity, p is the pressure, and 7) is a unit vector normal to 0.l We
let x = (z,5)7, u = (u,v)” when n = 2 and x = (z,¥,2)", u = (u,v,w)” when
n = 3. Note that equation (11.2.1a) is a vector equation with n components. Equations
(11.2.1a=11.2.1d) describe the flow of an incompressible, inviscid fluid in £ with initial
data u®. We assume that the flow has constant density p = 1. The boundary condition
(11.2.1d) is commonly called the no-flow boundary condition.

The Free-Space Problem During the subsequent discussion we will have occasion to
consider the case when €2 = IR". In this event it is understood that the boundary
condition (11.2.1d) has been replaced by

u(x) -0 as x—o00. (11.2.2)

This is sometimes called the free-space problem and (11.2.2) is often referred to as the
free-space boundary condition.

The vorticity w is defined by
w=Vxu. (11.2.3)

In two dimensions the vorticity vector w = (0, 0, d,v — d,u)” points in the direction
perpendicular to the (z,y) plane and is usually considered a scalar, w = 0;v — 9yu.

Suppose © = IR" and consider the following problem. Given the vorticity w(x,t)
at time ¢, reconstruct the velocity w(x,t) such that u satisfies (11.2.1b), (11.2.2) and
(11.2.3). We can do so by finding a function %) such that

u=Vx1. (11.2.4)

This function can be found by solving
AY = —w, (11.2.5a)
Vi(x) -0 as x— 0. (11.2.5b)

'We denote vector quantities in bold face type.
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Note that u automatically satisfies (11.2.1b) since V - (V x f) = 0 for any function f.
The function ) is called the stream function. As with the vorticity, in two dimensions
1) points in the direction perpendicular to the (z,y) plane and is generally thought of as
a scalar, 9.

Let G denote the Green’s function for the Poisson equation (11.2.5a) in IR". Then we

have
P(x,t) = Gx—x)w(X,t)dx' = (G *w)(x,1), (11.2.6)
B
where * denotes convolution. Since 9;(G *w) = (9,G) * w and similarly for 9, (G * w)
and 0, (G * w) we find from (11.2.4) and (11.2.6) that

u(x,t) = / (Vx@)(x—x)w(,t) dx =/ K(x—x) w(x,t) dx' = (K*w)(x,t)
n R‘n
(L1:2.7)
where K = V x G. Equation (11.2.7) is frequently referred to as the “Biot-Savart law” in
analogy with the well known formula of that name from electrostatics. In two dimensions
K is a vector,

K(x) (-2, (11.2.8)

~ 2njx?

which has a singularity of order O(|x|~!) at x = 0. In three dimensions K is a matrix,

Qg ey
1
Kix)=—— (Lol ; (11.2.9)
4r|x|3 L

with a singularity of order O(|x|~2) at x = 0. The singularity in K has played a central
role in the mathematical theory of vortex methods.

Note that if w has compact support or decays sufficiently fast as x — oo, then u given
by (11.2.7) automatically satisfies the free-space boundary condition (11.2.2). Thus, when
2 = IR", we have found a way to write the velocity u in terms of the vorticity w.

The No-Flow Boundary Condition When Q C IR" but 2 # IR" the function u given
by (11.2.7) will not necessarily satisfy the no-flow boundary condition (11.2.1d) on 9.
We can rectify this situation by writing the velocity u as the sum of a “rotational” flow
u,, and an irrotational (vorticity free) flow u, as follows. Given the vorticity field w(x)
in Q let u, = K * w (where we define w(x) = 0 for x ¢ Q for the purposes of the
integration over IR" in (11.2.7)). In general, u,, will fail to satisfy (11.2.1d) on 2. We
seek a scalar function ¢ in ) such that

A =0 (11.2.10a)
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L (11.2.10b)

In other words, we seek a solution to the Laplace equation (11.2.10a) in £ with Neumann
boundary conditions (11.2.10b). The theory of elliptic equations (e.g., see Garabedian
[1986]) guarantees the existence of a solution ¢ under reasonable restrictions on 9 and
the boundary data.

The potential flow u, defined by

u,(x) = Vo(x), (L2

satisfies (11.2.1b) since V - u, = A¢ = 0. Also, Vxu, = 0 since VxV f = 0 for any
scalar function f. Now consider the velocity field given by,

u(x) = u,(x) +upy(x). (11:2:12)

It is apparent from the foregoing that u satisfies V-u = 0 and V x u = w. Furthermore,
it follows from (11.2.10b), (11.2.11) and (11.2.12) that

un=u, n—u, =0 on 0f).

Hence u = u,, + u, satisfies (11.2.1b,d) and (11.2.3) as desired.

In a vortex method computation we construct an approximation a to the exact solution
u of (11.2.1a—d) in precisely this manner: Given an approximation @ to the vorticity
field w we take 0, = K * @ to be our approximation to u,,. Then, in order to satisfy the
no-flow boundary condition (11.2.1d), we add to @, an approximation @, to the potential
flow u, by solving the Neumann problem (11.2.10a-b) with boundary data —a,, - n. In
Section 11.4 we will discuss various techniques for computing i,

11.2.2  The Euler Equations in Vorticity Form

By taking the curl of equations (11.2.1a,c) we obtain the vorticity form of the Euler
equations,

Dw
= 13,2 13
Dy = W V)u, ( a)
V-u=0, (11.2.13b)
w=Vxu, (11.2.13c)
w(x,0) = w’(x), (11.2.134d)

u(x,t)-n(x) =0  for x € 0N. (11.2.13e)
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Here D/Dt = 0, + (u- V) is the so-called material derivative. Note that by taking
the curl of (11.2.1a) we have eliminated the pressure from the set of equations to be
solved. This greatly simplifies the task of finding approximations to u. Furthermore,
from (11.2.7), (11.2.10a-b) and (11.2.12) we see that the velocity depends linearly on the
vorticity. The vortex method takes advantage of this fact by discretizing the vorticity field
as a linear superposition of patches of vorticity. Each vortex patch induces a velocity
field via (11.2.7) that is easy to compute, and the total velocity field is simply the sum
of these velocities plus a correction for boundary conditions.

11.2.3 The Navier-Stokes Equations

We now turn to the Navier-Stokes equations. Let v denote the kinematic viscosity. In
vorticity form the Navier-Stokes equations are given by,

D B (11.2.14a)
Dt
V-u=0, (11.2.14b)
w=Vxu, (11.2.14¢)
w(x,0) = w’(x), (11.2.14d)
u=0 on 090. (11.2.14e)

These equations describe the flow of a viscous, incompressible fluid in © with initial
data w®. They can be derived from the usual velocity-pressure form of the Navier-Stokes
equations in the same way we derived equations (11.2.13a-e) from (11.2.1a—d).

From a computational point of view these equations present two additional difficulties
over the Euler equations. The first difficulty is that of accurately modeling the diffusive
effects of the term vAw on the right hand side of (11.2.14a). In particular, for very small
v solutions of (11.2.14a—e) can have important features which vary on spatial scales that
are O(,/v). This leads to the requirement that a numerical method must resolve spacial
features of the flow that are O(1/). For example, in a finite difference computation this
requirement would lead to the need for O(\/;'—1 ) grid points per spacial dimension (e.g.,
see Henshaw, Kreiss, and Reyna [1991]). This can become prohibitively expensive as
v — 0. We will return to this issue in our discussion of the random vortex method in
Section 11.5.

The other difficulty that has been introduced is the addition of a second boundary
condition

u(x,t)-r(x) =0 for x€0Q, (11.2.15)
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where 7T is a unit vector tangent to 9€2. This is usually referred to as the no-slip boundary
condition (or sometimes, the stick boundary condition). This boundary condition has a
very important physical interpretation: it accounts for the creation of vorticity at 92. In
fact, it can be shown that in an incompressible flow this is the only means by which
vorticity is created (e.g. see Chorin and Marsden [1979], Schlichting [1979], or White
[1974]).

It is not immediately apparent how best to approximate the boundary condition (11.2.15)
within the context of a vortex method computation. Chorin [1973 and 1978] has devised
several methods in which concentrations of vorticity — i.e. vortices — are added at points
on ON) with strengths chosen so that the resulting velocity field approximately cancels
u - 7 on Of2 where u is a numerical approximation to (11.2.12). These vortices are sub-
sequently allowed to diffuse into €2 and participate in the flow. The process of diffusing
the vortices into the flow is accomplished by letting each vortex undergo a random walk.
This method has the attraction of mimicking the physical process of vorticity creation
at 9. In one form or another this idea is at the basis of almost all methods currently
being used to approximate (11.2.15) in vortex method computations.

There has been much research into clarifying the mathematical principles underlying
Chorin’s idea — as well as into finding alternatives to it. We briefly discuss some of these
efforts here. Let 2 be a compact subset of IR> which lies in the interior of a closed curve
0N2. Let u be an incompressible velocity field in {2 that satisfies the no-flow boundary
condition (11.2.1d) on 052 and let w = V x u be the corresponding vorticity field. The
stream function 1) associated with u may be found by solving

A = —w, (11.2.16a)
=0 on 0N. (11.2.16b)

Therefore ) satisfies (11.2.4),
u(x) = (vy(x), —z(x)) , (11.2.17)

and (11.2.1d),
u-n=>0 on of).

Now suppose that u also satisfies the no-slip boundary condition (11.2.15) on 0f2. Then
we must have 5

% =0 on 09. (11.2.18)
This constitutes a second boundary condition on 1) — one in addition to (11.2.16b). In
other words, the problem of finding ¢ from w is now over determined.
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Quartapelle and Valz-Gris [1981] considered the question “What are the conditions
on the vorticity so that the stream function ¢ constructed by solving (11.2.16a,b) also
satisfies the boundary condition (11.2.18)?” Their answer was that w must be orthogonal

to all harmonic functions 7 in 2. In other words, that
/w(x)n(x)dx:O, (11.2.19)
Q

for all 7 harmonic in 2. Thus, Quartapelle and Valz-Gris have replaced the boundary
condition (11.2.15) by a constraint on the evolution on the vorticity (11.2.19). They
implemented this constraint numerically by advancing the solution of (11.2.14a) one
time step without regard for this constraint and then projecting the result down onto
the component which satisfies (11.2.19). A detailed implementation of this algorithm is
presented in Quartapelle [1981].

Anderson [1989] studied the connection between Chorin’s [1978] algorithm and the
Quartapelle and Valz-Gris algorithm. He was able to show that Quartapelle and Valz-
Gris’ constraint on the vorticity was equivalent to altering the vorticity at €2 by exactly
the same amount Chorin added at Of2.

It is natural to inquire about the possibility of finding a boundary condition on the
vorticity w consistent with the boundary condition (11.2.14e) on u. In this regard Cottet
[1988a] has shown that for domains 2 C IR* the following system of equations are
equivalent to the Navier-Stokes equations (11.2.14a—e) (see also Mas-Gallic [1990]),

%% =vAw, (11.2.20a)
w(x,0) = w(x), (11.2.20b)
w=Vxu on 02, (11.2.20c¢)
Au= -V Xw, (11.2.20d)
u=20 on O9. (11.2.20e)

One can regard these equations as two coupled subsystems (11.2.20a—c) and (11.2.20d-e).
The first system is an evolution equation for the vorticity (11.2.20a) with initial condition
(11.2.20b) and boundary condition (11.2.20c). The second system is Poisson’s equation
(11.2.20d) with Dirichlet boundary data (11.2.20e). Both Cottet [1988a] and Mas-Gallic
[1990] have proposed numerical methods based on these equations for solving the Navier-
Stokes equations in JR>. One of the essential differences between these algorithms and
Chorin’s algorithm is that the algorithms of Cottet and Mas-Gallic do not use a random
walk. Such methods are commonly referred to as deterministic vortex methods. We will

return to this topic in Section 11.5.
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We also mention that Hou and Wetton [1990] have constructed a finite difference
method for approximating solutions of the Navier-Stokes equations in vorticity-stream
formulation which incorporate a vorticity boundary condition. They have proved the
convergence of this method to solutions of the Navier-Stokes equations. This is currently
a very active area of research. We refer the interested reader to Anderson [1989], Cottet
[1988a], Hou and Wetton [1990], Mas-Gallic [1990], Quartapelle [1981], and Quartapelle
and Valz-Gris [1981] for further details and references.

11.2.4 The Diffusion Equation

Solutions of the Navier-Stokes equations (11.2.14a—e) may be approximated by alternately
solving two distinct systems of partial differential equations for small time steps At; with
the solution of the first system being the initial data for the second and so on. The first
of these systems is the Euler equations (11.2.13a—e). The second is the diffusion or heat
equation,

w; = vAw, (11:2:21a)
u=0 on 990. (11.2.21b)

Note that this is not the usual boundary value problem for the heat equation — the
boundary data is prescribed for the velocity u rather than the vorticity w. This is simply
a reflection of the fact that we are using the boundary condition (11.2.14e) on the velocity
with the evolution equations (11.2.14a—d) for the vorticity. It is natural to inquire if one
can replace (11.2.21b) with an equivalent boundary condition on the vorticity. This is
essentially the same question that is being addressed in the work on vorticity boundary
conditions for equations (11.2.14a—d).

Equation (11.2.21a) describes the rate at which the vorticity is diffusing in the flow.
In many instances it is possible to arrange the computation so that if the no-flow bound-
ary condition (11.2.1d) is satisfied by the initial data to (11.2.21a,b), then the solution
of (11.2.21a) will satisfy (11.2.1d) at later times as well. Thus, the boundary condi-
tion usually associated with the solution of (11.2.21a) is the no-slip boundary condition
(11.2.15). This boundary condition may be regarded as a source term that appears during
the solution of (11.2.21a) (e.g., see Puckett [1989a], p. 310).

11.2.5 Fractional Step Methods

The idea of solving the Euler equations for a small time step At and then the heat
equation for the same time step and using the result as an approximation to the solution
of the Navier-Stokes equations at time At is sometimes called viscous splitting. This is
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a special case of a more general technique known as operator splitting. Viscous splitting
for the Navier-Stokes equations in Q = IR" for n = 2, 3 with the free space boundary
condition (11.2.2) has been given a rigorous justification by Beale and Majda [1981],
Ebin and Marsden [1970], and Ying [1990]. The problem is much more difficult when
boundaries are included. Work on this problem appears in Benfatto and Pulverenti [1983]
and Alessandrini, Douglis, and Fabes [1983].

Numerical methods based on operator splitting are called fractional step methods. Such
methods are applicable to a wide variety of partial differential equations. In particular,
the random vortex method is a fractional step method for approximating solutions of the
Navier-Stokes equations. The first step consists of a vortex method approximation to the
solution of the Euler equations (11.2.13a—e) in which the no-flow boundary condition is
satisfied by adding a potential flow. The second step is a random walk approximation
to the solution of the heat equation (11.2.21a) in which the no-slip boundary condition
(11.2.15) is satisfied by creating vortex elements on 92. The initial data for one step is

the result obtained from the previous step.

11.3 The Vortex Method

The vortex method is a numerical method for approximating solutions of the incompress-
ible Euler equations (11.2.1a—d). It is a particle method in which fluid particles carrying
concentrations of vorticity are followed as their positions and concentrations evolve with
the motion of the fluid. Fundamental to all particle methods is the notion of the fluid
flow map x : Q x [0, 7] — Q defined so that x(c, t) is the trajectory of the fluid particle
which at time ¢ = 0 is at the point . For fixed c this trajectory may be found by

solving the ordinary differential equation,

dx
E(a, t) = u(x(ev,t),t), (11.3.1a)

x(a,0) = . (11.3.1b)

In this section we will assume that = IR" and substitute the free-space boundary
condition (11.2.2) for the no-flow boundary condition (11.2.1d). In this case u is a solu-
tion of the incompressible Euler equations (11.2.1a—) with boundary condition (11.2.2).

Therefore, by (11.2.7) we have

ux,t) = | KEx—x)w,t) dx = / K& s(a B Sl o) e
R R

The last equality follows from the fact that V - u = 0 and hence, that the Jacobian of
the transformation o/ — x(c/,t) equals 1 (e.g., see Chorin and Marsden [1990], p. 10).
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Thus, (11.3.1a,b) can be rewritten as

%(a,t) = K(X(a, t) — X(a/, t)) w(x(o/, t),t) dal7 (11.3.23)
R"

x(a,0) = . (11.3.2b)

Thus, if the fluid flow map o — x(ex,t) and the vorticity field w(x,t) are known, then
the velocity at later times may be written as an integral over the domain at the initial
time ¢ = 0. In two dimensions the vorticity is constant on particle paths o — x(ex, )
and this leads to an especially simple representation of the velocity field at later times.

