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Abstract: We have developed a second-order accurate
Godunov method for tracking deflagrations and detona-
tions in two-dimensional, compressible fluid flow. This
method is based on coupling a second-order accurate un-
split Godunov method to model the compressible Euler
equations with a second-order accurate volume-of-fluid
interface tracking method to track the reaction front.
The motion of the front is determined by solving a one-
dimensional Riemann problem for reacting gas flow in
the direction normal to the front. We present results of
computations designed to test the accuracy and validity
of our method.
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1. Introduction

We present an unsplit, second-order accurate Godunov
method for modeling combustion in two-dimensional,
compressible flow. Our method is based on a “thin
flame” approximation to the front in which the reaction
is treated as occurring across an infinitely thin discon-
tinuity in the flow field. Combustion is viewed as oc-
curring instantaneously across the front and the front is
viewed as separating “burned” and “unburned” gas. In
our model the speed of the combustion front and the pre-
cise nature of the flow field immediately behind the front
(i.e., on the burned side of the front) is determined by
solving a one-dimensional Riemann problem for reacting
gas flow (e.g., Teng et al. (1982)) in the direction nor-
mal to the front. This Riemann problem admits both
deflagration and detonation solutions, thereby provid-
ing a mechanism for modeling deflagration to detonation
transition (DDT).

Our motivation for adopting a thin flame model is
that the temporal and spatial scales needed to accu-
rately model the internal structure of the reaction zone
are orders of magnitude smaller than those required to
accurately model the domain geometry and the fluid dy-
namics of the flow field. Thus, numerical models that
attempt to accurately resolve both the reaction zone and
the entire flow field will be far more expensive compu-
tationally than thin flame models of the type proposed
here. In particular, the computational cost may be pro-

hibitively expensive for three-dimensional problems with
complex geometry.

One of key questions that needs to be answered re-
garding the use of a thin flame model is to what extent
does the model fail to reproduce important features of
the flow field? We have attempted to address this ques-
tion by studying the extent to which our model repro-
duces the “characteristic cellular” structure that is often
found behind a detonation front. We have done so by
modeling a problem similar to a computation conducted
by Bourlioux and Majda to study the growth of modes
in unstable detonation waves. Since Bourlioux and Ma-
jda’s numerical method contains grid points within the
reaction zone, which contains portions of the perturbed
state, our initial conditions are not identical to theirs.
Nevertheless, our numerical results contain a growing
mode which is similar to, but not identical to, the grow-
ing mode computed by Bourlioux and Majda. We do
not know how this instability is related to the charac-
teristic cellular structure found behind unstable detona-
tions waves - or even that it is related at all. This issue
requires further investigation.

We have also developed a number of algorithmic inno-
vations in this work. In particular, we present a method
for choosing the correct physical solution of the one di-
mensional Riemann problem for reacting gas flow when
there are several possible valid solutions (usually one det-
onation solution and many deflagration solutions). We
have also presented several new ideas for propagating a
front with a volume-of-fluid method given only the ve-
locity at the front.

2. An outline of the method

In our method we decouple the solution of the underlying
fluid flow equations (the compressible Euler equations)
from the propagation of the front and solve each of these
problems separately. Data from one problem is used to
define the initial and boundary conditions for the other.
The two solutions are coupled in a stable and conserva-
tive manner using a flux redistribution method due to
Colella. An outline of our method follows.

Step I We begin by constructing the geome-
try of the front from the volume fraction field us-
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ing a second-order accurate, piecewise linear inter-
face reconstruction method of the type described in
Pilliod and Puckett (1997). (See also Puckett (1991)
and Pilliod (1992).) This decomposes the computa-
tional domain into two subdomains containing burned
and unburned fluid respectively. We consider the re-
constructed front to be an interior boundary separating
two flow problems that each require the solution of the
compressible Euler equations with the given initial data
and boundary geometry. However, we need boundary
conditions for each of these problems, which we obtain
by extending each state beyond the front, using a pro-
cedure originally developed in Chern and Colella (1987)
and Bell et al. (1991). We now describe this procedure
in some detail.

