
A FAST VORTEX CODE FOR COMPUTING 2-D FLOW IN A BOX

ABSTRACT

Scott B. B&nt
Lawrence Berkeley Laboratory

Berkeley, California 94720

Elbridge Gerry ~ u c k e t 8
Lawrence Livermore National Laboratory

Livermore, California 94550

We present a fast, accurate hybrid vortex method for com-
puting incompressible, viscous flow at large Reynolds numbers in
a two-dimensional bounded domain. The random vortex method
is used to model the flow away from the boundary and the vortex
sheet method is used to model the flow near the boundary. Our
implementation of these methods exploits the localized nature of
interactions among vortex elements in each of the respective
regions of the domain. A local corrections approximation is used
to accelerate the velocity computation in the interior. It is sub-,
stantially faster than other methods of comparable accuracy and
can economically handle tens of thousands of vortex elements.
We evaluate the method on the flow in a box due to a central sta-
tionary vortex. The running time for this problem is roughly
linear in the number of vortex elements and results are in good
qualitativc agreement with other numerical solutions of the same
problem.

$1 INTRODUCTION

The hybrid vortex sheet-random vortex method was intro-
duced by Chorin [9-111 to compute incompressible, viscous flow
at large Reynolds numbers. We employ recent innovations to
speed up the computation in two dimensions. Most notable is the
method of local corrections [I]; it is an approximation that
replaces the 0 (N2) calculation customarily used to evaluate vor-
tex blob velocities by a much faster one. Our code is capable of
economically computing with large numbers of vortex elements,
and allows us to perform detailed flow visualizations in reason-
able amounts of time.

We test our code on the flow in the unit box driven by a sin-
gle vortex fixed at the origin. This problem has previously been
studied with the aid of another hybrid vortex method by Sethian
[20] who used the 0 (N2) method for computing the vortex velo-
cities. Our results are in good qualitative agreement with his work
and, for the computations presented here, the cost of our method
appears to be roughly linear in the number of vortices.

Hybrid vortex methods have also been applied to the flow
past a circular cylinder [7,24], driven cavity flow [8], flow past a
backward facing step [14,21], wind flow over a building [22], sta-
bility of the boundary layer [I I], and the Fakner-Skan boundary
layer flow [23]. See Leonard's survey [18] for a review of vortex
methods.

Copyright d 1988 by the American Institute of Aeronautics and Astronau-
tics. Inc. All rights reserved.

+ Work done under the auspices of the Applied Mathematical Sciences sub-
program of the Office of Energy Research. U S . Department of Energy, under
contract DE-AC03-76SF00098.

* Work done under the auspices of the U. S. Department of Energy at
Lawrence Livermore National Laboratory under contract number W-7405-
ENG-48.

82 THE BASIC NUMERICAL METHOD

In the hybrid vortex sheet-random vortex method the com-
putational domain R is divided into two regions: an interior Rr
away from the boundary aQ and a sheet layer as adjacent to the
boundary. (We use the term sheet layer to distinguish the compu-
tational boundary layer from the physical boundary layer.) The
random vortex method [9] is used to solve the incompressible
Navier-Stokes equations within Q, the vortex sheet method [lo]
is used to solve the Prandtl boundary layer equations within as.
Each method is a particle method; the particles cany concentra-
tions of vorticity and the velocity field within each of the respec-
tive regions is ;niquely de te rmik by the particle positions-and
the appropriate boundary conditions. Both methods are fractional
step methods. One of the fractional steps transports the particles
in their velocity field, the other applies a random walk to account
for the diffusive effects of viscosity.

In nr the particles are called vortex blobs and in a,, vortex
sheets. The no-flow boundary condition is satisfied on aQ by
imposing a potential flow on the interior region which cancels the
normal component of the velocity due to the blobs. The no-slip
boundary condition is satisfied by creating vortex sheets on an
which subsequently participate in the flow. The two solutions are
matched by converting sheets that leave the sheet layer into blobs
with the same circulation, converting blobs that enter the sheet
layer into sheets with the same circulation, and letting the velocity
at infinity in the Prandtl equations be the tangential component of
the velocity on the boundary due to the interior flow. The sheet
creation process and subsequent movement of the sheets into the
interior of the flow mimics the physical process of creation of vor-
ticity at a boundary and constitutes one of the attractive features
of this numerical method.