11.3.1 Two Dimensions

As a consequence of the scalar character of the vorticity in two dimensions the two di-
mensional version of the vortex method is simpler than its three dimensional counterpart.
Therefore we begin by describing the vortex method in JR?. In two dimensions the fluid
velocity u is perpendicular to the vorticity

(w-V)u=0.
Hence, the right hand side of (11.2.13a) is zero,

Dw
D = 0.
This equation states that the vorticity is transported passively by the flow. In other words,
that the vorticity is constant along particle trajectories,
%w(x(a,t),t) =0,
or equivalently,
wx(a,t),t) = (). ({11=313)
This is the most significant difference between the fluid flow equations in two and three
dimensions. In general, when n = 3 we have (w - V)u # 0. This provides a mechanism
for the vorticity to change as it moves with the flow. In particular, the vorticity may now
stretch and fold. It is generally believed that this is the mechanism by which turbulence
is created and driven (e.g., see Tennekes and Lumley [1972]). This explains why the
phrase “two dimensional turbulence” is sometimes considered an oxymoron.

Using (11.3.3) we can rewrite (11.3.2a,b) as
Z_:(a’t) = | K(x(a,t) -x(e,0)) o’(e') de/, (11.3.42)
Rn

x(a,0) = a. (11.3.4b)
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Thus, given the fluid flow map o — X(«x, t), we see that the velocity can be expressed as
an integral over the vorticity field at time ¢ = 0. The equivalence of the Lagrangian equa-
tions (11.3.4a,b) and the Euler equations (11.2.1a—) with boundary condition (11.2.2) is
discussed in McGrath [1968].

In the vortex method the solution of (11.3.4a,b) is approximated by discretizing the
integral on the right hand side of (11.3.4a) and solving the resulting equations for a
finite number of particles. Consider a rectangular grid with mesh width h that covers
the support of w” = V x u’.2 Let o, i = 1,..., N, denote the centers of the grid cells
and let w; = w(ey). If we denote by X;(t) the trajectory of the particle that starts at
a; and evolves according to this discretized system, then an obvious approximation to
(11.3.4a,b) consists of solving the following system of N ordinary differential equations,

dx; 3 4
d—’;(t) o g K(&i(t) — %(t)) wj 12, (11.3.52)
j#i
%(0) = a; . (11.3.5b)

The numerical solution of this system is known as the point vortex method. This method
was originally used by Rosenhead [1931] for computing the roll-up of a vortex sheet. It
is apparent from (11.2.8) that whenever two particle trajectories approach each other, the
velocity that each induces on the other goes to infinity. For this reason it was generally
believed that the point vortex method was unstable and would not converge to solutions of
the incompressible Euler equations. However, Goodman, Hou, and Lowengrub [1990a]
have recently proved that the 2-d point vortex method does in fact converge to solutions
of (11.3.4a,b). We will briefly discuss this and related work in Section 11.3.5.
Chorin [1973] introduced the idea of replacing (11.3.5a,b) by

dx; £ b
d—’;(t) = ; K (%:(t) — %;(1)) w; B, (11.3.6a)
%(0) = o . (11.3.6b)

where the new kernel Kj is close to K except at the origin where K is bounded. From a
theoretical point of view Hald has shown that it is convenient to obtain Ks by convoluting
K with a smoothing function fs. So Ks = Kx fs where f; : IR* — IR is a scalar function
on IR? which is obtained from a fixed scalar function f : JR* — IR of integral one via

the relation :
fs(%) = 55 £(x/8). (11.3.7)

2For simplicity we always assume that w® has compact support. With suitable modifications one can also
handle initial vorticity distributions Y that are periodic or that have unbounded support but decay sufficiently

fast at infinity.




348 E. G. PUCKETT

If we compare (11.3.6a) with (11.3.1a), we find that solving the system (11.3.6a,b)
amounts to replacing the exact velocity u(x,¢) in (11.3.1a) by the approximate velocity

ii(x,t) = ZKg(x—f(i(t)) w; h?, (11.3.8)

and computing the N approximate particle trajectories X; that start at the points «;. The
discretization presented here is essentially a trapezoid rule approximation to the right
hand side of (11.3.4a). Nicolaides [1986] and Chiu and Nicolaides [1988] have studied
other discretizations of this integral.

Since by definition K5 = K * f5 and since V x (K * g) = g for any scalar function
g which decays sufficiently fast as |x| — oo, it follows from taking the curl of equation
(11.3.8) that our approximation to the vorticity field is

@(x,t) = Zfé(x—fq(t))wi h2. (11.3.9)

The ith term on the right hand side of (11.3.9) is referred to as the ith vortex or ith
vortex blob, X;(t) is its position at time ¢ and w; is its strength or weight.

The smoothness of Ks depends on f5. We can choose fs so that the kernel Ks will be
bounded or even continuous and differentiable at x = 0. Chorin [1973] originally used

. =]
N fs(x) = { (()Z’T'X"S) :2: ; Zj (11.3.10)

This yields a velocity of the form (11.3.8) with

-1
Ks(x) = (-, x)T{ g::i{f))_l ’i{ ; g (11.3.11)
This has probably been the most widely used velocity kernel in two dimensional “engi-
neering” implementations of the vortex method. By comparing (11.3.11) with (11.2.8)
we see that Ks(x) = K(x) for x > ¢ but that Ks remains bounded as x — 0. Thus, the
effect of fs is to “cutoff” the infinite velocity at the origin. For this reason the function
[s is also referred to as the cutoff function and § is called the cutoff radius. For fs given
by (11.3.10) it is apparent from (11.3.9) that the vorticity due to a vortex blob at x; is
now concentrated in a circular region or “core” about x;. Hence fs is sometimes also
called a core function.
Usually — but not always — f is chosen to be radially symmetric: f(x) = f(r) where
T = [x]. It is sometimes the case, especially for higher order cutoffs, that f does not
have compact support. In these cases the name cutoff radius for § no longer quite
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makes sense. For this reason some authors prefer to refer to & as the cutoff parameter.
Assuming that the exact solution u(x, ¢) of (11.2.1a—c) with boundary condition (11.2.2)
is sufficiently smooth, then the properties of f will determine the accuracy of the vortex
method approximation to u. We discuss cutoff functions further in Section 11.3.3 below.

Suppose that for some Ry > 0 we have Ks(x) = K(x) whenever |x| > Rp. (In
Section 11.3.3 we will show that this is true for radially symmetric f with compact
support.) Let C be any circle of radius R > Ry centered at X;(t). Then the circulation
I'; about the ith vortex is

Ty = ?{ K (x — %(£)) wi h? - ds
C

ih2 —
i w. f ( yvzx) .ds
2 P (11.3.12)
12 27
. wh / (—sin6, cos ) - (~sin6,cos §) db
27 0
:wihz.

This formula is useful for determining the vortex strengths when vortices can enter
the computation by some mechanism other than as part of the initial discretization of
the vorticity field. This occurs most often within the context of satisfying the no-slip
boundary condition (11.2.15) on dS2. We will discuss such techniques in Section 11.6. It
is also possible to design a vortex method in which vortices are created at a flame front.
Such algorithms have been studied by Ashurst and McMurtry [1989], Ghoniem, Chorin,
and Oppenheim [1982] and Sethian [1984].

Equations (11.3.6a,b) are a system of N ordinary differential equations that describe
the approximate particle trajectories X;(t), each of which is continuous in the variable ¢.
One hopes that for appropriately chosen f5 these approximate particle trajectories remain
close to the exact particle trajectories X(c;,¢). This turns out to be true and can be
rigorously proven as we shall see in Section 11.3.4.

In an actual computation the trajectories X;(t) are further approximated by discretizing
(11.3.6a,b) in time. One can do this by employing almost any numerical ODE solver.
For example, let X denote the time discretized approximation to X;(t) at time ty = kAt

and let
i (x) = ) Ks(x — xf) wi h?, (11.3.13)

denote the approximate velocity field. If we use the first order Euler’s method to ap-
proximate (11.3.6a,b) in time, then the new particle positions at time Zj+1 = (k+ 1)At

are given by,
g+l = gF 4+ Atif(RF) . (11.3.14)
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Thus, since the vorticity is constant on particle paths, the approximate velocity field at

time txy; is now,
(%) = D Ks(x — %) w; b2
i

Higher order time discretizations have been studied theoretically by Anderson and Green-
gard [1985] and Hald [1987]. Examples of computations which involve a high order
time discretization may be found in Baden and Puckett [1990], Cheer [1989], Nordmark
[1991], Sethian [1984], and Sethian and Ghoniem [1988].

Note that since the vortex strengths w; have not changed on the approximate particle
paths X — if“ we are approximately satisfying (11.2.13a) (or equivalently (11.3.3)).
Furthermore, since a*t! = K  oFt! explicitly satisfies (11.2.13b,c), the new velocity
field @**! is a consistent approximation to the exact solution of (11.2.13a—c) at time ¢y
with initial data & at time t; = kAt. Finally, for smoothing functions fs which have
compact support or which decay sufficiently fast at infinity, the approximate velocity
field u* given by (11.3.13) will automatically satisfy the free space boundary condition

(11.2.2).

A Remark Concerning Notation We denote the exact trajectory of the particle which at
time ¢ = 0 is at the point a by x(cx, t). In other words, x(c, t) is a solution of the exact
Lagrangian equations (11.3.4a,b). If we are considering a finite number of exact particle

trajectories, say starting at the points a;, i = 1,..., N, then we simply write x;(t). So
the x;(t) denote solutions of the finite set of ODEs
dxi 0
— ()= [ K(xi(t) - x(a,t)) w'(a) dex,
X; (0) =Q;,
fori=1,..., N, where the flow map x(a,t) is assumed to be known.

We denote a (time continuous) approximation of the ith particle trajectory x;(t) by
X;(t). The paths X;(t) are determined by solving the ODEs (11.3.6a,b). We denote a
time discretized approximation to the X;(t) at time ¢; by X¥. For example, if we use the
first order Euler’s method, then the X¥ are advanced in time according to (11.3.14) with
¥ defined by (11.3.13). We will employ a similar notation for the three dimensional
versions of these quantities.

The purpose of distinguishing between the time continuous approximation X;(t) to
x;(t) and the time discretized version X! is as follows. Historically the first convergence
proofs for the vortex method were for the time continuous case. In other words, it was
shown that the X;(t) converge to the x;(¢) and that the corresponding velocity field (x, t)
converges to the exact velocity field u(x,t) as the discretization of the right hand side
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of (11.3.2a) is refined. Subsequently, it was also proved that the x¥ converge to x;(tr)
and that " (x) converges to u(x,#;) in the appropriate limit. However many workers
continue to state and prove theorems for only time continuous versions of the vortex
method. In particular, there has not yet been published a convergence proof for the time
discretized version of the random vortex method in three dimensions. By emphasizing
the distinction between the time discretized and time continuous versions of the vortex
method we will be able to give precise statements of some of these theorems. It is also
our hope that by making the distinction clear here this will assist readers that go on to
read other papers in the field.

We have neglected one essential issue in our discussion of the vortex method in two
dimensions. This is the problem of satisfying the no-flow boundary condition (11.2.1d)
in a computation. We will discuss this in Section 11.4. We now describe the vortex
method for approximating solutions of (11.2.1a—c) with boundary condition (11.2.2) in
three dimensions.

11.3.2  Three Dimensions

Recall that in IR? the vorticity is a vector which may point in any direction. This implies
that the right hand side of (11.2.13a) is in general nonzero. This term is usually associated
with the “stretching” of vorticity. One can think of (11.2.13a) as an evolution equation
for the vorticity in which the vorticity is stretched by the flow as it is transported along
particle trajectories. To see this note that by (11.2.13a) the evolution of vorticity that is
carried with the point x(c, t) is given by

‘fl—‘:(x(a,t), t) = (w(x(a, t),t) - V) u(x(e, ), ). (11.3.15)

Hence the stretching term (w - V) u governs the rate of change of the vorticity as it is

convected with the flow.
A three dimensional vortex method also involves the discretization of (11.3.2a,b).

However, now the vorticity w(x, t) is a vector quantity and it is no longer constant along
particle paths. As in two dimensions we discretize the right hand side of (11.3.2a) by
approximating the velocity field by a sum of the form

a(x,t) = Y " Ks(x — %(t)) @i(t) h* . (11.3.16)

Here w;(t) is an approximation of w(%;(t),t), Ks = K * f5 with K given by (11.2.9),
and fs is a smoothing function of the form

15(3) = 55 (x/8), (11.3.17)



352 E. G. PUCKETT

for some f : R} - R of integral one. However, unlike the two dimensional case,
we must now find a way to update the vortex strengths w;(t). A variety of techniques
have been proposed for doing this. Essentially three dimensional vortex methods are
distinguished from one another by the manner in which they discretize equation (11.3.15).

In this article we will be primarily concerned with a method due to Anderson which
was first described in Anderson and Greengard [1985]. In this method one uses (11.3.16)
to find an expression for Vu = (Vu, Vv, Vw) of the form

Va(x,t) = VY Ks(x — %;(t) @;(t) 1. (11.3.18)

J

Since K is a known function of x, the right hand side of (11.3.18) can be explicitly
computed. This suggests the following system of 2N ordinary differential equations for
the vortex positions and strengths

%(t) m XJ: Ko (%i(t) — %;(1)) @;(t) 1, (11.3.192)

%(0) = o, (11.3.19b)

d;:i () = @i(1) - V) Y Ks(®i(t) = %(1)) @5() A, (11.3.20a)
i(0) = w¥(ex) (11.3.20b)

Note that equations (11.3.20a,b) describe the evolution of the vortex strengths @, (t)
in time rather than the evolution of the vorticity field itself. Nevertheless, it is natural
to expect that the solution of these equations converges to the exact solution of the 3D
incompressible Euler equations in the limit as h, § — 0. This has been proved by Beale
[1986] and Cottet [1988b] under certain reasonable assumptions on the smoothness of
the underlying flow field and the choice of the smoothing function f;. In addition, Long
[1990] has proved that a version of the random vortex method based on this method
converges to solutions of the 3-D Navier-Stokes equations. We will discuss these results
further in Sections 11.3.5 and 11.5.3.

A Method of Beale and Majda An alternative discretization of (11.3.15) was proposed
by Beale and Majda [1982a]. It is based on the fact that equation (11.2.13a) implies

w(x(e,1),t) = (Vox(a, ) w(a),
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(e.g., see Chorin and Marsden [1990]). This suggests the following method for updating

the vortex strengths

@i(t) = (V% (i, 1)) - w'(au), i=1,...,N, (11.3.21)
where V" denotes some (high order accurate) finite difference approximation to the
gradient of the fluid flow map which is defined on the grid determined by the vortex
positions at time ¢ = 0. It has been proved by Beale and Majda [1982a and 1982b]
and Anderson and Greengard [1985] that the solution of the coupled system of equations
(11.3.19a,b) and (11.3.21) also converges to the solution of the 3-d incompressible Euler
equations in the appropriate limit.

The Vortex Filament Method We mention one other approach, originally proposed by
Chorin [1980 and 1982], which is sometimes called the vortex filament method. In
this method the vorticity field is represented as a collection of vectors. Each vector is
represented by two points, considered to be at the head and tail of the vector, and the
magnitude of the vorticity is proportional to the distance between these two points. The
evolution of this vorticity field is approximated by allowing these points to flow with
the velocity field induced by this approximate vorticity field via (11.2.7). The stretching
term is automatically accounted for by the movement of these two points in relation to
one another. (In an actual computation one usually divides a vector into two smaller
vectors when the distance between the two points becomes large.) Greengard [1986]
observed that the vortex filament method is essentially equivalent to the method of Beale
and Majda and used this observation to prove that the method converges to solutions
of the incompressible Euler equations under the appropriate conditions. The interested
reader is also referred to the work of Anderson and Greengard [1985 and 1989] for
further information concerning the vortex filament method.