Step II Given the interior boundary geometry, we
wish to “extend” both the burned and unburned fluid
states two cells beyond the front to provide boundary
conditions at the front. Let Λn,u

i,j (resp. Λn,b
i,j ) denote

the volume fraction of unburned (resp. burned) fluid in
the (i, j)th cell and define Ii,j to be 1 if the (i, j)th cell
contains the front or is adjacent to a cell that contains
the front and 0 otherwise. For each cell for which Λn,l

i,j =
0 (l = u, b) and Ii,j = 1, we set

U
l

i,j =
(∑

nbh(i,j)
Λn,lUn,l∑

nbh(i,j)
Λn,l

)
where nbh(i, j) is the 3 × 3 grid with the (i, j)th cell in
the center. This provides boundary data one cell away
from the front. We then define

Ũ l
i,j =

(∑
nbh(i,j)

U
l∑

nbh(i,j)
I

)

for each cell that borders a cell with Ii,j = 1. This
provides boundary data two cells away from the front.
We define the extended state as

Uext,n,l
i,j =


Un,l

i,j if Λn,l
i,j > 0

U
l

i,j if Λn,l
i,j = 0 and Ii,j = 1

Ũ li, j otherwise.

Step III. Using these extended states as boundary
conditions, we use an unsplit, second-order accurate ex-
tension of Godunov’s method of the type described in
Colella (1990) to solve the compressible Euler equations
in each of burnt and unburnt fluid regions separately,
thereby obtaining the fluid flow solution at the new time
on either side of the front.

Step IV. Next we propagate the front in time as fol-
lows. The velocity of the front is found by solving a
one-dimensional Riemann problem for reacting gas flow
normal to the front. This provides a velocity field at
the surface of the front. However, in order to propagate

the front we need velocities at cell edges of cells close
to the front (two cell widths away). To obtain these
velocities we extend the velocity field from the surface
of the front to the surrounding grid cells in the man-
ner described in §4 below. We then propagate the front
using the second-order unsplit algorithm developed by
Pilliod and Puckett (1997).

Step V. Finally, following Chern and Colella (1987)
and Bell et al. (1991) the information obtained from the
Godunov solve and the front propagation is coupled to-
gether in a conservative and stable manner using the flux
redistribution method described in Pilliod (1996).

3. The Riemann solver

We solve a Riemann problem for reacting gas flow at
the flame front to find the velocity of the front and the
flux of material through the front. We solve this one-
dimensional problem normal to the flame front. We
assume the burned and unburned states are constant
throughout the cell, and use these states as the initial
conditions.

An important difference between solving the Riemann
problem for non-reacting gas flows and the Riemann
problem for reacting gas flows is that the Riemann prob-
lem for reacting gas flows may not have a unique solu-
tion. The first source of non-uniqueness comes from the
fact that there may be multiple deflagration solutions.
Once a deflagration solution has been chosen, the Rie-
mann problem may still have more than one solution,
since there may also be a detonation solution. In this
section we discuss the procedure we use to choose be-
tween the various deflagration and detonation solutions.

Three procedures that have been used to choose the
solution to this Riemann problem are the following:

1. Choose the solution that has the smallest pressure
change across the front (Teng et al. (1982)).

2. If it exists, choose the deflagration solution
(Hilditch and Colella (1995)).

3. Choose the solution that has the smallest total
variation in the pressure for the entire solution
(Pilliod (1996)).

Procedure 3 is stated more precisely as follows. Let PL

denote the pressure for the burned state, P ? the pres-
sure of the post-deflagration state, P0 the pressure of
the pre-deflagration state, P ?? the pressure of the post-
detonation state, PCJ the pressure of the CJ-detonation,
and PR the pressure of the unburned state. If

|PL − P ?| + |P ? − P0| + |P0 − PR| <

|PL − P ??| + |P ?? − PCJ | + |PCJ − PR|,
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then we choose the deflagration solution, otherwise we
choose the detonation solution. This differs from proce-
dure 1 in that in procedure 3 we consider the pressure
changes across all of the waves, not just the combustion
wave.

U
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L

Figure 1. Detonation solution for the Riemann problem
with initial data UL, UR.

