
NUMERICAL ESTIMATES OF THE RATE OF CONVERGENCE 
FOR THE VORTEX SHEET METHOD 

Elbridge Gerry puckettt 
Lawrence Livermore National Laboratory 

Livermore, California 94550 

ABSTRACT 

We demonstrate numerically that the vortex sheet method 
for approximating solutions of the Prandtl equations converges 
to the exact solution when it is used to model Blasius flow. This 
is a random walk method and therefore the error is a random 
variable. We estimate the expected value and the standard devia- 
tion of the error as a function of the computational parameters. 
This allows us to estimate the dependence of the error on each 
parameter and hence to find the relation between the parameters 
which maximizes accuracy and efficiency. We also demonstrate 
that the proper choice of parameters leads to a reduced statistical 
error, thus allowing one to nearly achieve the expected rate of 
convergence without averaging the solution. 

An important and difficult problem in computational fluid 
mechanics today is that of computing flows at large Reynolds 
numbers. Many methods which perform well at small Reynolds 
numbers suffer from numerical diffusion. Thus, in order to 
maintain a given level of accuracy, one must continually refine 
the computational parameters as the Reynolds number is 
increased. This leads to an increasingly expensive computation, 
eventually exceeding the limit of one's computational resources. 

In 1972 Chorin [7] introduced the random vortex method 
in an effort to remedy this problem. The random vortex method 
is a grid-free particle method for approximating solutions of the 
Navier-Stokes equations. The particles, called 'vortices', carry 
concentrations of vohcity and the velocity field is determined 
from the vortex strengths and positions via the Biot-Savart law. 
The vortices are transported in this velocity field and then 
undergo a random walk in order to model the effects of diffu- 
sion. Subsequent investigation [12,16,18] has shown that for 
smooth initial data and in the absence of boundaries the error is 
independent of the Reynolds number, R . In fact, since the vari- 
ance of the random walk decreases like 6-', the error in 
approximating the viscous term of the Navier-Stokes equations 
actually decreases with increasing R . 

In his original paper [7] Chorin satisfied the no-slip boun- 
dary condition by creating vortices on the boundary. This algo- 
rithm has proven to be unsatisfactory since it tends to create an 
unreasonably large number of vortices, thereby resulting in an 
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overly expensive computation. In 1978 Chorin [8] introduced the 
vortex sheet method as an alternative means of satisfying the 
no-slip boundary condition. This is a numerical method for 
approximating solutions of the Prandtl equations. It also is a 
grid-free particle method in which the particles, called 'sheets', 
cany concentrations of vorticity. The velocity is uniquely deter- 
mined from the sheet positions and their strengths. The sheets 
are advected in this velocity field and then undergo a random 
walk perpendicular to the boundary to approximate the viscous 
term of the Prandtl equations. During this random walk sheets 
are created at the boundary to (approximately) cancel the tangen- 
tial velocity at the boundary. 

The vortex sheet method may be used with the random vor- 
tex method to obtain a hybrid method for solving the Navier- 
Stokes equations in domains with solid boundaries. This is 
accomplished by using the vortex sheet method in regions close 
to the boundaries, referred to as the 'sheet layer', and using the 
random vortex method outside the sheet layer. The two methods 
are coupled by letting sheets which exit the sheet layer become 
vortices with the same circulation, letting blobs which enter the 
sheet layer become sheets with the same circulation, and letting 
the tangential velocity induced on the boundary by the random 
vortex method be the 'velocity at infinity' imposed on the 
Prandtl equations. Hybrid vortex methods of this type have been 
successfully used to model such problems as flow past a circular 
cylinder [4,5,25], driven cavity flow [6], boundary layer insta- 
bility [91, flow past a backwards-facing step [23], turbulent 
combustion [11,21,22], and wind flow over a building [24]. For 
a more detailed description of this hybrid vortex method see [9] 
or [21]. 