These are just a few examples of a wide variety methods that have been suggested for
updating the vortex strengths in three dimensions. We refer the reader to the literature
for a more detailed discussion of this topic: Ashurst and Meiburg [1988], Anderson and
Greengard [1985], Beale and Majda [1982a and 1982b], Fishelov [1990a], Greengard
[1986], Knio and Ghoniem [1990] and Leonard [1980 and 1985]. We also remark that
Beale, Eydeland, and Turkington [1991] have conducted numerical studies to compare
several of the algorithms described above.

In an actual computation one must discretize the solution of (11.3.19a,b) and (11.3.20a,b)
(or (11.3.21)) in time. As in two dimensions let X¥ denote the time discretized approx-
imation to X;(#;) and @* denote the approximation to u(x,%;). The time discretized
velocity field at time ¢, may therefore be written as
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o (x) = Ks(x— &) @f n® .
i

If we wish to approximate (11.3.19a,b) to first order in time, then the particle positions
are advanced according to (11.3.14), just as in the two dimensional case. Similarly, a
first order time discretization of (11.3.20a,b) is given by
Wil = WF L AL (WF - V) @R (xF). (11.3.22)
A Remark Concerning the Approximate Vorticity Field in Three Dimensions In analogy
with the two dimensional case it is natural to let the approximate vorticity field be defined
by
vort(x, ) = Y fs(x — Xi(t)) @;(t) h>. (11.3.23)

However, in general this function fails to be divergence free. (In two dimensions the
fact that the vorticity is a vector pointing in a direction perpendicular to the x, y-plane
guarantees that (11.3.9) is divergence free.) It is apparent then that vort # V x . Instead
one can define

G(x,t) =V x i(x,t) = Y ((x— %) of p?, (11.3.24)

where (s = V x Ks. (Hald [1991] has taken the trouble to actually write out (s.)

As Beale [1986] has pointed out, & is simply the L? projection of vort onto the space
of divergence free vector fields. In particular, the velocity field induced by (11.3.23) is
identical to that induced by (11.3.24). Since in an actual computation one does not need
to explicitly evaluate the vorticity field in order to evolve the flow field, the question
of which of the above expressions represents the computed vorticity field is largely
academic. However, if one is interested in computing values of the vorticity field in
addition to the velocity (say, for example, in order to plot the vorticity field) or if one is
interested in proving that the computed vorticity field converges to the exact one, then
it may very well be appropriate to use (11.3.24) rather than (11.3.23). We refer the
interested reader to the comments of Anderson and Greengard [1989, p. 1129] and Beale
[1986, p. 405] for a more detailed discussion of this issue.

11.3.3  Initial Conditions

We now briefly discuss how to choose the initial vortex positions and strengths. Suppose
we are given an initial vorticity field w®(x) with support contained in a bounded set
Qo C IR". We wish to approximate w by a sum of the form (11.3.9), (11.3.23), or
(11.3.24). We begin by creating a square grid of side h that covers . We let the
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initial vortex positions X! = X;(0) be the centers of the grid cells and the initial particle

strengths be
w! = w(x)). (11.3.25)

This is the type of initial condition that is assumed in most proofs that the vortex
method (respectively random vortex method) converges to solutions of Euler’s (respec-
tively Navier-Stokes) equations. (However in many computations - especially viscous
ones — vorticity may introduced into the flow via other mechanisms. We will discuss this
further in Section 11.5.2 below.) In this context the grid spacing h plays a central role in
the accuracy of the method. It, together with the cutoff radius 6, determines the accuracy
of the initial discretization and as well as the accuracy of the subsequent approximation
i to the flow field at later times.
It is also possible to choose the initial particle strengths so that

Wl B = / w(x)dx, (11.3.26)
B;

where B; denotes the ith grid cell. For example, Hald [1979] used this initial condition in
his convergence proof. In fact, (11.3.26) may be preferable to (11.3.25) when the initial
data is not very smooth. We also note that Anderson and Greengard [1985], Nicolaides
[1986], and Chiu and Nicolaides [1988] have studied how to choose the vortex positions
and strengths on irregular grids in a manner that will preserve the overall accuracy of
the method.

11.3.4  Cutoff Functions

We now turn to a discussion the cutoff function fs. As we have already noted the
properties of f, together with the smoothness of the underlying flow field, will determine
the accuracy of the vortex method. In this section we discuss some of the properties
necessary for an accurate smoothing function and describe some that have been proposed.
In the following section we state some of the convergence results that have been obtained
by researchers in the field. These results will illustrate how the choice of cutoff function
influences the rate of convergence. Sections 11.3.4 and 11.3.5 are loosely based on
Hald’s [1991] review article.

In what follows C denotes a generic constant, D denotes differentiation, 3 = (81, .- - +Bn)
is a multi-index the components of which are non-negative integers, and |8| = fi +..-+
B.. So for example, when n = 2 we have,

ool f

(APREL. e o [ g i i
X —.'ElyZ, and D f_651352,



356 E. G. PUCKETT

for any function f : IR*> — IR.

We remind the reader that given f : R" — IR, the function f; is defined by (11.3.7)
in two dimensions or (11.3.17) in three dimensions. There have been a variety of as-
sumptions placed on the smoothing function fs in the literature. For example, in the
first convergence proof of any kind for the vortex method Hald and Del Prete [1978]
assumed that fs was chosen so that Ks(x) = K x f5(x) is continuous for x # 0 and that
for all |3| < 2 the derivatives of Ks satisfy

C& x| 0 < x| <86,

|DKs(x)| < { Clx -1 s < x|,

(For example, Chorin’s cutoff (11.3.11) satisfies these assumptions.) Given the above
assumptions on K; Hald and Del Prete were able to prove first order convergence of the
two dimensional vortex method for short times.

By strengthening these assumptions Hald [1979] was subsequently able to establish
second order convergence of the two dimensional vortex method for arbitrarily long
times. In this work Hald made the following assumptions on the smoothing function:
[s is radially symmetric fs(x) = fs(r) where r = |x|, f5(r) vanishes for r > 6, fs(r)
is twice continuously differentiable with respect to 7, f§ is continuously differentiable
except possibly at r = §, f;(0) = 0,

8 1
/0 rfs(r)dr = 7
5
/ T3f5(7')d7'=0,
0

and for p < 3 the derivatives of f; can be estimated by

dr Cé62P r<é
< — : ]
‘ fé(r)l—{o r > 0.

In order to obtain higher order convergence still more more stringent requirements
on fs are necessary. The first general theory of high order convergence for the vortex
method is due to Beale and Majda [1982b]. In this paper the authors defined a class of
smoothing functions called FeS~L* and proved that for f € FeS~L? both two and three
dimensional versions of the vortex method converge to solutions of the Euler equations
at an arbitrarily high rate. The order of convergence depends only on the smoothness
of the flow and the appropriate choice of L and p. (The parameters L and p here
correspond to the parameters L and m defined below.) Cottet [1982] and Raviart [1985]
have considered similar classes in their work. However, rather than compare various



Vortex Methods: An Introduction and Survey of Selected Research Topics 357

classes of smoothing functions we pick one and briefly discuss the nature of the various
requirements. The following class, called M%™, is due to Anderson and Greengard

[1985].3
Definition: Let f : /" — IR be a scalar function defined on IR" for n = 2 or 3. For
L > 3 we say that the function f € M%™ if f is L times continuously differentiable

and satisfies the following properties,

/ fdx=1, (11327)

/W x? f(x)dx =0, foralll <|8|<m-—1, (11328
i irldx < oo, i
X" D f(x) < C, for all |3] < L, (11.3.30)
X" 2 | f(x)| < C. (113.31)

Given f € M™™ we define
7o) = 51 x/5). (11332)

Functions fs with f € M Lm are called mith order cutoff functions. The justification for
this terminology will become apparent in the next section.

From (11.3.27) and (11.3.32) it follows that the family of functions {fs : § > 0} is
an approximation to the identity (e.g., see Folland [1976, p. 17]). In other words, for all
g € LP, with 1 < p < oo,

fsxg—g as, . 6—0,

in the £ norm. Thus we may regard f5 as an approximation to the Dirac delta function.

Condition (11.3.28) is what has become known as the moment condition. It states that
all moments of the function f up to order m — 1 vanish. It is natural to choose f t0
be radially symmetric. In this case all of the odd moments of f vanish by symmetry
and it follows that m is even. In particular, if f is radially symmetric and no moment
conditions are imposed, then m = 2. Conditions (11.3.27-11.3.29) ensure that replacing
the singular kernel K by the smoothed kernel Ks = K * f5 in (11.2.7) causes a change
in the velocity which is O(6™) (e.g., see Anderson and Greengard [1985, p. 422]).

3The M stands for “mollifier.”
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Conditions (11.3.29-11.3.31) govern the decay of f at infinity. These are essentially
technical requirements that are used in the convergence theory to ensure that the remain-
der in certain integrals is easy to estimate. A variety of similar conditions have been
considered in the literature. For instance, Beale and Majda [1982b] originally considered
bounds on the Fourier transform of f rather than (11.3.29-11.3.31). In general, one needs
[ to be “smooth and rapidly decreasing.” For example, in Beale and Majda [1985] the
authors replace (11.3.29-11.3.31) with

IDPf(x)| < C(1+ |x[*)77, (l1.3.43)

for all multi-indices 3 and every integer j. Conditions (11.3.27-11.3.28) together with
(11.3.33) are perhaps the simplest requirements one can place on f. However (11.3.33)
is a bit more restrictive than is needed in the theory. Finally we note that if one only
considers functions f with compact support, then (11.3.29-11.3.31) can be omitted al-
together. Choosing f to have compact support may also be desirable for other reasons
which we discuss at the end of this section.

For radially symmetric functions f(x) = f(r), one can show that

Kit) =K@ | fits)dy =K) F(), (113.34)
yisr
(e.g., see Hald [1979], p. 735). The function F(r) = 2 Jo sfs5(s)ds is called the the
shape factor or sometimes (somewhat confusingly) the cutoff function. It is apparent
from (11.3.27) and (11.3.34) that if f has compact support, say f(r) = 0 for r > a, then
K; agrees with K for 7 > a6. We also note that if fs is radially symmetric, then Ks can
be constructed from f;5 and K by using (11.3.34).
A wide variety of explicit cutoff functions of various orders of accuracy have appeared
in the literature. We list a few of these here. Beale and Majda [1985] studied cutoffs
based on the Gaussian. For example, in two dimensions

)=,

m

(11.3.35)

is a second order cutoff. (Here we have used the subscript 2 to indicate that this cutoff
is second order.) The authors then demonstrate how to obtain a fourth order cutoff by
taking a linear combination of two Gaussians with different scalings

P

fa(r) = e far) + 2 fo(2) (11.3.36)
where q is arbitrary subject only to @ # 1. The constants c; and ¢, can readily be
determined by noting that f4 must satisfy (11.3.27-11.3.28) with m = 4. For example,



Vortex Methods: An Introduction and Survey of Selected Research Topics 359

if we choose a such that a> = 2, then
1
fa(r) =e" - 5 e
Similarly, one can derive sixth order cutoffs by taking a sum of the form ¢; fy(r) +

c2fa(r/a). A typical function of this form is
fe(r) = cre +egetPps evedt 4
Beale and Majda [1985] also constructed two dimensional cutoff functions of the form
1
fu(r) = — Pu(r?) €,
T
where P, is some polynomial that must be determined. Applying (11.3.27) and the
moment conditions (11.3.28) to functions of this form one finds that P, = Qm — @,
where the @, are the Laguerre polynomials normalized so that the constant term is 1.
For example,
P2 (7’) —ul y
P4(T) =2- T,
by
Ps(r)=3-3r+—,

2
3

Pg(r)=4——6r+2r2—%.

Both Beale and Majda [1985] and Beale [1986] have also considered high order cutoffs
in three dimensions. The analogue of (11.3.35) in three dimensions is

3

3 Ry 20
fa(r) = yALt
Beale and Majda [1985] demonstrate how to derive higher order 3D cutoffs from lower
order ones by considering sums analogous to (11.3.36). They also consider sums of the

form
fm+2(r) = Cl fm(r) By CZTf,/n(T‘) 0

Starting with a second order 3D cutoff of the form

for) = o {1+ 19 oS (1419 7H],
Beale [1986] has used this relation to derive the following fourth and sixth order 3D
cutoffs,

6
5 = o {1493+ G =) 409 o )i,
6 7
fs(r) = 13; {@+r8)t (1497 +%z(1+r6)‘§ - 13;’" (141973}
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Hald [1987] (see also Hald [1991]) has devised the following two dimensional infinite
order cutoff

Frolr) = 454? {16J3(4r) — 10J5(2r) + J3(r)}, (1.3:37)

where J3 is the Bessel function of order 3. This is one of the simplest members of a
class of infinite order cutoffs based on Bessel functions which are discussed by Nordmark
[1991]. This cutoff falls outside the classes of high order cutoffs studied by Anderson and
Greengard [1985], Beale and Majda [1982b and 1985], and Cottet [1982]. In particular,
f given by (11.3.37) fails to satisfy the moment condition (11.3.28) for m = 4 and
conditions (11.3.29-11.3.31) for L = m = 2. The function simply decays too slowly.
Nevertheless, by using new arguments Hald [1987] has succeeded in establishing the
high order convergence of vortex methods with these cutoffs. We also remark that Hald
[1987] has shown that there are no infinite order cutoffs with compact support.

Nordmark [1991] has derived the following eighth order cutoff which has compact
support

52 11 _ 2 4 6 _ 219
f(r)={ : [1 - 2172 4 1057 — 140r5] [1 — 1] r>§11, (113.38)
r 5

In his PhD thesis Nordmark [1988] conducted extensive numerical tests to compare
(11.3.37) and (11.3.38). These two functions are amazingly similar. Their graphs — both
in physical and Fourier space — are nearly indistinguishable from one another.

In closing we note that since f is radially symmetric in all of the above examples,
then K can be constructed from f5 and K with the aid of (11.3.34). Explicit formulas
for Ks corresponding to these examples also appear in Beale and Majda [1985], Hald
[1987 and 1991], and Nordmark [1991].

From a computational point of view there are several factors which must be taken into
account that do not enter into the convergence theory. These are:

(i) How efficiently can Ky be computed?
(ii) Does fs have compact support?

The first consideration obviously determines the speed of the computation. In particular,
since the cost of evaluating the velocity u given by (11.3.13) or (11.3.16) at each of
the N vortex positions is O(N?), the cost of computing Ks can have a very real effect
on the speed of the overall computation. A variety of techniques have been devised
to reduce the O(N?) cost of the velocity computation to O(NlogN) or even O(N).
(Some of these ideas are discussed in Section 11.7.) However these techniques usually
assume that K;(x) = K(x) for x sufficiently far from the center of the vortex. Hence,
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cutoff functions with large or unbounded support become problematic. This may also be
the case when one wishes to satisfy a boundary condition of the form (11.2.1d) on 0.
In this regard we remark that Merriman [1991] has done some interesting work on the
relation between cutoff functions and boundary conditions.

We refer the reader to the articles of Beale and Majda [1985], Hald [1991], and
Nordmark [1991] for a more detailed discussion concerning the construction of high
order smoothing functions. Numerical experiments to compare various cutoff functions
may be found in Beale and Majda [1985], Hald and del Prete [1978], Nordmark [1991],
and Perlman [1985].

11.3.5 The Convergence of the Vortex Method to Solutions of the Euler Equations

We will now state (without proof) several generic theorems which establish the validity
of the vortex method approximation to solutions of the incompressible Euler equations.
In the following discussion we will measure the error in both a discrete and continuous
p-norm over bounded subsets of IR™. For any function g defined on the points o; € IR",

i=1,...,N we let
il
lol, = (3 late) )"
%

Let B denote any arbitrary bounded set in IR". For any integrable function g defined on

B we let
o\
g = /gx”dx".
19l = ( [, loGP dx)

In the following discussion all statements concern the free space problem (11.2.1a—c)
with boundary condition (11.2.2).

Before proceeding we remind the reader of the following. In two dimensions it has
been shown that for smooth initial data solutions of the incompressible Euler equations
exist and remain smooth for all time (e.g., see Kato [1967] or McGrath [1968]). In three
dimensions however the existence of smooth solutions to these equations has only been
established for short time (e.g., see Kato [1972]). In fact, many researchers believe that
in three dimensions singularities can form in finite time, irrespective of the smoothness
of the initial data. It has been hypothesized that this phenomenon is linked to the onset
of turbulence. In this regard we note that Beale, Kato, and Majda [1984] have shown
that if singularities do form in a solution of the 3D Euler equations, then the maximum
norm of the vorticity necessarily grows without bound.