One of our design criteria for the fluid flow solver is
that it must be able to solve the Riemann problem cor-
rectly for arbitrary initial data. We now present an
example for which methods that use procedures 1 and
2 fail to do this. First, consider the Riemann prob-
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Figure 2. Deflagration solution for the Riemann problem
with initial data UL, UR.

lem with the initial data PL = 3, τL = 0.5789473684,
uL = 0.9176629355, qL = 0, PR = 1, τR = 1, uR = 0,
qR = 1. This Riemann problem has both a detona-
tion and a deflagration solution. The detonation so-
lution is the simple detonation wave shown in Fig. 1.
The deflagration solution is shown in Fig. 2, where
P0 = 2.916912842 and P1 = 2.900016834.

Now consider the Riemann problem with initial data
UR as defined above on the right and P4 = 1, τ4 =
1.222222222, u4 = 2.051924681, q4 = 0 on the left. The
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Figure 3. Exact solution for the Riemann problem with
initial data U4, UR, with space-time grid lines superimposed
over the solution.

solution to this Riemann problem is shown in Fig. 3.
There is no deflagration solution. Suppose that we solve
this Riemann problem, with the above initial data, on
the grid shown in Fig. 3 using a conservative finite differ-
ence method with a Riemann solver that employs one of
the three procedures described above. Since there is only
one solution to the Riemann problem with initial data
U4, UR, during the first time step the fluid flow solver will
produce the same solution regardless of which procedure
the Riemann solver uses to choose between a deflagra-
tion and a detonation solution. However, at some later
time step, there will be a grid cell in which the Riemann
solver will have initial data UL, UR from the Riemann
problem shown in Figs. 1 and 2. Procedure 2 will pick
the deflagration solution shown in Fig. 2, since it exists.
Procedure 1 will also pick the deflagration solution, since
the pressure change across the deflagration wave is much
less than that across the detonation wave. However, in
order to obtain the correct solution shown in Fig. 3, the
Riemann solver must pick the detonation solution shown
in Fig. 1. Thus, when used in conjunction with a fluid
flow solver, neither of procedures 1 or 2 will produce the
correct solution to the Riemann problem with the initial
data U4, UR for all time. On the other hand, proce-
dure 3 will pick the correct solution given initial data
UL, UR, and hence will produce the correct solution to
the Riemann problem with the initial data U4, UR for
all time.

4. Advancing the front in time

Our procedure for advancing the front in time is based
on a conservative finite difference update of the volume
fraction field associated with each fluid. Since the vol-
ume flux at a cell edge is F = uV , where u is the veloc-
ity normal to that cell edge and V is the volume of fluid
crossing the edge in time ∆t, we must first define a veloc-
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ity field that is associated with the motion of the front
on cell edges that are adjacent to the front. In other
words, given the velocity of the front sf = (sf,x, sf,y)
known only on the front itself, we now describe a proce-
dure for defining a velocity field on cell edges adjacent
to the front. These velocities are defined so that when
the volume fraction field is updated with a conservative
finite difference procedure - using these velocities to de-
fine the fluxes - the front location reconstructed from the
new volume fraction field will be equivalent to advancing
the old front normal to itself at the appropriate velocity.
(A more detailed description of this procedure may be
found in Pilliod (1996).)

We begin by using the Riemann solver described in
§3 above to determine the front velocity sf

i,j in each cell
that contains a portion of the front (i.e., in each cell that
contains a volume fraction Λl

i,j that lies strictly between
0 and 1, 0 < Λl

i,j < 1). This yields a velocity field in
cells containing the front, which we treat as cell-centered
quantities.

Now let sf
i,j denote the magnitude of the velocity of the

flame front in the (i, j)th cell. If a cell with a volume
fraction Λl

i,j = 1 is adjacent to a cell with a volume
fraction Λl

i′,j′ = 0 then the flame front is assumed to
lie on the edge joining these two cells. In this case the
velocity of the front is found by calling the Riemann
solver using the states in these two cells for initial data.
If the cell with the zero volume fraction already has a
non-zero velocity (i.e., if it is adjacent to other cells that
have a volume fraction of 1), then these velocities are
averaged.