2.1. The Interior In Rr we solve the 2-D, incompressible
Navier-Stokes equations. In vorticity form these equations are:

of +(U.V)CO=R-'A~ (2.1 a)

u = (0.0) on an, (2. lc)

where u(x,t) is the velocity, o= 5 -v, the vorticity, and R the
Reynold's number. The advection part of @.la-c) are Euler's
equations:

where n is the outward normal to an and y! is the stream function.

We use the vortex method to solve equations (2.2a-e). Let
At denote the time step. In the vortex method the vorticity field at
time kAt is represented as a sum of discrete patches of vorticity

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.1988-3605&domain=pdf&date_stamp=2012-08-17

called vortex blobs,
N

Gk(x)= CKO(X/-X)~;. (2.3)
;=l

Here x/ is the position of the jth vortex blob at time k At, Ti its
strength, K, the cutoff function, and o the cutoff radius. The
strength TI is the circulation about the jth vortex. The choice of
cutoff radius and cutoff function is determined by accuracy con-
siderations. See Hald [16] and Beale and Majda [6] for a discus-
sion of different kinds of cutoffs and their effect on accuracy. We
use the cutoff proposed by Chorin [9]:

We com Ute the velocity field iik induced by the vorticity -P . distribution w in two steps. First we find the free-space velocity
ii; =_vlij$ such that @ satisfies (2.2d), with w given by (2.3),
and u;(x) = 0 at x = -. We then find a potential flow ii; = VLt$
such that-$ =,-f$ on a n . The sum of the two flows
iik = ii; + up sansfies (2.2b-2.2e) with v = v; + +;.

The free-space velocity field ii; is given by
N

iif(x)= c U.(X/-x,r;,
14 (2.5)

x:+x

where U,(x) is the velocity induced at x by a vortex blob of unit-
strength at the origin. The blob velocity function U, is determined
by the choice of K,; the U, corresponding to (2.4) is

r

The potential flow ii; can be found by solving Laplace's
equation A$ = O subject to the DiricNet boundary condition
@ =-@ on an for f$; and then differentiating yr (2.2e).
There are several ways to obtain approximations to iip. We dis-
cuss our choice after the description of the method of local correc-
tions in 53.2 below.

Given the velocity field iik = ii; + i$ we approximate the
solution of (2.2a-e) with initial data Gjk by transporting the blobs
in this velocity field

x F l 2 = X/ + At iik(xJ$,

where the superscript ' k + l n ' indicates the positions of the blobs
after the first fractional step. One can improve the accuracy of the
advection step by employing a second or fourth order time discret-
ization scheme that does two or more velocity evaluations per
time step. We employ a time step constraint described in 92.3
below to ensure that blobs do not leave R during the advection
step.

The second fractional step is the solution of the diffusive
pan of (2. la) subject to the no-slip boundary condition:

o, = R - ' A ~ (2.6a)

u . z = o on an, (2.6b)

where z is a tangent vector to an. The solution of (2.6a) with ini-
tial data 6 k+'12 is obtained by letting all blobs undergo a random
walk

x,k+l = k+lIZ
I +q;

where the q, are independent, .Gaussian distributed random
numbers with mean 0 and variance 2AtlR. Any blobs that end up
in the sheet layer or in the image of the sheet layer as a result of
the random walk become sheets, and any that end up outside the
image of the sheet layer are discarded. The no-slip boundary

condition (2.6b) is approximately satisfied by using the vortex
sheet method to cancel the tangential velocity on a R induced by
the blobs with positions xjk". We next describe this method.