In light of the above, the most one can hope to prove in three dimensions is that the
vortex method converges to the solution of the Euler equations as long as the solution
remains smooth. In other words, at the present one cannot hope to prove that the
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numerical method converges to a solution of the 3D Euler equation for arbitrarily large
times ¢.

The next two theorems concern the continuous time version of the vortex method. In
both of these theorems one can take p to be any 1 < p < oo. The following result can,
with some modifications, be found in Beale and Majda [1982b], Cottet [1982], Anderson
and Greengard [1985], and Raviart [1985]. The statement as it appears here is a synopsis
of these results due to Hald [1991].

Theorem 11.3.1 (Convergence in Two Dimensions) Assume that the solution u of the
incompressible Euler equations is smooth enough and that the initial vorticity field has
compact support. Let f € ME™ with [, sufficiently large and m > 2. Set § = ch? with
0 < g < 1. Then there exists a constant C such that Sor all h sufficiently small we have

(i) convergence of particle paths

max [% () = xi(t)l, < C 6" + (1)),

0<t<T

(ii) convergence of particle velocities
h

5%,

max [8(% (), ) — u(xi(0), )], < C 67 +

(iti) convergence of the velocity field

~ m h L
max 160 6) — u(x, O]y < C 67 + (2)25].

Note that in the above theorem we have not stated aresult analogous (ii) and (iii) for the
vorticity field. Proofs that the approximate vorticity field converges to the exact vorticity
field in two dimensions do appear in the literature however. For example, Hald and Del
Prete [1978] prove a statement analogous to (iii) for the vorticity in the maximum norm
for short times and for a specific choice of cutoff function. The general understanding of
the theory as well as the analytical tools available have improved considerably since their
proof. In fact, the current state of the theory is such that, if everything is smooth enough,
then obtaining bounds for the vorticity from statements of the form (iiii) above should
be relatively straightforward. However, most workers do not bother to explicitly state
and prove such results. In particular, we know of no explicit statement in the literature
analogous to (ii-iii) for the vorticity field in two dimensions.

In three dimensions there is a notable exception to this trend. The following theorem
is due to Beale [1986]. (See also Cottet [1988b].) What is meant by @ here is the
function defined by (11.3.24)

O(x,t) = Z Co(x — x(t)) wi(t) h3.
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Theorem 11.3.2 (Convergence in Three Dimensions) Assume that the solution u of the
incompressible Euler equations exists and and remains smooth on the interval 0 <t < T
and that the initial vorticity field has compact support. Let f € M Lm with L sufficiently
large and m > 4.* Set § = ch® with % < q < 1. Then there exists a constant C such
that for all h sufficiently small we have

(i) convergence of particle paths

% (1) — x; < Ohp™
max [%(t) ~ x(0)l, < OR™,

(ii) convergence of particle velocities

u(x: s ! mq
max [a(%i (1), ¢) — u(xi(®), )l < CR™,

(iii) convergence of the velocity field

5y At < mq
[max [a(x,t) —u(x, )]z < OB,

(iv) convergence of particle vorticities

“y(X: o % mg—1
Juax l&(i(t), ) — wxi(t), ), < CA™,

(v) convergence of the vorticity field

~ o mg—1
Jfax |@(x,t) — wX, )l o5 < Ch ;

It is apparent from these two theorems that an essential requirement of the theory is

that
h

5 —0, as h,6—0.
In other words, the mesh length h must go to zero faster than the cutoff parameter 6.
This implies that the vortex cores tend to overlap at an increasing rate as h, 6 — 0.
Since § = ch, in Theorem 11.3.2 we see that the error in (i—iii) is of order 6™. This
is the motivation for calling f € M%™ an mth order cutoff. If in Theorem 11.3.1 the
constant L is such that ( 0
m—1)q
L > ~tr (11.3.39)
(1-9)
then it is easy to see that the convergence rate is also O(h™1) = O(6™). If we choose
q close to 1, then such errors are essentially of order h™. However, by (11.3.39) this

4Cottet [1988b] has shown that it is sufficient to take m >l
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means that L ~ (1 — ¢)~! must be very large. Since one of the assumptions (which we
have not stated) in both of these theorems is that the flow field is at least CZt"*1, this
will only work for very smooth flow fields.

From a computational point of view it is evident that choosing ¢ close to 1 in Theorem
2 yields the fastest rate of convergence. However this is based on the assumption that
the underlying flow field is very smooth. Roughly speaking, for f € M™™ if the flow is
at least C*"+1 then the optimal choice for § will be § = h'~¢ where € < 1 (e.g., see
Beale and Majda [1982b], Cottet [1982 and 1991], Anderson and Greengard [1985] and
Raviart [1985]). On the other hand, if the flow has only a small number of derivatives
and the cutoff is of high order, then choosing § = h'/? seems to be best (e.g., see Hald
[1979]). In particular, this holds for infinite order cutoffs (e.g., see Hald [1987]).

In practice one usually takes i to be as small as possible and then chooses 6 based
on heuristic considerations. For an example: How does the solution look? How does
the method perform on a simple test problem with a given choice of parameters? For
example, see Sethian and Ghoniem’s [1988] comprehensive study of the flow past a
backward facing step. We also remark that numerical experiments appear to indicate that
a larger ¢ yields a more accurate solution at late times. We refer the interested reader to
Beale, Eydeland, and Turkington [1991], Beale and Majda [1985], Hald and Del Prete
[1978], Nordmark [1991], and Perlman [1985] for a more detailed discussion of these
issues.

Convergence of the Time Discretized Method 1In practice a vortex method computa-
tion also involves the discretization of (11.3.6a,b) or (11.3.19a,b)-(11.3.20a,b) in time.
Anderson and Greengard [1985] were the first to prove that the time discretized vor-
tex method converges to solutions of the incompressible Euler equations. They studied
the modified Euler method and an explicit class of multi-step schemes that includes the
Adams-Bashforth methods. Their proof for the modified Euler method can be extended to
include other second order Runge-Kutta methods. The treatment of higher-order Runge-
Kutta methods is more difficult. Hald [1987] has proved the convergence of the classical
fourth order Runge-Kutta method for vortex methods with infinite order cutoffs. The
following theorem is a synopsis of Anderson and Greengard’s result.

Theorem 11.3.3 (Convergence of the Time Discretized Vortex Method) Suppose that
the hypotheses of Theorem 11.3.1 (respectively Theorem 11.3.2) hold for n = 2 (respec-
tively n = 3) and that the fluid flow map x : R"™' — IR" is s + 1 times continuously
differentiable. Assume further that the ODE solver is a member of the class of multi-step
methods considered by Anderson and Greengard [1985] and that it has a local truncation
error which is order At™*'. Let T = koAt and for 0 < k < kg let x* = x;(kAt). Then
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there exists a constant C such that for all h, At sufficiently small we have

(i) convergence of particle paths

max |&¥ — x|, < C[6m+(%)L6+hs+At’]. (11.3.40)

0<k<ko
11.3.6 The Point Vortex Method

If we let fs be the Dirac delta function, fs(x) = &(x), then in IR’ the approximate
vorticity (11.3.9) becomes a collection of point masses

o(x,t) = Z 8(x —x;(t)) wi(t) h?,

and the approximate velocity becomes

u(x,t) = > K(x—x,(t))wi(t)h’.

This is the “classical” point vortex method. As we have already noted, the singularity in
K gives rise to an arbitrarily large velocity as x — X;. For this reason it was generally
believed that the point vortex method was unstable and hence would not converge to
solutions of the incompressible Euler equations. However, Goodman, Hou, and Lowen-
grub [1990a] have recently proved that the point vortex method does in fact converge
to solutions of two dimensional Euler equations. The key idea in their proof is that for
smooth flow the smoothness of the flow map and its inverse guarantee that for finite
times two particles will remain sufficiently far apart. In fact, for any finite time two
neighboring particles which are initially separated by a distance h will remain separated
by a distance which is O(h). Thus, the point vortex method in essence has a cutoff
which is asymptotically O(h) for any finite time. The authors also prove that 2D point
vortex method is second order. This follows from the interesting fact that certain errors
in the stability estimate cancel because the Biot-Savart kernel K is odd. (Beale [1986]
used this fact to improve his accuracy estimates for a 3D vortex blob method.)

Hou and his colleagues have also been able to prove that three dimensional point vortex
methods converge to solutions of the Euler equations for sufficiently smooth flows. It
turns out that the analytical tools one needs to prove this depend on how one discretizes
the stretching term (11.3.15). Hou and Lowengrub [1990] have used an argument similar
to the one used in two dimensions to prove the convergence of a method in which the
stretching term is approximated by a Lagrangian finite differencing such as in equation
(11.3.21). When the stretching term is “grid-free” as in (11.3.20a,b) the analysis is
somewhat harder. Cottet, Goodman and Hou [1991] have used several additional ideas
to establish the convergence of a three dimensional point vortex method of this type.
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As Hou [1991] has pointed out, the convergence analysis does not necessarily imply
that the point vortex method is practical without smoothing or some form of desingular-
ization. The theory states that for any given time 7 there is a constant ho(T) such that
for all h < hy the method is stable and converges. However, hy may be impractically
small. Furthermore, given a fixed discretization of the initial vorticity field, there will be
a critical time ¢, beyond which two neighboring particles may become so close that the
stability analysis no longer applies.

These observations have lead Hou and his co-workers to consider several possible
remedies. Hou [1992] has proposed a method for “desingularizing” the integral kernel K
that seems to work well. Hou, Lowengrub, and Shelley [1991] have studied a regridding
technique for the desingularized point vortex method. The basic idea behind a regridding
algorithm is to stop the computation when the error begins to rise and reinitialize the
vortex positions and strengths in a manner that will maintain a given level of accuracy.
Regridding algorithms and other techniques for improving the long time accuracy of
vortex methods have also been studied by Beale [1988] and Nordmark [1991]. Hald
[1991] has reviewed some of these efforts.

For further discussion concerning the point vortex method and related topics see Hou
[1991].

11.4 The No-Flow Boundary Condition

We now discuss the modifications to the computed flow field that are required in order to
satisfy the no-flow boundary condition (11.2.1d) on 0f2. Assume that we have a solution
u, of (11.2.1a—c) that fails to satisfy (11.2.1d) on ). We seek a scalar function ¢ such
that

Ap=0 in ), (11.4.1a)
Vo-n=—u,- n, on 0. (11.4.1b)

If we define u, = V¢ then, as we have shown in Section 11.2.1, the velocity field
U = u, + u, satisfies (11.2.1a—d). The velocity w, is called a potential flow (e.g., see
Chorin and Marsden [1990])).

Numerically we attempt to perform a discrete analog of the continuous solution just
described. In general, at the end of each time step we have some function u,, which
fails to satisfy (11.2.1d). The problem is to find ¢ such that ¢ satisfies (11.4.1a,b). In
other words we wish to solve Laplace’s equation for ¢ subject to Neumann boundary
conditions. In some instances this can be done exactly by using the method of images
or some similar idea. In other instances it is necessary to determine a numerical approx-
imation ¢ to ¢. In either case, effective numerical techniques for determining u, or an
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approximation u, may often be found in the scientific literature. We describe several
simple examples here.

To begin, note that the solution of the potential flow problem is dictated in large part
by the shape of the domain. For example, let n = 2 and suppose that €2 is the upper half
plane {(z,y) : v > 0}. If u, is the velocity due to a collection of N vortices at (z;, y;)
with strengths w;, then it is a simple matter to check that the potential flow u, we seek
is precisely the flow due to a collection of N vortices at (z;, —y;) with strengths —w;.
Here we have employed the well known method of images (e.g., see Garabedian [1986,
pp- 246-247]) to find a solution of (11.4.1a,b) in the half plane y > 0.

As another example consider flow past a circle of radius R centered at the origin in
two dimensions. So Q = {x : x| > R} and 0Q = {x : x| = R}. Suppose u, is the
flow induced by a collection of vortices at x; €  with strengths w;, ¢ =1,...,N. Let

;o

L= — X,
X; IXZ'|2 )

be the radial image of the point x; with respect to the circle 2. Then a potential flow
u, which cancels the normal component of u,, on 952 is the flow due to a collection of

vortices with positions X, and strengths —w;, i = 1,..., N, (e.g., see Garabedian [1986,
pp. 247-249]). However, the total circulation about 052,
Fg:}{uw-ds, (11.4.2)
¢

has now changed. Here C is any circle of radius 7 > max [x;| centered at the origin.
Another potential flow that satisfies

up-n:——uw.n

and yet leaves (11.4.2) unchanged is the flow due to the N radial images at positions
x, and strengths —w; together with N additional vortices, all located at the origin, and
having strengths w;.

This illustrates an important fact about the potential flow. Sometimes it is necessary
to consider other properties of the flow field, such as total circulation, when choosing
u,. Also note that, in general, ¢ is not unique. Given any solution ¢ of (11.4.1a,b), the
function ¢ + ¢ for any constant ¢, is also a solution of (11.4.1a,b).

For more general domains the method of images is not always practical, or necessar-
ily even possible. In these cases one can resort to one of several different strategies.
Sometimes it is possible to conformally map €2 onto another domain €’ for which the
method of images will work. However there are potential pitfalls with this approach.
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Large numerical errors can occur as a result of the conformal mapping. For example,
this might occur in regions where 95 is not differentiable, such as at a corner. Accurate
numerical algorithms for conformal mapping are an active area of research and results
in this area will ultimately impact vortex methods (e.g., see Howell [1990] and Howell
and Trefethen [1990].)

Another approach to solving the potential flow problem is to place a grid over the
computational domain and use a fast Poisson solver on the grid. In this case one must
be careful to ensure that the introduction of the grid does not also introduce the very
types of diffusive errors that the vortex method was designed to eliminate. For example,
see the method of Mayo [1985]. We will discuss this issue further in Section 11.7. One
can also use a multigrid method or a finite element method to solve the potential flow
problem (11.4.1a,b).

Finally we mention that there have been a number of recent advances in the fast
numerical solution of integral equations. Thus an effective way to solve (11.4.1a,b)
might be to reformulate (11.4.1a,b) as an integral equation and use a fast solver to obtain
an approximation to the potential flow u,. These techniques have the advantage of
being applicable to a wide variety of domains. We refer interested reader to Greenbaum,
Greengard and McFadden [1991], Greengard [1988], and Rokhlin [1985] for further
details.

IL5 Vortex Method Approximations to Solutions of the Navier-Stokes Equations

We now consider vortex methods for computing viscous flow. We begin by describing
the granddaddy of all such methods, the random vortex method. As its name connotes,
the random vortex method is essentially a vortex method with the addition of a random
approximation to the viscous terms in the Navier-Stokes equations. After describing
this method we state several theorems that have been proved concerning its convergence
to solutions of the Navier-Stokes equations. We then describe several vortex methods
in which the random walk has been replaced by a non-random approximation to the
viscous terms in the Navier-Stokes equations. We also state a convergence theorem that
has been proved for one of these methods. We close with a few remarks regarding random
versus non-random vortex methods and a brief discussion of some of the important open
questions in the field.

11.5.1 The Random Vortex Method

The random vortex method was first introduced by Chorin [1973]. We will now de-
scribe this method as it is used to approximate solutions of the Navier-Stokes equations
(11.2.14a-d) in Q = IR™ with the free space boundary condition (11.2.2). In Section



Vortex Methods: An Introduction and Survey of Selected Research Topics 369

6 we will discuss the modifications to this algorithm that are required when ) is a
bounded domain with boundary 02 upon which the boundary condition (11.2.14e) must

be satisfied.
In practice one is usually interested in determining the velocity field u* = K % &F at

some time t; = kAt rather than in just determining the corresponding vorticity field &*.
Most theoretical work on the random vortex method has been concerned with estimating
the error between the approximate and exact velocity field, rather than the error between
the corresponding vorticity fields. For example, it has been proved that this velocity
field converges to the exact velocity field in the appropriate limit. (In fact, at the time of
this writing, no analogous statement concerning the vorticity field has yet been proved.)
However, since the pressure term is eliminated from the momentum equations when they
are written in vorticity form, we prefer to introduce the random vortex method as a
fractional step method for solving (11.2.14a—d) for the approximate vorticity field &*.