Once we have the velocity field in those cells that con-
tain the front, we extend this field to other cells that lie
within two cell widths of front. To find the velocity in
the (i, j)th cell we average the velocities of the adjacent
cells that contain the flame front

si,j =
1
N

∑
nbh(i,j)

sf
i,j

sx
i,j =

∑
nbh(i,j)

sf,x
i,j sy

i,j =
∑

nbh(i,j)

sf,y
i,j

where nbh(i, j) are those cells that contain a portion of
the front that are within one cell of the (i, j)th cell and
N is the number of cells in nbh(i, j). (If N = 0, then
nbh(i, j) is redefined to be those cells that contain a por-
tion of the front that are within two cells of the (i, j)th
cell.) The components of the velocity in the (i, j)th cell
sx

i,j and sy
i,j are then adjusted so that the magnitude of

the velocity in the (i, j)th cell is si,j .

Finally we obtain the velocities at each cell edge by
averaging across the edge

ui+ 1
2 ,j =

1
2
(sx

i,j + sx
i+1,j), vi,j+ 1

2
=

1
2
(sy

i,j + sy
i,j+1) .

Note that here we use sx
i,j = sf,x

i,j and sy
i,j = sf,y

i,j for
those cells that contain the front. This algorithm has the
property that it will propagate a uniformly expanding
circle as a circle for arbitrarily long times.

5. Computational results

We now present results from two computations de-
signed to test the accuracy and validity of our numerical
method. We first demonstrate that our method yields a
quantitatively correct (average) wave speed and qualita-
tively correct wave shape when we use it to reproduce
a experiment containing only deflagration waves. Then
we present results from using our method to compute
an unstable detonation wave and compare these results
to results obtained by Bourlioux and Majda (1992) on a
similar problem with a numerical method that was de-
signed to resolve the reaction zone.

5.1. A deflagration computation

In this computation, a long narrow tube (36 cm × 6 cm,
∆x = 0.003 m) is filled with H2 and O2, in stoichiometric
ratios, at standard temperature T = 298 K and pressure
P = 1 atm. This mixture is ignited at one end by placing
volume-fractions of 0.5 in the two cells in the center of
the left hand wall, producing a deflagration wave which
travels down the tube. Photographs of this experiment
may be found in Fig. 1.12(b) of Oppenheim (1972).

In our computation we used the flame speed law

s = v + K(RT )Q (1)

where s is the flame speed, v is the velocity of the un-
burned fluid, T is the temperature of the unburned fluid,
R is the universal gas constant, and K and Q are con-
stants that were chosen as described below.

We arrived at a value of Q = 0.228842 by considering
the case when v = 0 in (1) and using the fact that s =
2919.19 cm/s at T = 2380 K (Kanury (1975)) and s =
181 cm/s at T = 298 K (Dwyer et al. (1996)). We chose
K = 0.013 m/s so that (1) yields flame speeds that best
correspond to our estimates of the speed of the flames
shown in Fig. 1.12(b) of Oppenheim (1972). Using the
ideal gas law and data from Weast (1984) we derived the
chemical energy released during combustion to be q0 =
23831.531 m2/kg s2.

We ran the computation for t = 275 µs, plotting the
flame front every t = 25 µs. The results are presented in
Fig. 4. The flame in Fig. 1.12(b) of Oppenheim (1972)
has essentially the same shape. The photographs of
this experiment are ruled at intervals of 20 cm, making
it very difficult to estimate instantaneous flame speeds.
However, the average speed of the computed flame front
shown in Fig. 4 is comparable to the average speed of
the flame front in the experiment, since both are at ap-
proximately x = 12.5 cm at time t = 275 µs.
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Figure 4. Computation of a deflagration experiment from
Oppenheim (1972) showing the flame front position at every
25 microseconds up to time t = 275 µs.

5.2. An unstable detonation computation

In this section we present the results of a computa-
tion to investigate the ability of our method to repro-
duce the characteristic cellular structure that is typically
found behind unstable detonation waves. Our compu-
tation is based on a similar computation conducted by
Bourlioux and Majda (1992) with a numerical method
designed to resolved the reaction zone.