2.2. The Sheet Layer Let RS consist of those points in R lying
within a distance E of aR. In Rs we use the vortex sheet method
to solve the Prandtl boundary layer equations:

lim u (X ,y ,t) = &(x J 1. (2.7e)
Y +-

Here (x ,y) denotes coordinates which are, respectively, parallel
and perpendicular to the boundary, (u , v) denotes the respective
velocity components, 5 is the vorticity, and & is the velocity at
infinity. We determine & by linearly interpolating the tangential
velocity induced by the interior flow at discrete points on a n . We
assume that the boundary is located at y = 0 and identify the four
walls of the domain R with the periodic interval [0,4]. As a result
of this identification, we can map Rs onto the rectangle
[0,4]x[O,~]. This is a convenient way of dealing with a vortex
sheet that moves into a comer, for it does not involve special
treatment of the comers. Other workers (e.g. [8]) have employed
special procedures for sheets that move into a comer.

In the vortex sheet method the vorticity at time t = k A t I.

approximated by a sum of linear concentrations of vorticity,
-t 5 (x .y)=Ct ; bi(x -X,~)~(Y:-Y)

J

where 5, is the strength of the jth vortex sheet, (x;,~:) is its
center, 6 is the Dirac delta function, and bl is the smoothmg func-
tion. We use the 'hat' function originally proposed by Chorin
[lo].

The parameter 1 is often referred to as the sheet length, although
for bl defined by (2.8) the sheets are of length 21.

With the aid of (2.7b) and (2.7e) we can express the tangen-
tial velocity u in_ terms of the vorticity and so obtain an approxi-
mation iik from 5'

where H(Y) is the Heaviside function. Similarly, we use (2.7~)
and (2.7d) to write v as an integral over ux and approximate ux
with a centered divided difference to obtain

In the advection step we evaluate the velocity (iik,Gk) at the
centers of the sheets and advance each sheet one time step of
length At accordingly. If we denote the velocity at the center of
the j th sheet at time kAt by (ii;,Gl$, then the sheet positions after
the advection step are given by

(X k+'l2 k+112) = (x: ,y/lo + (;/,$), I J'J (2.10)

To satisfy the no-slip boundary condition u = 0 at y = 0 we
create sheets on the boundary as follows. Let ai, i = 1, . . . , M
denote equally spaced gridpoints at y = 0 with grid spacing I. The
sheets at the positions given by (2.10) generally induce a non-zero
tangential velocity on the boundary, G ~ + ~ ~ ~ (x.0). Let

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

u, = ik+112 (ai ,O) and let emax denote a computational parameter
called the maximum sheet strength. Then for each i we create
4; = [l ui 1 /E,,,] sheets with .centers (ai ,0) and strengths
-sign (ui)cmax, where [x] denotes the greatest integer less than or
equal to x . The numerical solution of the diffusion equation is
found by letting all sheets (new and old) undergo a random walk
in the y direction, and reflecting any that go below the boundary.
The new sheet positions at time (k+l)At are thus given by

where the q, are independent Gaussian distributed random
numbers with mean 0 and variance 2Ar l R . At the end of the dif-
fusion step any sheets which have left the sheet layer become
blobs.

In our implementation all sheets have magnitude E,,,. We
do not create sheets at ai if I ui I 5 E,,, and hence the no-slip
boundary condition is satisfied at ai only up to order <,,. Other
workers (e.g. [7,8,10,ll]) create sheets at the ith gridpoint when-
ever I ui I 2 Emin for some Cmin < E,msx such that the sum of the
strengths of these sheets exactly cancels ui. However it has been
shown [19] that this greatly increases the number of sheets created
without improving the accuracy of the computation. The sheet
creation algorithm presented here significantly reduces the total
number of vortex elements in the computation thereby imprying
the economy of the method.

2.3. Choosing the Computational Parameters There are four
computational parameters in this method: the time step At, the
sheet length I , the maximum sheet strength L a x , and the cutoff o.
Since the circulation remains constant when a sheet becomes a
blob we have I T j I = 1 c,,. Following Chorin [l l] and Sethian
[20] we set a= ~ 1 1 . The reader should consult [l l , 19,21,24] for
a more detailed discussion of the relationship between the various
parameters.