Let .
&F(x) =" fr(x —%5)T%, (11.5.1)
j=1

where it is understood that I‘f = w;h? when n = 2 and I‘f = w§h3 when n = 3. We
wish to emphasize that when n = 3 one can just as well replace (11.5.1) with (11.3.24);
the details of the computation remain the same. The random vortex method is a fractional
step method. The first step consists of approximating the solution of the Euler equations
(11.2.13a~c) at time ¢34, = t; + At with initial data (11.5.1) given at time ¢;. This
is accomplished by updating the vortex positions if and strengths I‘f as described in
Sections 11.3.1 and 11.3.2. This yields an intermediate vorticity field of the form,

1 o Vg |
@ (x) =) folx & THTIL (11.5.2)
J

1 :
Here if+2 simply denotes the particle positions at the end of the first of two steps; i.e., as
aresult of (11.3.14) or perhaps some higher order ODE solver. If n = 2, then I‘f“ = I‘;? ;
Otherwise, we assume that T+ = w¥*1h3 where w}*! is given by (11.3.22) or some

higher order time discretization of (11.3.20a).
The second fractional step is an approximate solution of the heat equation,

wi =VvAw, (11.5.3)

at time 5,y with initial data (11.5.2) at time t;. This is accomplished by letting each
vortex undergo a random walk,

1
~k+1 __ ~k+3 ¢
X% = X S
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where n; = (17]1-,...,7];‘) and the {n; ci=1,...,n, 7 = 1,...,N} are independent,
Gaussian distributed random numbers with mean 0 and variance 2vAt. The approximate
vorticity field at time ¢4, is therefore,

k-H X) Zf5 k+l I\/c—H

Why random walk the vortices? Suppose one wishes to solve the diffusion equation
(11.5.3) in © = IR" with initial data (11.5.2). The exact solution at time ¢ is given by,

w(x,t) = (47”/75)_"/2/’ e—(x*n)z/ztuta)m%(n) i
= (4mvt) n/z/ (Z fs(x n))I"““ ) e~/ g
= B[3 filx - " +n>>r§“] ,
J

where E denotes expectation over Gaussian random variables 1 on JR" with mean 0 and
variance 2vt. Thus, the exact solution at time #;,; of the diffusion equation (11.5.3) with
initial data (11.5.2) at time ¢ is precisely the expected value of the function obtained

from (11.5.2) by letting each of the vortex positions i;“% undergo an independent random
walk with mean 0 and variance 2vAt.

Millanazo and Saffman [1977] and Roberts [1985] have studied the accuracy of the
random vortex method in two dimensions by using it to approximate a known radially
symmetric solution of the Navier-Stokes equations. These studies indicate that the rate
of convergence is O(/v/N) where N is the number of vortices and v is the kinematic
viscosity. In IR? this corresponds to a rate which is first order in h. To see this suppose
that at time ¢ = 0 the support of the vorticity 9 C IR* is covered by N equal cells
of side h = VN ', Then the observed convergence rate for the random vortex method
is O(\/N‘l) = O(h). Similarly, one can show that in IR’ a rate that is O(\/J_Vﬁl)
corresponds to a rate that is O(h*/?).

11.5.2  More on Initial Conditions

In practice the random vortex method tends to be used in one of two ways. One way is
to prescribe an initial vorticity field w® which is compactly supported in some unbounded
domain such as Q = IR". In this case the initial vortex positions and weights may be
determined as described in Section 11.3.3. However, in many engineering applications
no initial vorticity field is specified. The initial condition often consists of a bounded
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domain 2 in which a potential flow that satisfies the no-flow boundary condition on 89
is given. As the computation progresses vorticity is allowed to enter the flow via some
vortex creation mechanism designed to mimic the physical creation of vorticity at 9.
We discuss techniques for doing this in Section 11.6. At the current time there is no
complete theory for the convergence of such a computation to the exact solutions of the
Navier-Stokes equations.

11.5.3  Convergence of the Random Vortex Method

Since its introduction there has been considerable interest in proving that the random
vortex method converges to solutions of the Navier-Stokes equations. However, it has
not been until the last decade that this fact has been rigorously established. We will now
briefly review what has been proved to date about the random vortex method.

Marchiorio and Pulverenti [1982] were the first establish a convergence theorem for
the random vortex method. They showed that solutions of the stochastic differential
equation which is the continuous time version of the random vortex method converge to
solutions of the Navier-Stokes equations in R However, their result does not exhibit a
rate of convergence in terms of the parameters h, §, At, and v which is desirable from
a computational point of view.

Subsequently, Goodman [1985] proved that a time discretized version of the random
vortex method converges to solutions of the Navier-Stokes equations in IR?. In particular,
Goodman was able to show that for any fixed t; = kAt,

sup [*(x) — u(x, )| < C N3 log N
xeB

with high probability. Here B is an arbitrary bounded set in JR*>. Thus, Goodman
established a convergence rate which is O(N ~ log N). This is essentially one half order
slower than the rate of N~z which one might expect based on the work of Millanazo
and Saffman [1977] and Roberts [1985] that was mentioned above.

Long [1988 and 1990] has been able to establish a faster rate of convergence for the
time continuous version of the random vortex method in both two and three dimensions.
We state a synopsis of Long’s results here (see also Hald [1991]). In the following it is
assumed that the initial vorticity field has support contained in a bounded set £ C R"
and that the initial discretization of the vorticity field is as described in Section 11.3.4. In
particular, we assume that £ has been covered with a square grid of side h = O(N himY
for n = 2 or 3, that the initial vortex positions %;(0) are taken to be the centers of the
grid points, and that the initial vortex strengths are of the form I';(0) = w°(x;(0)) A"
In both of the following theorems p is any real number that satisfies 1 <ipi<ioal
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Theorem 11.5.1 (Convergence in Two Dimensions) Suppose that «° is supported in-
side a bounded set Qg C IR* and that ° smooth enough that the solution w of the Navier-
Stokes equations (11.2.14a—d) with initial data ° and boundary condition (11.2.2) exists
and is sufficiently smooth on the interval 0 < t < T. Let u = K * w be the associated
velocity field. Let f € MP™ with L sufficiently large and m > 2. Set § = ch? with
0 < ¢ < 1 and let B be a bounded set in IR*. Then there exists a constant C such that
Jor all h sufficiently small we have

(i) convergence of the particle paths

max [%,(t) — x;(0)l, < CI5™ + (2)%5 + h{1ogh]

0<t<T

(ii) convergence of the particle velocities

max [5(% (1), ) — u(x;(0), 0, < C " + ()6 + h] log h]

0<t<T

(iii) convergence of the velocity field

max [u(x(t),t) —u(x,t)| 5 < ClE™ + (%)

L
Joax 6+ h|loghl]

with probability 1 — o(h).

Note that the computed velocity field @ is a random quantity, whereas the velocity u
is a deterministic quantity. This theorem says that the error between them is small with
high probability. In other words, if we run the problem just once with h sufficiently
small, then we should expect an accurate solution.

The proof of this theorem may be found in Long [1988]. The statement as it appears
here is a synopsis due to Hald [1991]. Long’s convergence rate is nearly optimal in the
sense that for g close to 1 (i.e. § close to h) the dominant term in the error is,

-1

O(h|loghl) = O(VN ' logN) ~ O(VN ).

We note that in the absence of some variance reduction technique one cannot hope to
obtain a rate that is better than O(v/N 71). (See Handscomb and Hammersley [1964] or
Maltz and Hitzl [1979] for a justification of this statement and a discussion of variance
reduction techniques.)

Long has also established the convergence of the random vortex method in IR>.
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Theorem 11.5.2 (Convergence in Three Dimensions) Suppose that W is supported in-
side a bounded set )y C IR® and that w° smooth enough that the solution w of the Navier-
Stokes equations (11.2.14a—d) with initial data w" and boundary condition (11.2.2) exists
and is sufficiently smooth on the interval 0 <t <T. Let u = K x w be the associated
velocity field. Let f € MY™ with L sufficiently large and m > 4. Set 6 = ch? with
0<g< % Let B be a bounded set in IR®. Then there exists a constant C such that for

all h sufficiently small we have

(i) convergence of the particle paths

3 m h 1/2
max [%(6) = %, (0], < C [+ h(3)"* [log ]

(ii) convergence of the particle velocities

max [a(X;(t), t) — u(x;(¢),t)l, < C [6™ + h(%)l/2 |loghl] ,

0<t<T

(iii) convergence of the velocity field

~ m h 1/2
ma [6(5,1) — u(x, Ol < C (87 + B (5" loghl]

with probability 1 — o(h).

The proof of this theorem may be found in Long [1990]. To the author’s knowledge
at the present time it is the only convergence proof for the random vortex method in R

In both of the above theorems the constant C' depends only on 7, k, m, p, g, the
diameter of B, the diameter of o and the bounds for a finite number of derivatives
of the velocity field u(x, t). For simplicity we have actually stated a somewhat weaker
form of Long’s results. Long [1988 and 1990] can replace the 1 — o(h) probability of
having a high error by a term of the form 1 —o(h?) where the constant y can be chosen
to be as large as one likes. However, the constant C on the right hand sides of the error
bounds depends on ~ and, in general, will increase as y increases.

At the present time all convergence theorems for the random vortex method are for
Q = IR" with the free space boundary condition (11.2.2). The convergence of the
method to solutions of the Navier-Stokes equations in bounded domains 2 = IR" with
the boundary condition (11.2.14e) on 952 is still an open and difficult problem. We will

discuss these issues further in Section 11.6.
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11.5.4 Deterministic Vortex Methods

During the past decade much research has been devoted to improving the convergence
rate of the random vortex method. For example, Chang [1988] has applied high order
numerical techniques that he developed for the integration of stochastic differential equa-
tions (Chang [1987]) to a random vortex method computation. However the vast majority
of these efforts have been directed at finding a non-random technique for replacing the
random walk algorithm with a higher order approximation to solutions of the diffusion
equation (11.5.3). These methods are generically called deterministic vortex methods.
This is a very active area of research and there are still many open questions in the field.
We will now briefly illustrate some ideas that are currently being considered.

A very natural and perhaps one of the first examples of a deterministic vortex method
is what has become known as the core spreading algorithm. (See Kuwahara and Takami
[1973] or Leonard [1980] for details.) In the two dimensional (continuous time) version
of this algorithm the approximate vorticity has the form

Bx,t) =Y filx—%(t) T, (11.5.4)
J

where the core function f; now depends on the time ¢ rather than on a constant cutoff
parameter 6. The function f;(x) is chosen to be the solution at time ¢ of the heat equation
with initial data f; at time ¢ = 0,

%) = (Gox fo)(x) = —— [ &9 f 3y dy

4t
Here G; denotes the heat kernel in /R?,
1 — v
Gilx) = ;— e i (11.5.5)

If one chooses f; to be the Dirac delta function fo(x) = &(x), then

1 iam
fix) = ;—e o
In other words, f; is a Gaussian smoothing function but now the “mass” of the core
spreads out in time at a rate proportional to \/vt. In general, f can be taken to be any
one of the two dimensional smoothing functions discussed in Section 11.3.4.

If we let K; = K * f;, then the approximate vorticity (11.5.4) yields an approximate
velocity field of the form,

i(x,t) =) Ki(x—%(t) ;. (11.5.6)
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One might expect the velocity field @ to converge to a solution u of the Navier-Stokes
equations. However Greengard [1985] has shown that it converges to a solution of the

wrong equation! We briefly outline his argument here.
Let X(a, t) denote the solution of the Lagrangian equations

%“"t):/ K;(X(a,t) - X(, 1)) () de, (11.5.7a)

X(,0) = a. (11.5.7b)

where w° is the initial vorticity field. (Compare this with equations (11.3.4a,b).) Let U
denote the velocity field corresponding to (11.5.7a,b),

U(x, 1) :/ K, (x — X(a, 2)) &*(cx) dex (11.5.8)

So (11.5.7a) can be rewritten as (dX/dt)(c,t) = U(X(e,t),t). Greengard first showed
that for appropriately chosen f solutions of

%(t) % ; K (%i(t) —%;(t)) I'; (11.5.92)

x(0) =« . (11.5.9b)
converge to solutions of (11.5.7a,b). In other words he showed that i — U where u is
given by (11.5.6) and U is given by (11.5.8).

Thus, it suffices to compare U to solutions u of the Navier-Stokes equations. Let
¢ = V x U denote the vorticity field corresponding to U. We compare & to solutions
w = V x u of (11.2.14a~d) with initial data w° and boundary condition (11.2.2). Let ¢
denote the passive transport of w? in the velocity field U. In other words, ¢(X(e, t),t) =
w%(a) and hence,

0¢C+U-V(=0.
Changing variables o — X(cx, t) in (11.5.8) yields U = K; * ¢ = K * (G; * (). Hence
E=VxU=G (.
Now the exact vorticity w satisfies

i RO L (11.5.10)

ot
But if we differentiate ¢ = Gy * ¢ with respect to ¢ and use the fact that (G x¢) =

VA(Gy * () + Gy * (0:¢) we find that £ satisfies

%Jrgt*(u.vc):mg_ (11.5.11)
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By differentiating (11.5.10) and (11.5.11) once again with respect to ¢ one can show that
the difference w; — & satisfies an ODE in ¢ which is not identically zero unless the initial
data w? is radially symmetric. Hence, the exact solution w of (11.5.10) with initial data w°
is not identical to the solution ¢ of (11.5.11) with initial data w° unless the initial vorticity
field is radially symmetric. From (11.5.11) we see that the core spreading algorithm
accurately approximates the diffusion of vorticity but that the vorticity is advected by
an averaged velocity field rather than by the local velocity. We should emphasize that it
follows from Greengard’s proof that the core spreading algorithm does approximate the
correct equations when the vorticity field is radially symmetric.

We now describe a deterministic vortex method in IR? due to Cottet and Mas-Gallic
[1990] that has been shown to converge to solutions of the Navier-Stokes equations. Let
w? denote an initial vorticity distribution and assume that the support of w° is contained
in some bounded set Q) C IR?>. Assume that a square grid of side h has been placed
over )y and let

&O(x) =) 8(x—x%) @9 n2,
J

be an approximation to w® where, as usual, x? is the center of the jth grid cell and
@) = WO (X9).
In general, given the approximate particle positions X¥ and their weights JJ;“ at time

v
tr. = kAt, the approximate vorticity field is given by,

oF(x) = 6(x—x5) oF h2.
J
The approximation to the velocity field in the interval ¢ € [t;, ;4] is given by,

(x,1) = > (K Gag)(x — (1)) @k b2,

J
where G a; is the heat kernel (11.5.5) with ¢ = At. To obtain the approximate particle
paths X; (t) for ¢ € [ty, )+ At] we solve the following N ordinary differential equations,

dax;
dt
Koltr) = &F. (11.5.12b)

(t) = ﬁ(ii(t),t) g te [tk,tk+1] ; (11.5.12a)

This is simply a standard vortex method in the interval [t;,#;,;] with Ks = K * f;
replaced by K x Ga;. Now set f(;-““ = X;(tr+1) to obtain an intermediate vorticity field
of the form,
Fa(x) = Y s(x— &) ok 2. (11.5.13)
j
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Finally, to update the vortex strengths of - dzf“ one explicitly solves the diffusion
equation (11.5.3) with initial data (11.5.13) to obtain,

‘leH o (GAI *UJ k+l ZGAl k+| k+l)£:)}ch2.

Note that in the description of the algorithm given here the particle paths X;(t), being
solutions of the ODEs (11.5.12a,b), are smooth functions of ¢ whereas the vortex strengths
@F are piecewise constant functions of ¢. Cottet and Mas-Gallic have proven that this
version of the algorithm converges to solutions of the Navier-Stokes equations. Of course
in actual practice one discretizes the system (11.5.12a,b) in time to obtain piecewise
constant approximations to the X;(t).

In the two dimensional version of the random vortex method the vortex strengths
remain constant and the diffusion of vorticity is approximated by having the particle
positions take a random walk with appropriate mean and variance. Here, on the other
hand, the diffusion of vorticity is approximated by changing the particle strengths in
a manner consistent with the exact solution of the heat equation. Also note that in
Cottet and Mas-Gallic’s method the approximate vorticity field is a collection of point
vortices, but that the approximate velocity field is smoothed by convoluting it with the
heat kernel G»,. This is not the same as the core spreading algorithm however. In the
core spreading algorithm the smoothing function f; = Gy * fo spreads out in time. In
Cottet and Mas-Gallic’s algorithm At plays the role of the cutoff parameter ¢ and is
fixed for all time.