Much work has been devoted to understanding the accu- 
racy of the the vortex method, (i.e. the random vortex method 
without the random walk used to solve Euler's equations) 
[1,2,3,10,13,14,15]. Although less literature concerning the 
random vortex method is available there exist two convergence 
proofs [12,16] and a numerical study of the convergence rate 
[18]. (AU of this work is for the 2-d random vortex method in 
the absence of boundaries.) There is also a detailed numerical 
investigation of the convergence rate of a hybrid vortex method 
applied to flow past a rearward facing step [23]. 

In this paper we numerically demonstrate that the vortex 
sheet method converges when it is used to model Blasius flow. 
We estimate the expected value and standard deviation of the 
error for different combinations of the computational parameters. 
This allows us to estimate the dependence of the error on each 
parameter and hence to establish guidelines for choosing the 
parameters in a manner that optimizes accuracy and computa- 
tional efficiency. We hope that this work will provide users of 
these hybrid methods with guidance in the task of selecting com- 
putational parameters for optimal accuracy and efficiency. 
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$2 THE METHOD 

Let (x ,y ) denote coordinates which are parallel and perpendicu- 
lar to the boundary respectively. Let (u,v) denote the 
corresponding velocity components, o the vorticity, and v the 
viscosity. Assume that the boundary is located at y = 0 and let 
U,(x ,y ) denote the 'velocity at infinity' which is imposed on the 
flow from outside the boundary layer. In vorticity formulation 
the Prandtl equations are 

0, + u  0, + v  y, = v a n ,  (2. la) 

W =  - 4 .  (2.1 b) 

u, +vy = o ,  (2.14 

u(x,O,t)=O, (2.ld) 

v(x,O.t)=O, (2. le) 

lim u (x ,y , I )  = U,(x ,t ) . 
Y + =  (2.W 

In the vortex sheet method the vorticity at time kat is 
approximated by a sum of linear concentrations of vorticity, 

Each term of the sum in (2.2) is referred to as a vortex sheet. The 
jth sheet has center (x:.y:) and 'strength' or 'weight' o,. Here 
6 is the Dirac delta function, and bh = b (xlh) is the 'smoothing' 
or 'cutoff function The most commonly used cutoff is the 'hat' 
or 'tent' function originally proposed by Chorin [8], 

1 -  l x  I Ixl 5 1 ,  
b(x)= (2.3) 

otherwise. 

The parameter h is often referred to as the 'sheet length' 
even though the support of bh is typically of length nh for some 
integer n > 1. Since bh has finite support and since 6% - y ) is 
0 for y #y,. we see that the j th  sheet is simply a line segment 
parallel to the boundary which carries a delta function concentra- 
tion of vorticity. For bh defined by (2.3) each sheet has length 
2h and the vorticity concentration varies linearly along the 
length of the sheet - having a value of o, at the center and 0 at 
the ends. We briefly discuss other possible choices for bh at the 
end of this section. 

We can use (2.lb) and (2.10 to write the tangential velo- 
city in terms of the vorticity, 

c4 

u ( x , y , t ) = u , ( x , r ) + j o ( x , s , r ) d ~  . (2.4) 
Y 

Our approximation to u at time k ~ t  is determined by (2.2) and 
(2.41, 

where H 6 )  is the Heaviside function, 

1 y 1 0 ,  
HCy)= 

0 otherwise. 

From (2.5) we see that the jump in I2 along the j th sheet is 
a, bh (X - xj). This is the motivation for referring to the compu- 
tational elements as 'vortex sheets'. To find the velocity 

component normal to the boundary we first use (2.1~) and (2.le) 
to write 

Then, by approximating u, with a centered divided difference, 
we obtain our approximation to v , 

Since iik and 9' were constructed using (2.4) and (2.6) 
respectively the velocity field (I? . G ~ )  automatically satisfies 
equations (2.lb,c) and the boundary conditions (2.le,f). Further- 
more, given U,, this velocity field is completely determined by 
the sheet positions (xj" ,Yj") and their strengths o, . 

The vortex sheet method is a fractional step method. The 
first step is the numerical solution of the convective part of equa- 
tion (2. l a) 

The second step is the numerical solution of the diffusive part of 
(2. la) 

subject to the no-slip boundary condition (2.ld). Given an 
approximation (nk ,?') to the velocity field at kth time step the 
velocity at the next time step is determined as follows. 