The only generally agreed upon constraint that the parame-
ters in the vortex sheet method must satisfy is the so called 'CFL'
condition:

At max & 5 1. (2.11)

The justification usually given for (2.11) is that one wants to
ensure that sheets move downstream at a rate of no more that one
grid point per time step. This is an accuracy condition (as opposed
to a stability condition) which ensures that information propagat-
ing in the streamwise direction will influence all features of the
flow which are at least 0 (I).

To ensure that vortex blobs do not exit the box during the
advection step we enforce a constraint similar to (2.1 1) in the inte-
rior, no vortex is allowed to move more than a distance 0 . 9 ~
(where E is the sheet layer thickness) in any direction during a sin-
gle time step. We incorporate these two constraints into one glo-
bal constraint on the time step as follows. At each time step we
determine the maximum velocity component of iik over the
centers of all the vortices. We then adjust At accordingly before
moving the blobs.

83 OUR IMPLEMENTATION OF A FAST VORTEX METHOD

3.1. The Method of Local Corrections Traditionally, vortex
blob methods entail solving an N -body problem directly, at a cost
that is quadratic in N, the number of vortices. This limits the
number of elements that can be handled in a reasonable amount of
computer time, perhaps no more than a few thousand vortices. It
turns out that there are faster ways of computing the mutually-
induced velocity field on a collection of vortices. These methods
are based on the idea that interactions involving distant length
scales can be effectively lumped or averaged with an relatively
inexpensive computation. Only interactions involving nearby vor-
tices need to be computed directly, and these account for only a

small fraction (typically 5%) of the N(N - 1) interactions com-
puted by the direct method.

We use a strategy based on the above observation, known as
the method of local corrections [I]. It is similar to the particle-
particle, particle-mesh algorithm of Hockney et al. [17] and more
accurate than Christiansen's vortex-in-cell [12], since the latter
doesn't compute close interactions directly. A novel feature of
this method is that it exploits the fact that a vortex blob behaves
like a point source of vorticity outside the cutoff radius o, and
hence induces a harmonic velocity field there. (In this sense it is
similar to Rokhlin and Greengard's multiple expansion method
[15].) This allows one to take advantage of fourth order interpola-
tion formulas for hannonic functions. The local corrections algo-
rithm is nearly as accurate and considerably faster than the direct
method. For example, it can perform a velocity evaluation on a
collection of 12848 vortices, distributed evenly among two
patches of constant vorticity, in under 7 seconds on the Cray X-
MP; the direct method takes 56 seconds. The amount of speed up
one obtains with the method of local corrections depends on the
distribution of the vortices in the computational domain and hence
is pr6blem dependent. See Baden [5] for further discussion on the
speed and accuracy of this method.

The method of local corrections distinguishes between two
hnds of vortex interactions: (1) far-field interactions approxi-
mated by solving a discrete Poisson equation; (2) N -body interac-
tions computed exactly for vortices close enough to one another.
A finite difference mesh, with spacing h , is superimposed on the
domain; it is used to compute the far-field interactions. A second
mesh of spacing h called the chaining mesh, with boxes whose
centers coincide with the grid points of the first mesh, is also used.
The edges of the chaining mesh coincide with an; the edges of
the first mesh extend beyond an by h/2 in each direction. We
denote this extended domain and its boundary by a' and an'
respectively.

The computation is organized around the boxes of the chain-
ing mesh. An integer C , called the correction distance, is chosen
to distinguish nearby vortices from distant ones. Vortices interact
directly only if both indices of the boxes containing them differ by
no more than C . It has been observed that, for a given level of
accuracy, C is a constant which is independent of N. The accu-
racy of the algorithm improves with increasing C , but this
increases the cost; C = 2 appears to effect a reasonable tradeoff
between speed and accuracy [5]. The method of local corrections
in predicated on the assumption that the vortex blobs behave like
point vortices at distances greater than Ch from their centers.
Thus, we must ensure that a I Ch .