Cottet and Mas-Gallic [1990] have proven that this algorithm converges to solutions
of the Navier-Stokes equations. We state their main result here. Let w(x,t) denote the
exact solution of the Navier-Stokes equations (11.2.14a—d) in IR? with initial data w
and boundary condition (11.2.2). Let u(x,t) = (K* w)(x,t) and let W™ (IR*) denote
the space of all functions f : JR> — IR such that D®f € L? for all multi-indices o with

|| < m. Then we have the following,

Theorem 11.5.3 (Cottet and Mas-Gallic) Assume that w° € Wm=(R?) N wm™!(IR?)
for any m > 0 and that h and At satisfy

h < Cy (vAL)'/*** (11.5.14)

where Cy and s are arbitrary positive constants. Then given T > 0 and vy > 0 there
exists a constant Cy depending only on w° and T such that for At small enough,

[max_ fu(-,?) —u(, )], < CivAt

forall2 < p < oo and v < 1.
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Note that since the solution of the heat equation G, * @**3 has infinite support - even
though @**1 does not — the total amount of vorticity in the flow is not conserved by this
algorithm,

/szo(x)dx ~ YRS aR > > S ks

(Nevertheless the method converges to solutions of the Navier-Stokes equations.) Cho-
quin and Huberson [1989] have suggested the following modification which does con-
serve the total amount of vorticity in the flow,

Gt =@f 4D G - &) (@ - a2
J

This is just one example of a class of deterministic vortex methods that have been
considered by Cottet, Mas-Gallic, and their colleagues. We refer the interested reader to
Choquin and Lucquin-Desreux [1988], Choquin and Huberson [1989], Cottet [1990 and
1991], Cottet and Mas-Gallic [1990], Lucquin-Desreux [1987], and Mas-Gallic [1990]
for further details and references.

Fishelov [1990b] has studied a deterministic vortex method in which the diffusion of
vorticity is also approximated by adjusting the particle weights rather than their positions.
We briefly describe the three dimensional, time continuous version of this algorithm here.
Suppose we are given an approximate vorticity distribution of the form

O(x,t) = Z fs(x=%;(t)) @;(t) h?,

where fs is some smoothing function. Then the associated velocity field is given by
u(x,t) = > Ks(x— &%) @;(t) b3,
J

with K5 = K * f5. Consider the diffusive term vAw of equation (11.2.14a). Fishelov
has made the observation that one can evaluate this term explicitly,

vAG(X, ) = v > Afs(x —%;(t)) @;(t) b3,
J
provided that fs is chosen so that an explicit representation of Afs can be found. This
gives rise to the following coupled system of ordinary differential equations,
ax;

(1) = ZJ: Ks(%;(t) — %;(t)) @,(t) b3, (11.5.15a)

%;(0) =x?, (11.5.15b)
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and

+v D Afs(ilt) - %;(t) @5(1) n (11.5.16a)
5:(0) = WO (x?). (11.5.16b)
Equation (11.5.15a,b) is our usual vortex method approximation to
w+ - V)w=0,
while equation (11.5.16a,b) is an approximation to

wy = (w-V)u+rviw.

One expects that, given the appropriate relationship between h and 6, the solution of

equations (11.5.15a,b) and (11.5.16a,b) will converge to a function that satisfies the
Navier-Stokes equations

wi+ @ Vw=(w-V)ut+rviw, (11.5.17)

in the limit as h,§ — 0. Fishelov [1990b] has done some analysis of the accuracy
and stability of this algorithm, but at the present time its convergence to solutions of

(11.2.14a-d) or to the associated velocity field u = K * w remains open.

This is by no means an exhaustive list of the methods that have been developed as an
alternative to the random walk. It is simply a representative sample chosen on the basis
of the author’s knowledge and experience. We refer the reader to the references listed
above for further information on this topic.

11.5.5 A Few Remarks

We close this section with a few comments concerning what we believe are the important
issues in the area of vortex methods for viscous flows. It is widely believed that in order
to resolve the smallest relevant scales in a viscous flow a grid-based numerical method
must satisfy Az = O(y/7) where Az is the grid spacing in each space direction (e.g.,
see Henshaw, Kreiss, and Reyna [1991]). Thus, in order to maintain a given level of
accuracy in n space dimensions, the computational cost will increase like O(v~™/?) as

v — 0.
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The random vortex method was specifically designed to circumvent this problem (e.g.,
see Chorin [1973]). The claim that is generally made with regards to this method — and
vortex methods in general — is that because it is a particle method the “diffusive” errors
found in grid-based methods are largely eliminated. Furthermore, since the particles
naturally concentrate in regions of greatest vorticity, it is also claimed that vortex methods
have a sort of a built in adaptivity — concentrating computational cost in regions of greatest
interest. If these claims are true, then the computational cost required to maintain a fixed
level of accuracy should not increase as v — 0. However, these claims have never
been rigorously substantiated. Now that the convergence of the random vortex method
to solutions of the Navier-Stokes equations has been established it is time to carefully
investigate the actual dependence of the error on the viscosity v.

Similarly, it is often claimed that various deterministic vortex methods are superior
to the random vortex method because they have a higher-order convergence rate. This
is certainly the case for fixed v. However, a very important issue that has yet to be
addressed is “How does the error in a deterministic vortex method depend on v?” Or
equivalently, “How does the computational cost of a deterministic vortex method depend
on v?” For example, if the condition relating A¢, h, and v in (11.5.14) cannot be
eliminated, then — for v small enough — it will be less expensive to use the random
vortex method to compute a given flow to some fixed level of accuracy.

Finally, we remark that it may very well turn out to be the case that the answer to
the above questions depends on the number of space dimensions n. For example, it is
entirely possible that some restriction similar to (11.5.14) is necessary in three dimensions
but not in two. It will be of great interest to have the answer to these questions in both
two and three dimensions.

11.6 The No-Slip Boundary Condition

We now turn to a discussion of numerical techniques for satisfying the no-slip boundary
condition (11.2.15) in a random vortex method computation. Chorin [1973] originally
satisfied (11.2.15) by creating vortices at grid points on OS2 such that the velocity induced
by these vortices cancelled the tangential component of the velocity along 0. After
further study Chorin [1978] proposed another particle creation algorithm known as the
vortex sheet method. This method is based on approximating solutions of the Prandtl
boundary layer equations in a thin region adjacent to 02. The vortex sheet method
has probably been the most widely used technique for satisfying the no-slip boundary
condition in random vortex method computations (e.g., see Baden and Puckett [1990],
Cheer [1983 and 1989], Choi, Humphrey, and Sherman [1988], Chorin [1980], Fishelov
[1990a], Ghoniem, Chorin, and Oppenheim [1982], Sethian [1984], Sethian and Ghoniem
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[1988], Summers, Hanson, and Wilson [1985], Tiemroth [1986], and Zhu [1989]). For
this reason we will describe it in some detail below. Chorin’s original vortex creation
algorithm has not been as widely used. However, Anderson et al. [1990] have recently
used a variant of Chorin’s technique to study certain problems associated with vortex
shedding past a cylinder. See also Leonard [1980] for a discussion of Chorin’s original
idea and references to other workers who have used it.

At the time of this writing no one has proved that the random vortex method together
with some algorithm for satisfying the no-slip boundary condition converges to solutions
of the Navier-Stokes equations. A complete analysis of the vortex sheet method is also
an open problem. Some progress has been made in this area however. Marchiorio and
Pulverenti [1983] constructed a sequence of stochastic processes which are similar to the
vortex sheet method and showed that they converge to solutions of the Prandtl boundary
layer equations. However their proof contains no convergence rates or error estimates that
are of computational value. Hald [1986] has proved the convergence of a random walk
algorithm with particle creation to solutions of a convection-diffusion equation. Puckett
[1989] has proved a consistency result for the random walk and particle creation portion
of the vortex sheet method. However, the stability and an analysis of the “inviscid” part
of the algorithm remain open problems.

There has also been progress in related areas. For example, Mas-Gallic [1990] has
recently proved the convergence of a two dimensional deterministic vortex method with
boundary conditions. Also, as we mentioned earlier, Hou and Wetton [1990] have proved
the convergence of a finite difference method for approximating solutions of the Navier-
Stokes equations in vorticity-stream formulation with a vorticity boundary condition.
We also refer the interested reader to Ghoniem and Sherman [1985] for an interesting
discussion of random walk methods and particle creation algorithms. However, the issue
of how best to satisfy the no-slip boundary condition in a vortex method computation is
an important and largely unanswered question.

11.6.1 The Vortex Sheet Method

Let €2 denote a domain containing a viscous, incompressible fluid which has a solid
boundary 9 upon which the no-slip boundary condition (11.2.15) must be satisfied. In
a hybrid random vortex / vortex sheet method computation the computational domain is
divided into two regions: an interior (or exterior) region ¢ located away from 92 and
a sheet layer Qp, located adjacent to 9€2. In Qys one uses the random vortex method
to approximate solutions of the incompressible Navier-Stokes equations, while in Qp,
one uses the vortex sheet method to approximate solutions of the Prandtl boundary layer
equations. We use the term sheet layer to distinguish the computational boundary layer
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from the physical boundary layer. While the Justification for dividing the computational
domain into the two regions Qyg and pr is soundly based on the theory of boundary
layers (e.g., see Schlichting [1979)), it is sometimes the case that the sheet method is used
in regions where the underlying assumptions implicit in the use of the Prandtl equations
are in doubt. However, even though many aspects of the combined random vortex /
vortex sheet algorithm remain to be rigorously justified — such as the use of the vortex
sheet method near points of separation — we emphasize that it has been successfully used
by a number of workers to model a wide variety of flows.

Both the random vortex method and the vortex sheet method are particle methods. The
particles carry concentrations of vorticity; the velocity field within each of the regions is
uniquely determined by the particle positions and their concentrations together with the
appropriate boundary conditions. Both methods are fractional step methods. One of the
fractional steps consists of evolving the particles and their concentrations in this velocity
field. The other step consists of letting the particle positions undergo a random walk to
account for the diffusive effects of viscosity.

In Qg the particles are called vortices or vortex blobs. In )p, they are called vortex
sheets. The no-flow boundary condition is satisfied on 9¢) by imposing a potential flow
on Qg which cancels the normal component of the velocity due to the vortices. The no-
slip boundary condition is satisfied by creating vortex sheets on 9§ which subsequently
participate in the flow. The two solutions are matched by converting sheets that leave
the sheet layer into vortices with the same circulation, converting vortices that enter the
sheet layer into sheets with the same circulation, and letting the velocity at infinity in the
Prandtl equations be the tangential component of the velocity on 0f) due to the vortices
in Qyg. The sheet creation process and subsequent movement of the sheets into the
interior of the flow mimics the physical process of vorticity creation at a boundary and
is one of the attractive features of this numerical method.

For simplicity we describe the vortex sheet method in JR?. The generalization to
n = 3 is straightforward (e.g., see Chorin [1980] or Fishelov [1990a]). Let (z,y) denote
coordinates that are parallel and perpendicular to the boundary respectively. Let (u,v)
denote the corresponding velocity components, w the vorticity, and v the kinematic
viscosity. Assume that the boundary is located at y = 0 and let Uso(z,t) denote the
“velocity at infinity” which is imposed on the flow from outside the boundary layer. In
vorticity formulation the Prandtl equations are

Wi + Uy + vwy = U wy,, (11.6.1a)
W= —u,, (11.6.1b)
Uy +vy =0, (11.6.1¢)

u(z,0,t) =0, (11.6.1d)
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v(z,0,t) =104 (11.6.1¢e)
liny .o (2, ¥, t) =V (x, ) (11.6.11)

Note that in the limiting process (¥ — 0) by which one derives the Prandtl equations
from the Navier-Stokes equations the vorticity w = v, — u, has become w = —u,, since
vz = O(Vvuy).

In the vortex sheet method the vorticity at time ¢ = kAt is approximated by a sum of
linear concentrations of vorticity,

P (z,y) = wibilz—z5)6@s —v). (11.6.2)
J

Each term of the sum in (11.6.2) is referred to as a vortex sheet. The jth sheet has center
(a:;c : y;”) and strength or weight w;. Here § is the Dirac delta function, and b, = b(z /1) is
what we refer to as the smoothing or cutoff function in analogy with the vortex method.
The most commonly used cutoff is the hat or tent function originally proposed by Chorin
[1978],
1-lz| [z[ <1,
bl { 0 otherwise. B1:6:3)
The parameter [ is often referred to as the sheet length — even though the support of
b; is typically of length nl for some integer n > 2. Since b; has finite support and since
0(yj—y) is 0 for y # y;, we see that the jth sheet is simply a line segment parallel to the
boundary which carries a delta function concentration of vorticity. For b with b defined
by (11.6.3) each sheet has length 2/ and the vorticity concentration varies linearly along
the length of the sheet — having a value of wj at the center and 0 at the ends. We briefly
discuss other possible choices for b; at the end of this section.
We can use (11.6.1b) and (11.6.1f) to write the tangential velocity in terms of the

vorticity,
(o .¢]

u(z,y,t) = Us(z,t) + /w(w,s,t)ds. (11.6.4)
Y
Our approximation to u at time kAt is determined by (11.6.2) and (11.6.4),

¥ (x,y) = Us(z, kKAL) + ijbl(z - zf)H(ka -y, (11.6.5)

where H(y) is the Heaviside function

1.y20,
Byl = { 0 otherwise.
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From (11.6.5) we see that as one crosses the Jth sheet in the vertical direction there is a
jump in the tangential velocity @ of size w;b;(z —x;). This is the motivation for referring
to the computational elements as vortex sheets. To find the velocity component normal
to the boundary we first use (11.6.1c) and (11.6.1e) to write

y
v(z,y,t) = —/uz(m,s,t)ds. (11.6.6)
0

Then, by approximating u, with a centered divided difference, we obtain our approxi-
mation to v,

#*(z,y) = —0,Un(z, t)y — % ;wj(bl(ﬁ - mf) —b(z™ — xf)) min(y, y]k) . (11.6.7)

where ¥ =z +1/2 and = =z — 1/2.

Since @* and * were constructed using (11.6.4) and (11.6.6) respectively the velocity
field (@*, o%) automatically satisfies equations (11.6.1b,c) and the boundary conditions
(11.6.1e,f). Furthermore, given U,,, this velocity field is completely determined by the
sheet positions (a:f, y;“) and their strengths w;.

The vortex sheet method is a fractional step method. The first step is the numerical
solution of the convective part of equation (11.6.1a)

Wt + uwy +vwy = 0. (11.6.8)
The second step is the numerical solution of the diffusive part of (11.6.1a)
W = Vwy, (11.6.9)

subject to the no-slip boundary condition (11.6.1d).

Given an approximation (@*, 7*) to the velocity field at the kth time step the velocity
at the next time step is determined as follows. We first evaluate (@*, o) at the center of
each sheet. Denote the velocity at the center of the jth sheet by (ﬁf, 17;“) Our numerical
approximation to (11.6.8) is found by moving the center of each sheet one time step of
length At in this direction to obtain

1 1
) = )+ Ao, (11510

In general, the sheet positions given by (11.6.10) induce a non-zero tangential velocity
on the boundary which we denote by @kt (z,0). In order to approximately satisfy the no-
slip boundary condition (11.6.1d) we create sheets on the boundary. Leta,,r=1,..., M
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denote equally spaced grid points at y = 0 with grid spacing I: a1 —a, = [, let
U = ﬂk+%(ar, 0), and let wy,,, denote a computational parameter called the maximum
sheet strength. Then for each r we create ¢, = [|u;|/wmas) sheets with centers (a;,0)
and strengths —sign(u,) wma. Here [z] denotes the greatest integer less than or equal
to z.

The numerical solution of the diffusion equation (11.6.9) is found by letting all sheets
— new and old — undergo a random walk in the y direction, reflecting those that go below
the boundary. Therefore, the new sheet positions at time (k + 1)At are given by

E+1 ) k+i
(m§+1,y§c+l) = (37]' 4 ij 2 +mjl)

where the 7; are independent, Gaussian distributed random numbers with mean 0 and
variance 2vAt.