For this problem we used the flame speed law s =
uu + K exp(−Qρu/Pu) where (uu, vu), ρu, and Pu are
the velocity, density, and pressure of the unburned fluid,
respectively, and Q = 10 and K = 0.1 exp(Q) are con-
stants. The computational domain had 320 × 60 cells
with ∆x = ∆y = 0.25, periodic boundary conditions
on the top and bottom walls and zero derivative bound-
ary conditions on the left and right walls. Our initial
conditions were: Pb = 13.41737525, ρb = 3.3453379,
ub = 2.9505135781, vb = 0 qb = 0, Pu = 1, ρu = 1,
uu = vu = 0, qu = 10. We imposed a small (0.04 ∆x)
sinusoidal perturbation on the flame front at time t = 0.
We took great care to eliminate the growth of instabil-
ities not associated with this initial perturbation; e.g.,
instabilities due to “numerical noise” such as round off
error.

0.0 500.0 1000.0
0.0

15.0

Figure 5. Reaction front positions for an unstable detona-
tion wave up to time t = 250, with an amplification factor of
100.

We chose these initial conditions to (as much
as possible) duplicate a computation conducted by
Bourlioux and Majda (1992) to study the growth of un-
stable modes in detonation waves. Since Bourlioux and
Majda’s numerical method contains grid points within
the reaction zone, which contains portions of the per-
turbed state, our initial conditions are not identical with
theirs. Following Bourlioux and Majda, we have ex-
aggerated the amplitude of the perturbations shown in
Fig. 5 by a factor of 100 so that they can be more easily
seen.

It is apparent from Fig. 5 that our numerical results
contain a growing mode which is similar to - but not
identical to - the growing mode computed by Bourlioux
and Majda. This suggests that the continuous version
of our thin flame model may support instabilities of the
type that are often associated with the characteristic cel-
lular structure found behind unstable detonation waves.
The qualitative and quantitative features of our growing
mode differ from the one found by Bourlioux and Majda
in that our front remains smooth and does not develop
the sharp kinks found in their work and the characteristic
time for our mode to develop is longer than in Bourlioux
and Majda’s computation. Whether or not the insta-
bility shown in Fig. 5 is physically significant requires
further study.

6. Conclusions

We have developed a formally second-order accurate nu-
merical method for modeling deflagrations and detona-
tions in reacting gas flows. Our method is based on a
“thin flame model” of the reacting front in which we use
a second-order accurate volume-of-fluid interface track-
ing algorithm to propagate the front and a second-order
accurate unsplit Godunov method to approximate solu-
tions of the compressible Euler equations on either side
of the front. Boundary conditions are determined at the
front for each of these two individual gas solves by com-
puting “extended states” across the front and the speed
of the front is determined by solving a 1D Riemann prob-
lem for reacting gas flow in the direction normal to the
front.

The advantage to using a thin flame model is that
one does not need to resolve the length and time scales
associated with the reaction zone. Since these scales are
typically orders of magnitude smaller than the length
and time scales associated with features pertaining to
the geometry of the problem domain and the dynamics
of the fluid flow, our method has the advantage of greatly
reducing the cost of a given computation as compared
to a method that does resolve the length and time scales
necessary to accurately model the reaction zone. This
may be of particular benefit for large scale computations
in three dimensions with complex geometry.

An important question that must be addressed con-
cerning our method, and indeed all thin flame models,
is to what extent does one obtain physically meaning-
ful results with these models. We have attempted to
(partially) address this question by presenting the re-
sults of two computations, comparing the results of the
first computation with an experiment and the results of
the second computation with results from a computation
made with a method that resolves the reaction zone.

In the first computation the average flame speed
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and qualitative shape of the flame compare well
with photographs of an experiment conducted by
Oppenheim (1972). In the second computation we
used our method to compute the evolution of a per-
turbed detonation wave and show that our numerical
results contain a growing mode which is similar to -
but not identical to - a growing mode computed by
Bourlioux and Majda (1992). We postulate that the in-
stability in our computation is an inherent feature of (the
continuous version of) our model, rather than a numer-
ical artifact. We do not know how this instability is re-
lated to the characteristic cellular structure found behind
unstable detonations waves - or even that it is related at
all. This issue requires further investigation. Further
work to understand the true advantages and limitations
of thin flame models of deflagration and detonation is
required.
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