In the following discussion we omit mention of the time step
k for notational convenience. The algorithm first computes an
approximation iifh to the free-space velocity iif by solving a
discrete Poisson equation on the first finite difference mesh,

Here is the discrete Laplacian, xi is the center of the jth vor-
tex, and

The function gD approximates the discrete Laplacian of the velo-
city field due to a point vortex at the origin, and is zem outside a
square neighborhood of the vortex. The parameter D is an integer
called the spreading distance and must satisfy D S C . Thus, like
C , D is also independent of N , and the cost of computing the
right hand side of (3.la) is proportional to N. To compute the
boundary condition (3.lb) we evaluate the velocity induced on

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

an' by point sources of vorticity centered at the xi.

Having set up the right hand side and boundary conditions
for (3.la,b) we use a fast Poisson solver to obtain ii) . (We used a
solver that was accurate to fourth order in the mesh spacing h .)
This velocity field will be interpolated onto the centers of the vor-
tices; but first it must be corrected to account for the influence of
the nearby vortices which do not act like point sources of vorti-
city.

The local corrections are done one box at a time. Associated
with each box is a surrounding region of space that is C boxes
thick on each side, called the correction neighborhood, and an
interpolation stencil. (We use a 5-point stencil; the interpolation
procedure is accurate to fourth order.) The local corrections are
done in two steps. In the first step we compute the point vortex
velocities at each point of the interpolation stencil which are due
to the vortices in the correction neighborhood and subtract these
values from iifh . We use these corrected values of iij when inter-
polating onto the vortices in the box. In the second step we com-
pute the influence of each vortex in the correction neighborhood
on each vortex in the box using the exact blob velocity function
ua .
3.2. The Potential Flow In our solution of the potential flow
problem we employ a modified method of images scheme sug-
gested by Anderson [2]. This method is based on the observation
that the potential flow il, is the flow due to an infinite set of
images of the vortices in the box [13, pg 3781. The positions of
these images may be found by periodically extending the box in
the plane and reflecting each vortex about the walls of the boxes.
The idea is to include any image vortices that are within one
comt ion distance of an in the computation of iif and hence, in
the computation of ii!. These images must be included because
their influence on nearby vortices on the other side of the boun-
dary cannot be accurately represented in a finite difference soh-
tion of ii, . This is important because of the sharp gradients in the
velocity field near the boundary due to the images. We eliminate
the contributions of these images to iip by explicitly including
them in the computation of ii), where they can be locally
corrected.

To accommodate the image vortices in the computation of
iSfh we extend C2' by D +C boxes in all directions. For a vortex in
n, which is within C boxes of the wall and away from a comer,
one image is generated by reflecting the vortex in the plane of the
wall and taking the negative of the strength. For a vortex in a
comer 3 images are generated; oilc reflected in the plane of each
of the two adjacent walls and one reflected through the comer.
The first two images have opposite strengths from that of the ori-
ginal vortex, while the third image has the same strength as the
original.

We compute @, an approximation to ipp on the unextended
domain n, as follows. We first solve the discrete Laplace equa-
tion A*V; = O subject to the Dirichlet boundary condition
v,h = -Yf on an, taking care to include the influence of the
image vortices when setting up the boundary conditions. We use
divided differences to obtain ii,h at the grid points and then inter-
polate to obtain approximate values for iip at arbitrary x € n
'(here we use a four point stencil). All of the finite difference for-
mulas we used are accurate to fourth order. We take a single-
sided divided difference of ~ , h at the boundary to obtain the
tangential velocity 0,h.z. However, we compute the normal velo-
city on the boundary (= -iif-n) directly, since we know of
no fourth order formula for computing the tangential derivative of
~ , h at the boundary. Since the stream function induced by a vor-
tex and its image(s) algebraically cancel one another on the
wall(s) closest to them, we do not compute such influences when
setting down the boundary conditions for i$. This is done to
avoid a possible loss of accuracy due to roundoff errors. We also
employ algebraic cancellation in the direct computation of $ann.