We first evaluate ( d  ,gk) at the center of each sheet. Denote 
this velocity by (G,!,$). Our numerical approximation to (2.8) is 
found by moving the center of each sheet one time step of length 
at in this direction to obtain, 

In order to approximate (2.9) subject to (2.ld) we first 
create sheets on the boundary. Let ai,  i = 1, . . . . r denote 
equally spaced grid points at y = O  with grid spacing h ;  
ai+, - ai = h . The sheet positions given by (2.10) in general 
induce an non-zem tangential velocity on the boundary, which 
we denote tik+lR(x ,o). Let ui = pk+ln(ai -0) and let q,,, denote a 
computational parameter called the 'maximum sheet strength'. 
Then for each i we create qi = [ l ui I104,J sheets with centers 
(ai,O) and strengths -sign(ui)ua, where [XI denotes the 
greatest integer less than or equal to x . The numerical solution of 
the diffusion equation (2.9) is found by letting all sheets, new 
and old, undergo a random walk in the y direction, reflecting 
those that go below the boundary. The new sheet positions at 
time (k+l)at are therefore given by 

where the q, are independent, Gaussian distributed random 
numbers with mean 0 and variance 2 v ~ t  . 

We wish to make several comments regarding the sheet 
creation algorithm here. First, note that in our presentation of the 
algorithm all sheets have magnitude a,,,, and that we create no 
sheets at ai when I ui 1 5 a,,,,. Hence, the no-slip boundary wn- 
dition is satisfied at ai only up to order &. Many workers 
(including Chorin [8,9]) create sheets at the i th grid point when- 
ever IqI 2&forsome&cccy ,such tha t  o,Sq,,,all j and 
the sum of the strengths of these sheets exactly cancel ui. For 
example, & might be chosen to be on the order of the computer's 
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round off error. However, since this algorithm creates more 
sheets than the one above, and since the work required to com- 
pute (Gf,g$ at the center of each sheet is, at best, O(h N') where 
N is the number of sheets in the flow, this greatly increases the 
computational cost of the algorithm. Furthermore, numerical 
experiments to compare the two sheet creation algorithms [17] 
show no increase in accuracy when this latter, more costly sheet 
creation algorithm is used. 

The second point we would l i e  to make here concerns the 
manner in which the no-slip boundary condition is satisfied and 
its relation to the cutoff function bh . As noted above, G~+"~(x  ,O) 
is, in general, non-zero. Ideally one would like to add some 
function to ~ 1 " " ~  which can be represented by the sum of sheets, 
and which cancels IZ~+''~(X ,O) at all points x on the boundary but 
leaves 12~+"2(x,~) unchanged for y > 0. In other words, we wish 
to find some function of the form x ol bh (X - x;) H (Y1 - y ) 
such that 

r 

In general this is not possible. However, one can find o; and 
(x; y l )  so that this holds exactly for y > 0 and within O(h) for 
y =O. For example, when bh is defined by (2.3) choosing 
XI = ai and yl = 0 reduces the problem to that of finding the 
coefficients of a piecewise linear interpolant to - (ik+lR(x ,o) with 
node points at the ai (e.g. see 1201). In other words, we wish to 
6nd coefficients ci such that 

In actual practice we approximate the left hand side of this 
expression by creating qi sheets at ai with strengths oil such that 
I C q  -ci I sol,,,,. 

This idea can be generalized to make use of higher order 
interpolation procedures. For example, one can replace bh with 
the basis function for cubic splines (e.g. see [20]). In [17] we 
studied the effect such a bh has on the accuracy and rate of con- 
vergence of the sheet method. However, in spite of the fact that 
the no-slip boundary condition is solved to higher order with this 
choice of bh , extensive numerical experiments failed to reveal an 
improvement in the overall accuracy of the method. This situa- 
tion is similar to that which occurs when one chooses the sheets 
so that the no-slip boundary condition is satisfied exactly at each 
ai . For, although the no-slip boundary condition is being solved 
more accurately, other sources of error are not being reduced 
and, as a consequence, the overall error remains the same. 