We wish to make several comments regarding the sheet creation algorithm here. First,
note that in our presentation of the algorithm all sheets have magnitude wy,,; and that
we create no sheets at a, when |u,| < wpa,. Hence, the no-slip boundary condition is
satisfied at a, only up to order wyq,. Originally Chorin [1978 and 1980] created sheets
at the rth grid point whenever |u,| > € for some € K Wpnqe Such that w; < Wi for all
J and the sum of the strengths of these sheets exactly cancel u,. For example, € might
be chosen to be on the order of the computer’s round off error. However, this algorithm
creates more sheets than the one described above, and since the work required to compute
(¥, o) at the center of each sheet is O(IN?) where N is the number of sheets in the flow,
this greatly increases the computational cost of the algorithm. Furthermore, numerical
experiments to compare the two sheet creation algorithms conducted by Puckett [1989a]
and Zhu [1989] have shown that there is no tangible increase in the accuracy of the
numerical approximation when this latter, more expensive, sheet creation algorithm is
used.

The second point we would like to make concerns the manner in which the no-slip
boundary condition is satisfied and its relation to the cutoff function b;. As noted above,
@**+1(z,0) is, in general, non-zero. Ideally one would like to add some function to s
which can be represented by the sum of sheets, and which cancels @k*2(z,0) at all points
x on the boundary but leaves @kt (x,y) unchanged for y > 0. In other words, we wish

to find some function of the form Y w;b;(z — x;)H(y; — y) such that

i ﬁk+%(:1:,y) y >0,
uk+2(m,y)+2j: w; bi(z — z;) H(yj—y)={ 0 8 =00,

In general this is not possible. However, one can find w; and (z;,y;) so that this holds
exactly for y > 0 and within O(l) for y = 0. For example, when b is defined by (11.6.3)
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choosing (z;,y;) to be the grid points (a,, 0) reduces the problem to that of finding the
coefficients of a piecewise linear interpolant to —g*+3 (x,0) with node points at the a,
(e.g., see Schultz [1973]). In other words, we wish to find coefficients ¢, such that

> abi(z —a) ~ —itti(z,0). (11.6.11)
For the piecewise linear basis functions bi (i.e., with b given by (11.6.3)) it turns out that
¢r = —u, is the correct choice, since then the left hand side of (11.6.11) is the usual
piecewise linear interpolant of —aF+3 at ¥ = 0. In actual practice we approximate the
left hand side of this expression by creating ¢, sheets at each point z = a, with strengths
Wr = £Wpge such that g.w, ~ —u,.

This idea can be generalized to make use of higher order interpolation procedures.
For example, one can replace b; with a basis function for cubic splines (e.g., see Schultz
[1973] or DeBoor [1978]). In Puckett [1987] the author studied the effect that this type
of smoothing function has on the accuracy and rate of convergence of the vortex sheet
method. The interested reader is referred there for further details.

Several studies have been made of the accuracy with which the vortex sheet method
approximates solutions of the Prandtl equations. The method was used to approximate
Blasius flow in both Chorin [1978] and Puckett [1989a] and to approximate Falkner-Skan
flow in Summers [1989]. In particular, Puckett [1989a] contains an extensive tabulation
of the error in approximating Blasius flow as a function of the computational parameters
At, I, and w,,,, while Summers [1989] examines the computed solutions for a family of
flows, some of which contain stagnation points or separation points.

11.6.2  Choosing the Computational Parameters

There are three computational parameters in the vortex sheet method: the time step At,
the sheet length /, and the maximum sheet strength wyq,. The only generally agreed
upon constraint that these parameters must satisfy is the so called “CFL” condition,

Bl <1 (11.6.12)

where Unmax = max U (z). The justification usually given for (11.6.12) is that one wants
to ensure that sheets move downstream at a rate of no more that one grid point per time
step. This is an accuracy condition (as opposed to a stability condition) which ensures
that information propagating in the streamwise direction will influence all features in the
flow which are at least O(1).

We also propose another accuracy condition,

At wyyep < CI2 (11.6.13)
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where C'is a constant with dimensions 1/L and L is a typical length scale. (For example,
L might be the length of the boundary.) This condition is a consequence of requiring that
the degree with which we refine u as a function of 3 be of the same order as the degree
with which we refine features in the streamwise direction, O(Unmax/Wmaz) = O(L/1),
and then using (11.6.12). Note that since

%ijl(x =25} '= O(Winas 1)
sheets induce local (non-physical) streamwise gradients in % which are O(wmaz/1). Con-
dition (11.6.13) relates the size of these gradients to the ratio [ JAt.

We wish the circulation I" about a vortex element to remain the same when a sheet
leaves the sheet layer and becomes a vortex or vice-versa. If b; is the piecewise linear
smoothing function with b given by (11.6.3), then this implies that

T = lwmae 11.6.14
A

where I'; is given by (11.3.12). Equation (11.6.14) serves to relate the computational
parameters /1 and w; discussed in Sections 11.3 and 11.5 to the sheet length [ and
maximum sheet strength w,;.

In a hybrid random vortex method / vortex sheet method computation there are two
computational parameters which still must be chosen: the cutoff radius & and the sheet
layer thickness e. We would like to relate the cutoff radius & to the vortex sheet parameters
Wmag and [. Let us assume that we are using Chorin’s cutoff function (11.3.10). Then
the velocity kernel is given by (11.3.11). We seek 6 so that a vortex at the edge of
the boundary layer and its image (with respect to the boundary) with opposite sign will
induce the same tangential velocity on the boundary as a sheet with the same position and
strength. (Note that the sheet does not require an image since, by (11.6.6) and (11.6.7),
the sheets satisfy the no-flow boundary condition (11.6.1e) exactly at y = 0.) If we set

o="= )
T
then we find that for || < 6 a vortex at (z,y), together with its image at (z,—y) will
induce the same tangential velocity on the boundary at (z,0) as a sheet with center
().

Recall that the random walks have standard deviation v/2vA¢. One wishes to avoid
having random walks which travel the length of the sheet layer in one time step and
this principle is generally taken into account when choosing the sheet layer thickness
€. Usually € is taken to be € = C'v/vAt for some constant C. Typically C = 2 or 3.
This yields a boundary layer which has the appropriate scale, O(1/7) (see Schlichting
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[1979]). We reiterate however that e represents the thickness of a numerical boundary
layer which should be distinguished from the physical boundary layer.

11.7 Fast Vortex Methods

The velocity at the point x due to N vortices with positions x; and weights I'; is given
by

N
a(x, ) = > Ks(x —x;)T;. (11.7.1)
j=1

The cost of evaluating this function at a single point x is O(N) operations. In a vortex
method computation one needs to evaluate (11.7.1) at each of the N positions X; at least
once per time step. (Several evaluations per time step are required for higher order time
discretizations.) Therefore, the cost of computing one time step of the vortex method is
O(N?) and this cost can become prohibitive as N — oo.

Similar considerations pertain to astronomical calculations of the force of gravity due
to a large number of stars acting on one another or in computational models of plasmas
in which electrons and ions interact. The underlying theme in each of these fields is that
there are IV objects, a potential function associated with each object, and one wishes to
calculate the force on each object induced by the other N — 1 objects. The problem of
evaluating the force due to NV objects at each of the N objects is generically referred
to as the “N-body problem”. The direct evaluation of a sum of the type shown in
(11.7.1) at each of the positions x; is often referred to as the direct method. Techniques
for reducing the cost of an N-body computation that arise in one field will often have
applications to other fields. Thus there has been much cross-fertilization in this area of
vortex methods. We refer the interested reader to the review article of L. Greengard
[1990] for a discussion of the underlying similarities between these problems and for
further references.

There are a variety of approximation techniques available for reducing the cost of
computing (11.7.1) to O(N log N) or even O(N). Because of their importance to the
practical implementation of vortex methods — especially in three dimensions — the study
of such fast vortex methods is currently an active area of research. We will briefly outline
several ideas that have been introduced in the last decade for speeding up vortex method
computations in two dimensions and indicate the direction that some of this research is
taking in three dimensions.

For the purposes of illustrating some of the ideas that can be used to reduce the cost
of the direct method we will assume that Q = JR?. The stream function 1) associated
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with a point vortex at x; with strength I'; = w;h? is the solution of Poisson’s equation,

AY = —w (11.7.2)

where

W(X) = 6(x—xj)I‘]—, (1173)
and § is the Dirac delta function. Hence, 1 is the fundamental solution of Poisson’s
equation in IR?, centered at the point x;, and multiplied by the vortex strength I';,

W(x) = —%log(lx—le) . (11.7.4)

The velocity u; due to the vortex at x; with strength I'; may be found by differentiating

Y,

i(x) = V4E(x) = (6 (6), ~¥a(x)) (11.7.5)
Thus, if the velocity is thought of as a force field, then the stream function 1 plays the
role of its potential. Analogously, in electrostatics the potential associated with a point
charge at x; with charge T'; is also given by (11.7.4) but now the electrostatic field due
to this charge is given by

E(x) = —Vi(x) = —(z(x), 1y (%))

One can readily see that computing the velocity due to a point vortex or the electrostatic
field due to a point charge are equivalent problems. Similar analogies hold for the

gravitational field due to a body at x;.

11.7.1 The Vortex-in-Cell Method

In essence the velocity field due to /N vortices can be found by solving a linear elliptic
problem. This observation can be exploited to reduce the cost of the computation by
employing fast algorithms for the solution of elliptic problems. For example, one can
place a grid over the support of the vorticity {2, interpolate the values of the vorticity
w onto the grid,’ solve (11.7.2) on the grid for v, and use divided differences to obtain
an approximation to @t = (¢, —,).

This procedure yields values of the velocity field on the grid. To find the value of
the velocity at a vortex center X; we can interpolate the values of the velocity from
the grid onto x;. Thus, if we have N, = N, x N, grid points and an O(N, log Ny)
method for solving (11.7.2) on the grid, then the cost of evaluating the velocity at each

SWhen dealing with point vortices or “point charges” one can use a weighted area rule for the interpolation.
(See e.g., Hockney and Eastwood [1981] or Leonard [1980].)
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of the N vortices is now O(N + N, log N,). This idea was probably first introduced by
Birdsall and Fuss [1969] within the context of computing plasma simulations. It is the
simplest example of a “fast vortex method” and is commonly known as the vortex-in-
cell method, or sometimes the cloud-in-cell method. See Baker [1979] and Christiansen
[1973] for numerical applications of this technique to vortex method computations or see
Leonard [1980] for a more detailed review of these ideas. Cottet [1987] has proven the
convergence of a vortex-in-cell method applied to a vortex blob method.

The problem with the vortex-in-cell method is a loss of accuracy due to the approximate
solution of (11.7.2) on the grid, the two interpolation steps, and the divided difference
approximation to . For example, suppose that we use the vortex-in-cell method to
approximate the velocity field due to a single point vortex at x;; i.e., to solve (11.7.2)
with the right hand side given by (11.7.3). A close examination of the error in this
procedure will show that the error in approximating u; at some point X increases as the
distance between x and x; decreases. This is because the constants in the error bounds
depend on 1) and its derivatives and these become unbounded as x — x;. Thus, the order
of the error will remain the same for all x, but the actual computed error will increase
substantially as x approaches x;.

This loss of accuracy as x — X; can be ameliorated by only considering the influence
of “far away” vortices when approximating the velocity field at a point x from values on
the grid. For vortices near x the velocity at x due to those vortices is computed exactly

ﬁnearby(x’ t) s Z K(S(X = X].)I‘j . (1176)

[x—x;|<C

Note that this sum is only over those vortices “near” x. Methods of this type have been
used for plasma simulations by Hockney, Goel and Eastwood [1974] as well as others.
They are commonly called particle-particle/particle-mesh (P>M ) methods. See Hockney
and Eastwood [1981] for a review of this and similar methods.

In some sense all “accurate” fast vortex methods have a radius C' of the form that
appears in equation (11.7.6). Outside this radius the velocity field due to a vortex may
be accurately calculated using some fast approximation technique; inside this radius the
velocity field must be computed directly.

11.7.2  The Method of Local Corrections

An interesting variant of the particle-particle/particle-mesh idea, known as the method
of local corrections, was proposed by Anderson [1986]. The method of local corrections
was designed so that it could be used with high order accurate velocity kernels such as
those described in Section 11.3.4. It is based on the observation that the velocity field
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due to a point vortex is harmonic away from the center of the vortex,
Au; =0 for x#x,

where u; = K(x — x;)I'; is the velocity field due to a point vortex centered at X, (c.f.
equation (11.7.5)).

Suppose that we are given a grid with mesh spacing h; and an rth order accurate
approximation to the Laplacian on this grid denoted by A1, (It is not necessary that
this grid be identical to the grid — with spacing denoted by A - that is used to determine
the initial data. In fact, optimum accuracy and efficiency may very well be achieved
when h; # h.) Rather than solving (11.7.2) for the stream function %), Anderson solves
a Poisson equation for the velocity field a,

A" =) "gp (11.7.7)
7.
where the right hand side is the sum of approximations to Au; on the grid
Ah'ﬁj ’X s le <)
(x) = ) B
gD] (X) { 0 IX o Xj| g iy ( * 8)

Since Au = 0 for x # x;, we can choose D so that gp, is an rth order accurate
approximation to Au; on the grid. Anderson calls the constant D the spreading radius.
The point of using the approximation gp, to Au; is that for small D the right hand
side of (11.7.7) can be computed in only O(N) operations rather than in the O(NN,)
operations required to approximate Au; at each of the IV, grid points.

Once the right hand side of (11.7.7) is available we use our favorite fast Poisson solver
to approximate the solution of (11.7.7) on the grid. This results in an approximation a
on the grid to the velocity field @ given by (11.7.1). In particular, note that by solving
for @™ directly we have eliminated the error due to approximating @ = (v, —1;) with
divided differences of 1) on the grid. Instead we now must compute the gp,. Numerical
experiments by Anderson [1985], Baden [1987], and Buttke [1991] have demonstrated
that for D = h; or D = 2h, the approximation @"' to @ on the grid is highly accurate.

The approximation @™ is next interpolated back onto the vortex positions. In the
interpolation step Anderson cleverly exploited the fact that in two dimensions the two
components of the velocity field i = (%, v) due to the sum of point vortices centered at

points x; are the real and complex parts of a complex analytic function,
F(x) = a(z) — i0(2) . (11.7.9)

Here we have identified IR*> with the complex plane C: x = (z,y) — 2 = T + iy.
Thus, one can use Lagrange interpolation in the complex plane to obtain a fourth order
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interpolation at only four points. In contrast, a bilinear interpolation at four points
for each of the velocity components separately would only be second order. Lagrange
interpolation at more points will result in higher order interpolation formulas for the
velocity. However it should be noted that because this idea is based on a representation
of the velocity as a function in the complex plane it does not generalize easily to three
dimensions. In fact, the task of finding high order interpolation formulas is an important
issue when generalizing the method of local corrections to three dimensions (e.g., see
Buttke [1991]).

The last, and very essential part of this procedure is to correct the velocity field a™
before interpolating it back onto the individual vortices. This is accomplished as follows.
Suppose we wish to calculate the velocity at x by interpolating 6" from the points a;,
@=1,...,m on the grid. Let the vortices which satisfy |x — x;| < C be the “nearby”
vortices. (Anderson calls the distance C' the correction radius.) For each i we evaluate
the velocity at o; induced by all nearby vortices and subtract this velocity from " (cx;).
The resulting values of ™ at the c; are the ones used to interpolate the velocity onto the
point x. Finally, the exact velocities due to the vortices near x — i.e., the expression in
(11.7.6) — are added to this value of the velocity at x to obtain our complete approximation
to u at x.

It is important to note that all of the steps in this procedure but the very last are
performed as if the vortices at the points X; are point vortices. Only when the velocity
at x is corrected by (11.7.6) is the velocity field due to a vortex blob at the x; used. If
the smoothing function f5 has compact support, say within a disk of radius R, then the
velocity field due to a vortex blob at x; and a point vortex at x; are identical at distances
greater than R from x;. Thus the method of local corrections will accurately represent
the influence of the core function f; provided that R < C.

As with the vortex-in-cell method the cost of the method of local corrections is also
O(N+ Ny log N). 1t is somewhat more complex to program than a vanilla vortex-in-cell
method, but considerably more accurate. Applications of this technique to both vector
and parallel computers have been studied by Baden [1987] and a version for viscous
flow with solid boundaries has been implemented by Baden and Puckett [1990]. We also
note that Mayo [1985] employed similar ideas in the solution of Laplace’s equation in
irregular regions.