33. Speedup of the Vortex Sheet Method We have employed
one relatively simple modification of the original vortex sheet

,algorithm which significantly speeds up the computation of the
velocity of a sheet which is due to the other sheets. (This
modification was first suggested by Chorin [lo].) From (2.9) it is
apparent that the velocity of a given sheet is affected only by
those sheets within a distance 21 of its center. We divide the
sheet layer ns into M bins where M is the number of gridpoints
ai on the boundary at which sheets are created. The ith bin
extends over ai - 112 I x < ai - 1 I2 and 0 I y < -. (Recall that
ai -ai-, = 1 .) Thus, sheets in the ith bin are influenced only by
other sheets in the ith bin and the two adjoining bins. At the end
of each time step we sort the sheets by bin.

$4 COMPUTATIONAL RESULTS
We present results for the 'spindown' problem investigated

by Sethian [20]. In this problem a single vortex is fixed at the
center of the box, with sufficient strength to induce a unit velocity
at the center of each wall. We set the numerical parameters as fol-
lows: the Reynolds R = 1000; the sheet layer thickness E = 0.02;
the maximum sheet strength E,,,,, = 6.25~10-~; and the sheet
length 1 = 0.1. The initial time step was At0 = 0.05. As described
in $2.3 fie cutoff radius was chosen to be a = l lx. In the interior
we use a second-order Runge-Kutta time integration scheme. This
requires two velocity evaluations per time step, a fact which
should be kept in mind when we discuss the computation time
below. Due to doubts about the effectiveness of a higher-order
time discretization in the vortex sheet method (see [19-201) we
use only the first order Euler method (2.10) in the sheet layer.

We ran the calculation until time t = 5.0 on a Cray X-MP.
Figures 1 and 2 show a series of snapshots taken at various times
during the run. The formation of eddies is quite clear, and our
results appear to be in good qualitative agreement with those of
Sethian. However, note that we used roughly five to ten times as
many computational elements as in that study, each with one-
eighth the strength.

During the initial time step 3760 vortex sheets were created.
During the second time step 109 sheets left the sheet layer and
became blobs. The maximum (componentwise) velocity of these
blobs was 0.977, so the time step was reduced to 0.018. The time
step At slowly decreased throughout the run and attained a
minimum value of 0.01 1. The run took 320 time steps and con-
sumed 4107 seconds (68.4 minutes) of CPU time on a CRAY X-
MP. Of this, only 2.2% of Lhe time was spent in the sheet calcula-
tion. At the end of the run there are 13094 blobs, 7161 images,
and 4034 sheets. At each time step the number of images was
roughly half of the number o f blobs.

Figure 3 shows thal 111e total number of vortex blobs and
their images steadily increws with time but that the number of
sheets is roughly constant. Figure 4 shows that the computational
cost is roughly a linear function of the number of vortex blobs.
The times shown in Figure 4 are the total cost per time step. In
addition to the vortex blob velocity evaluations, the times include
all sources of overhead such as: the potential flow, the random
walks, and the sheet computation. In particular, this includes a
third vortex blob velocity evaluation at each of the xi for the pur-
pose of computing U. (This third velocity evaluation could be
eliminated by a redesign of the algorithm.)