There are three computational parameters in the vortex 
sheet method, the time step ar , the sheet length h , and the max- 
imum sheet s m g t h  a,-. The only generally agreed upon con- 
straint that these parameters must satisfy is the so called '(3%' 
condition, 

At U,, S h (2.1 1) 

where U, = max U,. The justification usually given for (2.1 1) 
is that one wants to ensure that sheets move downstream at a rate 
of no more that one grid point per time step. This is an accuracy 
condition (as opposed to a stability condition) which ensures that 
information propagating in the streamwise direction will 
influence all features of the flow which are at least O(h). We 
also propose another accuracy condition: 

where Co is a constant with dimensions 1 I L and L is a typical 
length scale. (Usually L is the length of the boundary.) This con- 
dition is a consequence of requiring that the degree with which 
we refine u as a function of y be of the same order as the degree 
with which we refine features in the streamwise direction, 
O(U, I a),,,,) = O(L I h ), and then using (2.11). Note that 
since 

sheets induce local (non-physical) streamwise gradients in G 
which are O(&lh). Condition (2.12) relates the size of these 
gradients to the time step. In $3 below we present numerical 
results which demonstrate the importance of (2.12). 

$3 CONVERGENCE TO BLASIUS FLOW 

Recall that Blasius flow [19] is a stationary solution to the 
Prandtl equations for flow past a semi-infinite flat plate 
{(x ,y ) : 0 S x < - , y = 0) with a constant free-stream velocity 
that we take to be U, a 1. It is a similarity solution which may be 
written in the form 

u (x Y = f '(rlh (3.1) 

where 

n = y  /G (3.2) 

is the similarity variable and f satisfies the ordinary differential 
equation 

f (0) = 0, f '(0) = 0, and f '(m) = 1 

We compute over a finite portion of the plate 
{(xy):3h S x < 1 + 3 h  , O l y  < - I .  Whenevera sheet moves 
bey& the end of the plate we rescale its y coordinate according 
to (3.2) and place it at the other end of the plate, i.e. periodic 
boundary conditions at x = 3h, 1 + 3h with appropriately scaled 
y coordinate. Thus, here we can take our typical length scale to 
be L = 1. Initially there are no sheets so that 

We compute until time t = 2  and measure the error 
between the exact solution (3.1) and the computed solution. Note 
that we report errors at one instant in time rather than averaging 
the computed solution over several time steps as in [8] and [23]. 
All runs reported here are with v = 1 e  and with the cutoff (2.3). 
We measure the L' error in similarity coordinates 
(x,q) = ( x y l G )  so that 

1+3h - 
This has the effect of making our measurement of the error 
independent the viscosity v. Otherwise, the L' error goes to zero 
like 6. In addition, we normalize the L' error by dividing this 
integral by 

) I  1-ull  Ll=1.7208. 
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To begin we estimate the expected value of the L' error at 
time t = 2 by averaging the error over several trials, each Vial 
having been run with a different random number sequence. We 
examine the error for a variety of (at ,h ,q,,,). In our work we 
have found that fixing h and a,,,, and letting at  + 0 results in 
little or no change in the error. This indicates that the errors due 
to temporal discretization are much smaller than other sources of 
error. This may be because we are computing a stationary flow. 
In what follows we only report results for which at  = h / U,,. 

Table 1 contains our estimates of the expected value of the 
L' error for 40-' 5 h 5 5-' and 640-' 5 (la, .S 5-'. Each parame- 
ter decreases by a factor of 2 as one moves down a row or a 
column Unless indicated otherwise the estimates in Table 1 are 
for averages over 25 trials. 

First note that fixing h and at  and decreasing a,,,, eventu- 
ally results in a fixed level of error. Since ~t and h are constant 
it follows that the error which is decreasing depends on om, 
alone. The 'plateau' at the bottom of the column is due to those 
sources of error which depend on At and h . For h = 0.025 the 
rate of decrease prior to reaching this plateau is roughly 
o ( ~ Q .  On the other hand, fixing a- and decreasing h and 
at eventually leads to an increase in the error. If we agrec LO let 
Co = 112L then this increase begins to occur when (2.12) is 
violated. 