11.7.3  Tree Codes, Multipole Expansions, and the Fast Multipole Method

We now turn to a somewhat different set of techniques for reducing the cost of directly
calculating (11.7.1) in two dimensions. These techniques rely on representing the veloc-
ity field due to a cluster of vortices as a truncated power series in 2! which is valid
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sufficiently far from the cluster. (Once again we are identifying IR? with the complex
plane C.) By combining these expansions with a hierarchical data structure which con-
sists of nested boxes covering the computational domain, one can devise an algorithm of
arbitrary accuracy which is O(N log N). Several clever modifications of this idea due
to Greengard and Rokhlin [1987] can be made to reduce the cost of such a method to
O(N). We outline the methods as they would be applied to a point vortex computation
and indicate at the end the modifications necessary for working with vortex blobs. The
following discussion is loosely based on the review article of Greengard [1990]. For fur-
ther details and a description of these methods in a more general setting see Greengard

and Rokhlin [1987] or Greengard [1990].

The Tree Data Structure For the sake of simplicity let us assume that there are N' = 47
vortices uniformly distributed in a square box of side 1 which we will call 2. We begin
by describing the hierarchical data structure. Let us call the initial box level 0. Now
subdivide this box into 4 equal boxes of side 1/2 and call this level 1. In general, level
I is obtained from level [ — 1 by subdividing each box at level / into 4 smaller boxes of
equal size. Continue this procedure until at the lowest level of refinement we have N
boxes. Thus, at level 0 there is 1 box, at level 1 there are 4 boxes and, in general, at the
Ith level there are 4! boxes. Given a box A at level [ — 1, the boxes at level [ which are
obtained by subdividing box A are called the children of box A. A box is the called the
parent of its children.

Definition 1 Two boxes are said to be near neighbors if they are at the same level of
refinement and share a boundary point. (A box is a near neighbor of itself.)

Definition 2 Two boxes are said to be well separated if they are at the same level of
refinement and not near neighbors.

Definition 3 With each box A is associated an interaction list which consists of all of
the children of the near neighbors of A’s parent that are well separated from A.

The interaction list is the key concept here. As we shall see, it enables one to organize
the computation in an efficient manner. Note that at levels 0 and 1 all boxes are near
neighbors of each other and hence each box’s interaction list is empty. Note also that at
any level of refinement the maximum size of the interaction list is 27. (It is smaller for
boxes that lie on the boundary of the computational domain.)

The purpose of this tree of boxes is twofold. First, it provides a mechanism for
determining which vortices are well separated from a given box A and thus amenable to
a far field approximation of the velocity due to the vortices in box A. Second, it provides
a mechanism, namely the interaction list, for keeping track of those vortices that have
not yet had their interactions with the vortices in box A computed.
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Multipole Expansions We now turn to the issue of fast far field approximations for
computing the velocity between vortices in boxes that are well separated from one an-
other. In order to describe this approximation it is again helpful to identify IR> with
the complex plane C: x = (z,y) — 2z = 2 + iy and view the velocity as the real
and imaginary parts of the function F in the complex plane given by (11.7.9). If we
substitute the expression for K given by (11.2.8) into (11.7.1) (with Ky replaced by K
since we are considering point vortices) we find that the velocity field due to a cluster
of m® point vortices is

u(x,t) = _ L er (y —yj,z; — x)

Hence, F' has the form
1 & 1
F = — e
(2) 2mi ]; T (2= 25)

where we have identified x; € JR* with z; € C. Note that F is an analytic function for
2 # zj.

Now consider a cluster of vortices located at points zj all of which are contained in a
box A with center z4 such that |z; —z4| < R for all j. Let z be such that |z—z4| > 2R.
Then F(z) can be written as a multipole expansion about the point 2z = 24,

(e e}

Fz)=Y" e —Z’;)kﬁ (11.7.10)
k=0
where the a; are given by
;>
akzﬁz:Fj(zj—zA)k k=0,1,2,. %3 (11.7.11)

J=1

Note that the cost of forming each coefficient ay, is 3 - m operations. (The 27% can be
divided into the strengths T'; initially to avoid needless divisions later.) Hence, the cost
of forming the coefficients for the first p terms of (11.7.10) is O(mp).

We can derive bounds for the error in using the first p terms of (11.7.10) as follows.
Let

R 1 «
Ak Frm RIEC SR ET = > Iyl (11.7.12)
: j=1

6 . e : . ;
Note the use of the integer m rather than N. This is a notational convenience so that we may later consider
the cost of taking many such expansions when the total number of vortices is N > m.
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Then
p o0
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et i
<z (3)

since, by assumption, ¢ < 1/2.

In practice R is half the diagonal length of a box and hence R — 0 as the level of
refinement increases. However one can control the size of W/R as follows. In a typical
(two dimensional) vortex method computation €2 is divided into N = 47 squares each
of side h = 1/ VN =277, Let zj, 3 =1,..., N denote the centers of the squares. Let

w(z) denote the vorticity at time ¢ = 0 and let ||w||o, denote the sup norm of w(z) in 2.
The initial data consists of IV vortices, with positions z; and strengths I'; = w(zj) h2

At any given level  there are 4' boxes and hence, there are m; = N/4! = 4771 = 220~
vortices per box. Furthermore, the side of a box at level I has length 27* and hence the
distance from the center of a box to any corner is

= ag W r1\ptl
P& -3 eyl 7 ()

=-21—7 25 (5)

2 [ Iyrh 11.7.14
f 2 my |wlleo B (2) ( )

=P ol 5 (5)
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< ol (3)"

— W]l (= .

V2 2

since 227~! < N for all [. This estimate holds at all levels of refinement /.

Tree Codes One can combine the tree data structure and the multipole expansions
(11.7.10) to obtain an O(N log N) algorithm for approximating (11.7.1) at each of the
N vortices as follows. For the time being let us assume that p = 2.

Starting at level 2 form the multipole expansion coefficients given by (11.7.11) for
each box A and use them to evaluate the velocity at all vortices which are contained in
A’s interaction list.” (Since there are no well separated boxes at levels O or 1 there is no
need to perform this step at these levels.) So far we have calculated the influence of the
vortices in box A on all the other vortices except those contained in A’s near neighbors.
To compute these interactions we recursively repeat the above procedure at successive
levels of refinement. At each level calculate the coefficients (11.7.11) for every box A
and evaluate the resulting multipole expansion at each vortex in A’s interaction list. At
the last level we also evaluate the interactions between each box and its nearest neighbors
directly.

The total amount of work in this procedure is O(Nlog N). To see this first note that
since there are IV vortices and each vortex contributes to p = 2 expansion coefficients,
ittakes3-p-N=6-N operations to form the coefficients (1 1.7.11) at each level. From
the point of view of a vortex in box A at level [ the cost of evaluating its velocity due
to the expansions in the boxes in its interaction list is at most Bp+1)-27=7-27
operations since there are at most 27 members of the interaction list and it takes 7
operations to evaluate the expansion (11.7.10) at a point z when p = 2. (The term
(2 — ZA)‘l need only be evaluated once for each z.) Since there are N vortices the cost
of evaluating all of the expansions at a given level is therefore 7 - 27 - N. Thus, the
cost of this procedure at any given level is 7-27- N +6 - N = 195 . N operations. At
the last level there are at most 8 nearest neighbors and 1 vortex per box (by assumption
the vortices are uniformly distributed in the computational domain). Thus, the cost of
evaluating the direct interactions at the last level is 8V operations. (Self interactions
are not computed.) Finally, there are log, N levels so the total amount of work is
O(N + Nlog N) = O(Nlog N) as claimed.

Of course, in general the vortices are not uniformly distributed in the computational
domain. In practice one can implement an adaptive version of this algorithm that at
each level checks every box to see if it contains any vortices. If not, this box is pruned

i For convenience we will often refer to the vortices contained in the boxes of A’s interaction list as being
in A’s interaction list.



Vortex Methods: An Introduction and Survey of Selected Research Topics 397

from the tree structure and ignored at subsequent levels. For most practical problems
the running time of this algorithm will remain O(N log N). However the constant of
proportionality will depend on the distribution of vortices in §2. See Carrier, Greengard
and Rokhlin [1988] for an example of such an algorithm.

Algorithms of this type have been used extensively in astrophysical calculations and
are commonly called tree codes. See Apple [1985] or Barnes and Hut [1986] for a
more complete discussion of tree codes. By taking p > 2 we will have a more accurate
algorithm. This is essentially the approach taken by van Dommelen and Rundensteiner
[1989]. Their algorithm is still O(/N log N) but now the constant of proportionality
depends on the precision desired; i.e., on p.

The Fast Multipole Method Greengard and Rokhlin [1987] have made several obser-
vations that allows one to construct an algorithm with O(/V) running time. These ideas
are similar to those used by Rokhlin [1985] for the rapid solution of integral equations.
We will briefly describe the Greengard-Rokhlin algorithm here. The interested reader
is referred to Greengard and Rokhlin [1987] for further details and for proofs of the
statements made below.

To begin, suppose we are given the multipole expansion (11.7.10) for F(z) about the
center z4 of some box A. Then we can expand F' in a multipole expansion about the

center zp of A’s parent P,

00 b

P =0 ey

This expansion will be valid to the accuracy stated in (11.7.13) provided that it is only
evaluated at points 2 in boxes that are well separated from P. The coefficients b may

be formed from the (already known) ay,

l
b = Z (l> ay (z4 — Zp)l_.k (11.7.13)

k=0 k

where (}) are the binomial coefficients. Thus, if the coefficients ay, k = 1,...,p of the
first p terms of each child’s multipole expansions are known, then one can obtain the
coefficients by, | = 1,...,p of the parent’s multipole expansion in O(p*) operations.
Next note that the multipole expansion (11.7.10) of F(2) is analytic outside the circle
of radius R centered at z4. Therefore, F(2) can be expanded in a Taylor series about
any point zp that satisfies |zp — z4| > R. In particular, suppose z4 and zp are the

centers of boxes A and B and that A and B are well separated from one another; i.e.,
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|zB — 24| > 2R, where R is the half diagonal of a box. Then F(z) can be expanded in
a Taylor series about zp that is valid in a circle of radius R centered at 2B,

F(z):ch(z—zB)l.

=0

Greengard and Rokhlin call this the local expansion in B of the velocity field due to the
vortices at the z; € A. The important thing to notice here is that the coefficients c; may
also be written in terms of the coefficients ag,

- 1 (Lt @k k+1
%l (zA—zBV“g( L) Gy

In practice, to obtain pth order accuracy one truncates the series on the right hand side
of this expression after p terms. Thus, given the multipole expansion coefficients ay

for k = 1,...,p, we can compute pth order approximations ¢; to the local expansion
coefficients ¢;, [ = 1,...,p of the form
) 1 P l+k ax "
= — (—1)! 11.7.16
: (24 — 2zp)H*! g ( k ) (24 — zp)k (=1) ( )

in O(p?) operations.

Finally, we have a formula similar to (11.7.15) for shifting the local ekpansion about
the center of a given box A onto the centers of A’s children. Let z4 denote the center
of box A at level [ — 1 and let z- denote the center of one of A’s children. Then

doalz—z) = > (Z a (f) (2¢ = ZA)’H> (z - z0). (11.7.17)

k=l

Note that this formula is exact. The left hand side is simply a polynomial in powers of
(z — 24) and the right hand side is simply the same polynomial in powers of (z — z¢).

We are now in position to describe the fast multipole method. The method consists
of two passes, beginning with an upward pass from the finest level of boxes up to level
2. This is the coarsest level that still has boxes with nonempty interaction lists. We then
retrace our steps going back down through the tree hierarchy, until at the finest level of
refinement each box has a local expansion that represents the velocity field due to all of
the vortices except near neighbors.

Upward Pass: Starting at the finest level we form the coefficients (11.7.11) for every
box. For each parent P at level | we take the coefficients formed at level [+ 1 for each of
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P’s children and using (11.7.15) shift them on to P’s center. By adding the contributions
from each of P’s children we form the coefficients of P’s multipole expansion. At each
level we save the coefficients associated with each box for the later use.

Downward Pass: Given a box A at level 2 we use (11.7.16) to convert the coefficients
of the multipole expansions associated with each box in A’s interaction list to a local
expansion about A’s center and add these coefficients together. Before moving to the
next level down we use (11.7.17) to shift these coefficients onto the center of each of
A’s children. We then recursively repeat the above procedure: In each box A at level [
we have the coefficients of a local expansion that represents the velocity field due to all
of the vortices in boxes that are well separated from A’s parent. To these coefficients
we add the coefficients for the local expansions in A’s interaction list. At the end of this
procedure each box at the finest level will contain the coefficients of a local expansion
that represents the velocity field due to all of the vortices except its nearest neighbors
— their contribution to the velocity field will be evaluated directly. Thus, to obtain the
velocity at each vortex we evaluate the velocity field given by the appropriate local
expansion and add to it the exact velocity due to its nearest neighbors.

The total cost of the above procedure is O(N p?). To see this first note that the cost
of forming all of the local expansion coefficients at the finest level is O(Np). The cost
of shifting the multipole coefficients from a child onto its parent is O(p?) and since this
must be done at most N times (there are at most N children) the cost of the remainder of
the upward pass is O(Np?). Similarly, one can show that the cost of the downward pass
is also O(Np?). At the finest level the cost of evaluating the appropriate local expansion
at each vortex is O(Np) and the cost of computing the nearest neighbor interactions
directly is O(N).

Some care should be taken in the programming of this algorithm to achieve the max-
imum possible savings. We refer the interested reader to Greengard and Rokhlin [1988]
for details. Greengard and Rokhlin [1987] have also studied the implementation of vari-
ous boundary conditions in conjunction with the fast multipole method. We also remark
that Greengard [1988] has devised a fast technique along similar lines for computing the
flow due to vortices in a channel.

Just as with the method of local corrections we can use this algorithm to evaluate the
velocity field due to a collection of vortex blobs. For example, if the core functions
have support contained in a region of radius R, then we must choose the maximum level
of boxes so that at all levels |[x; — X;| < R implies that the vortices at X; and x; are
nearest neighbors. It is conceivable that one might be able to find core functions with
large or even infinite support, but which induce a velocity that is sufficiently close to that
induced by a point vortex at distances greater than R from the vortex center. For such



400 E. G. PUCKETT

core functions both the method of local corrections and fast multipole expansions might
then be applicable. However the author is not aware of any published work concerning
this issue.

11.7.4  Fast Vortex Methods in Three Dimensions

The number of vortices that are required to retain a given level of accuracy, of say
O(h"), increases from O(h~2) in two dimensions to O(h™3) in three. Therefore, fast
algorithms are especially crucial in three dimensional vortex method computations. The
generalization to three dimensions of the ideas illustrated above is currently an active
area of research. In what follows we will simply mention recent work and give the
appropriate references.

Buneman, Couet and Leonard [1981] have studied a three dimensional version of
the vortex-in-cell method. A discussion of some of the salient ideas may be found
in the review articles of Leonard [1980 and 1985]. Greengard and Rokhlin [1988a]
have implemented a three dimensional version of their fast multipole method which
is based on spherical harmonics. Buttke [1991] has also studied the fast multipole
method in three dimensions. He has concluded that in three dimensions it is best to
eliminate the hierarchy of expansions. This results in a method which is O(N?/?) rather
than O(Nlog N) or O(N). Buttke presents evidence that for many three dimensional
applications this technique will be less expensive than the full fast multipole method.
However it should be noted that Greengard and Rokhlin [1988b] have devised strategies
which will significantly reduce the cost of the 3D multipole algorithm.

Buttke [1991] also describes a three dimensional implementation of the method of local
corrections and compares its performance to his version of the fast multipole method.
Almgren, Buttke, and Colella [1991] have also implemented a three dimensional version
of the method of local corrections. Their implementation includes an adaptive mesh
refinement algorithm based on a multigrid method.

Finally we note that Anderson [1990] has designed a method which shares many of the
features of the fast multipole method. However Anderson’s method is based on Poisson’s
formula for representing solutions of Laplace’s equation as a boundary integral over a
disk or sphere rather than on multipole or spherical harmonic expansions. According to
Anderson this technique has the advantage that the computer program for the method in
two dimensions can easily be modified for three dimensions. He also discusses how to
exploit the essential structure of a multigrid code to quickly develop a version of this
method in either two or three dimensions.
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