Figure 5 shows the computational cost per time step and
compares it with an estimated cost of using the direct method to
compute blob velocities. The estimated speedup (per time step) of
the local corrections algorithm increases with time; by the end of
the run it is roughly 10. The speedup averaged over the entire run
is about 8. To estimate the cost of using the direct method to do
velocity evaluations we timed a simple program that directly com-
puted the free-space velocity function (2.5) for various values of
N. We found that the cost of computing just one interaction of a
velocity evaluation was 0.4 p e c on the CRAY X-MP. Using the
statistics obtained from our trial run we determined that, if the

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

direct method had been used for the run shown in Figures 1 and 2,
then it would have computed a total of 8 . 5 3 ~ 1 0 ' ~ interactions, at a
cost of 3 . 4 1 ~ 1 0 ~ seconds of CPU time. We estimate that the cost
of any additional computation, e.g. the potential flow, the random
walks, and the sheet velocities, would add only an additional 5%
to the running time of the computation. Thus, the running time of
the vortex blob velocity evaluations gives a rough estimate of the
overall running time of the direct method-based calculation. We
arrive at the estimated speedup of 8.3 by dividing the 4107 CPU
seconds for the local corrections-based code with the estimated
time of 3 . 4 1 ~ 1 0 ~ CPU seconds for the direct method-based code.

55 CONCLUSIONS

The goal of this paper has been to demonstrate a fast, accu-
rate vortex method for computing two-dimensional, incompressi-
ble, viscous flow at large Reynolds numbers. Our test run model-
ing the flow induced by a central stationary vortex in a square box
is in good qualitative agreement with the earlier results of Sethian
[20]. A typical run of the type shown here (beginning with no
vortex elements, running for 320 time steps, and ending with
13094 blobs, 7161 images, and 4034 sheets) consumed roughly 68
minutes of CPU time on a CRAY X-MP. The run would take at
least 8 times longer to complete if vortex blob velocities were
evaluated using the direct method instead of the method of local
corrections. Moreover, the speedup improves as the number of
computational elements increases. Finally, we have shown that
the cost of our method is effectively linear in the number of vor-
tices. (The algorithm is presumably 0 (N log N) , but log N is, in
practice, bounded by 6.) This represents a substantial improve-
ment in speed over previous implementations of the hybrid vortex
sheet-random vortex algorithm.

So far our efforts to assess the accuracy of the method of
local corrections have shown no appreciable loss of precision.
Future work will include an application of this method to the flow
in a driven cavity. Our code can be readily modified to execute in
parallel on a multiprocessor like the Cray X-MP, as discussed in
P.41.

$6 REFERENCES

1. C. R. Anderson, "A Method of Local Corrections for
Computing the Velocity Field Due to a Distribution of
Vortex Blobs," J. Comput. Phys. 62(1986), pp. 11 1-123.

2. C. R. Anderson, private communications.
3. S. B. Baden, "Run-Time Partitioning of Scientific

Continuum Calculations Running On Multiprocessors,"
LBL-23625, Lawrence Berkeley Laboratory, June 1987.
p h . D. Dissertation in the Computer Science Division at
the U. of Calif.. Berkeley. # 871366)).

4. S. B. Baden, "Programming Abstractions for Run-Tie
Partitioning of Scientific Continuum Calculations Running
on Multiprocessors," Proc. of the Third SIAM Conference
on Parallel Processing for Scientific Computing, Los
Angeles, California, December 1-4, 1987.

5. S. B. Baden, "Very Large Vortex Calculations in Two
Dimensions," in Lecture Notes in Mathematics, Springer-
Verlag, New York, 1988. Proceedings from the UCLA
Workshop on Vortex Methods, Los Angeles, Calif., May
20-22, 1987.

6. J. T. Beale and A. Majda, "The Design and Numerical
Analysis of Vortex Methods," PAM-48, Center for Pure
and Applied Mathematics, University of California,
Berkeley, 198 1.

7. A. Y. Cheer, "Unsteady Separated Wake Behind an
Impulsively Started Cylinder in Slightly Viscous Fluid,"
manuscript, U. C. Davis, 1986.