In Fig. 1 we plot the log of the errors in Table 1 versus log 
h-' for various relationships between co- and h.  The first data 
point in each sequence is h = 5-' and a,,.,, = lo-'. (For h fixed 
the abscissa corresponds to a,,,, = lo-'. . . . ,go-'.) When 
q,,, = 0(h2) the resulting curve is nearly linear. This indicates 
that the error due to q,,, is sufficiently small that we can 
observe a dependence of the form error = O(hq). The slope of 
this l i e  is 4.7510=-314 implying q ~ 3 1 4 .  However, if 
instead we choose the data from the last row of Table 1 (the error 
due to q,,, should be very small here), then we find q = 213. 
There is not enough data here to determine q beyond all doubt. 

Table 2 contains the standard deviations of the errors in 
Table 1. In Fig. 2 we plot those standard deviations which 
correspond to Fig. 1. The nearly linear decay for a,,,, = 0(h2) 
corroborates our conclusion that when q,,, = 0(h2) the error 
due to m- is decreasing at least as rapidly as that due to h . 

We made a sequence of runs under the assumption that the 
error is o(=) + 0(h2/4. We set h = o(&:), a t  = h / U,,, 
and, starting with a,,,, = 40-' and h = 5-', made five runs 
decreasing q,,, by 2 each run. The results appear in Table 3. 
Note that the errors here are the results after only one trial, rather 
than being an estimate of the expected value of the error. We 
also report the L~ error, the average error in the displacement 
thickness above the grid points (tilav), and the average error in 
the momentum thickness above the grid points (m). These 
latter two quantities were computed in physical coordinates and 
hence are 0 ( 6 )  = 0(1W2). In Fig. 3 we compare the L' error 
from Table 3 with the conjectured rate of convergence. It is 
apparent that for this choice of parameters the error after only 
one trial decreases at a rate close to the anticipated one. Our 
experience with q > 213 has not produced results which are as 
consistently good as those shown here, but we still do not have 
enough evidence to unequivocally state that the optimal choice 
of q is 213. 

CONCLUSIONS 

We have presented numerical evidence that the vortex 
sheet method converges to the exact solution when it is used to 
approximate Blasius flow. For this problem there is no notice- 
able dependence of the error on the time step as long as (2.11) is 
satisfied. However, there is a marked increase in the error when 
(2.12) is violated with Co = 112L. In particular, this occurs when 
ua,isfixedandAt,h -+0. 

Based on our experiences computing Blasius flow we 
recommend choosing a t  = h IU,, and &, 5 Co h2/st for some 
small Co = O(lIL), and refining the parameters so that 
q,,, =  ha) for some 2 / 3 5 q 5 1. We have obtained good 
results with q = 213, without averaging the solution in any 
manner. We have demonstrated the effectiveness of this choice 
of parameters with a sequence of runs for which the instantane- 
ous, unaveraged error is very close to the conjectured rate of 
convergence. 

We conclude with a brief comparison between the results 
reported here and those in 1231. In the latter work the authors 
made measurements of the mean and variance of the L2 error 
taken over a sequence of time steps rather than over independent 
trials. For laminar flow many of the conclusions they reach 
agree with ours here, in spite of the differences in the way the 
error was measured. In particular they found that both the mean 
and standard deviation of the error decrease roughly l i e  o(*), 
where C (for circulation) equals our k h .  For fixed h this 
agrees with our observation that the error is 0 ( 6 ) .  
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Error in the L' Norm Averaged over 25 Trials 

Table 1 = 5 trials, = 2 trials 

Standard Deviation of the Errors in Table I 

I h (at = h /Urn=) 

Table 2 = 5 trials, $ = 2 trials 

A Convergence Study with h = ~(oI,,,,~") and at = h /Urn,  

L I One Trial Per Row I 

Table 3 

%fix 

40-I 
80-' 

Fig. 1 Log Error versus Log l lh  

0.50 4 

Fig. 2 Log Std Dev versus Log l lh  

0.079 1 i 

L' norm 
0.2817 
0.1617 

Fig. 3 Actual versus Predicted Rate 

l 0 O 0  

-+ predicted rate I =  
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