Y. Choi, J. A. C. Humphrey and F. S. Sherman, "Random
Vortex Simulation of Transient Wall-Driven Flow in a
Rectangular Enclosure," submitted to J. Comput. Phys.,
1986.
A. J. Chorin, "Numerical Study of Slightly Viscous Flow,"
J. Fluid Mech. 57(1973), pp. 785-796.
A. J. Chorin, "Vortex Sheet Approximation of Boundary
Layers," J. of Comput. Phys 27,3 (June 1978), pp. 428-442.
A. J. Chorin, "Vortex Models and Boundary Layer
Instability," SIAM J. Sci. Stat. Comput. 1,l (March 1980).
pp. 1-21.
J. P. Christiansen, "Numerical Simulation of
Hydrodynamics by the Method of Point Vortices," J.
Comput. Phys. 13(1973), pp. 363-379.
R. Courant and D. Hilbert, Methods of Mathematical
Physics, Interscience, New York, 1962.
A. F. Ghoniem, A. J. Chorin and A. K. Oppenheim,
"Numerical Modeling of Turbulent Flow in a Combustion
Tunnel," Philos. Trans. Roy. Soc. London A304(1982), pp.
303-325.
L. Greengard and V. Rokhlin, "A Fast Algorithm for
Panicle Simulations," YALEU/DCS/RR-459, Yale Univ.,
Dept. of Computer Science, April 1986.
0. Hald, "Convergence of Vortex Methods, 11," SIAM J.
Numer. Anal 16(1979), pp. 726-755.
R. W. Hockney, S. P. Goel and J. W. Eastwood, J. Cornput.
Phys. 14(1974), pp. 148.
A. Leonard, "Vortex Methods for Flow Simulation," J.
Comput. Phys. 37(1980), pp. 289-335.
E. G. Pucken, "A Study of the Vortex Sheet Method and Its
Rate of Convergence," Siam J. of Sci. and Stat. Comp., (to
appear).
J. Sethian, "Turbulent Combustion in Open and Closed
Vessels," J. Comput. Phys. 54,3 (June 1984), pp. 425-456.
J. A. Sethian and A. F. Ghoniem, "Validation Study of
Vortex Methods," J. Comput. Phys. 74(1988), pp. 283-317.
D. M. Summers, T. Hanson and C. B. Wilson, "A Random
Vortex Simulation of Wind-Flow Over a Building," Int. J.
for Num. Meth. in Fluids 5(1985), pp. 849-871.
D. M. Summers, "A Random Vortex Simulation of
Falkner-Skan Boundary Layer Flow," submited to J. C. P.,
1987.

E. C. Tiemroth, The Simulation of the Viscous Flow Around
a Cylinder by the Random Vortex Method, Dept. of Naval
Architecture and Offshore Engineering, U. of Calif.,
Berkeley, California, May 1986. Ph. D. Dissertation. D

ow
nl

oa
de

d
by

 U
C

 D
A

V
IS

 o
n

A
ug

us
t 8

, 2
01

8
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.1

98
8-

36
05

Figure 1. Vector velocity plots clearly show the formation of counterrotating eddies. To em-
phasize the details near the walls, the vector lengths have been scaled so that the vectors in the
center region have a constant length, and so that the vectors near the wall have been somewhat
enlarged. A single stationary vortex induces a counterclockwise flow.

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

Figure 2. These plots show finer detail than in Figure 1, but only for the upper right hand comer
of the domain. The fi y r e continues on the next page.

19 1

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

T = 2 . 2 5 5 7 8 9 8

Figure 2 (continued).

Vortex Blobs

Figure 4. The total cost of a time step evaluation is roughly a linear
function of the number of vortex blobs. The dotted line plots the
ideal linear cost function.

Timestep

Figure 3. The number of vortex elements varies as a function of
time. The vortex blobs steadily increase (second curve), but the
number of vortex sheets remains relatively stable (bottom). The top
curve plots the number of blobs as well as their images.

Figure 5. The cost of a time step evaluation drops substantially
when the local corrections algorithm is used to evaluate velocities
instead of the direct method. The speedup of the local corrections
algorithm increases with the number of vortices N, which increases
with time. The times are reported in seconds of CPU time and were
measured with the second routine on a Cray X-MP.

D
ow

nl
oa

de
d

by
 U

C
 D

A
V

IS
 o

n
A

ug
us

t 8
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.1
98

8-
36

05

