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Abstract 

We incorporate smooth kernels and convolu- 
tion theory into continuum surface force mod- 
els. We convolve a discontinuous scalar func- 
tion with the first order spatial derivatives of 
the kernel to determine the unit normal to an 
interface. This algorithm is applicable to un- 
structured three dimensional grids. We com- 
pare these results to a “least squares” approach 
for several simple geometries and demonstrate 
that these normals in conjunction with a piece- 
wise planar interface reconstruction algorithm 
rapidly approaches linear preservation. We dis- 
cuss the interface reconstruction algorithm and 
a method for determining the area of the inter- 
face plane in each cell. We also demonstrate an 
effective velocity filter for removing some of the 
nonphysical modes in the velocity field which 
can be induced by numerical methods. 

Introduction 

We begin with a brief discussion of the 
nomenclature used herein. The examples 
used in this report use two immiscible flu- 
ids. The scalar function, f, denotes the 
characteristic function of one of these fluids. 
This function can be represented by the vol- 
ume fraction distribution of this fluid and is 
commonly termed the “color function”. The 
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function f can be smoothed (or mollified) 
several ways, (see [WKP99]), the smoothed 
color function will denoted by f. In this re- 
port we mollify f by convolving the scalar 
function with a kernel, denoted K. In three 
dimension the kernel is nonzero with a spher- 
ical region known as the support of the ker- 
nel. The radius of this sphere is known as 
the radius of support and is denoted by E. 
The unit normal to an interface is denoted 
ii. 

Approximating Unit Normals 

One the most crucial steps to efficient and 
accurate interface tracking algorithms is the 
accurate approximation to the unit normals 
of the interface. We review a method for 
determining the unit normals presented in 
[WKP99] and used in [AP95]. This method 
will be referred to as the “convolution 
method”. We incorporate this method into a 
continuum surface force (CSF) method, orig- 
inally presented in [BKZ92]. We then show 
results for unit normals calculated on some 
typical geometries. 

Given a mollified color function, J, the 
unit normals are found by 
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Vf 
fi= /OfI’ (1) 

Each of the components of the gradient 
is found by convolving the scalar function f 
with the first derivative of some kernel, K, 
e.g. 

Similar equations determine nY and n,. 
Equation (2) is found numerically by us- 

ing a simple midpoint rule to approximate 
the integral. With minor effort, equation (2) 
can also be approximated on unstructured 
grids. This method was applied to deter- 
mine the unit normals to an inclined plane 
and a spherical drop using both structured 
and unstructured meshes. The results are 
presented in Tables 1, 3 and Tables 4, 6. 

The results in Tables 1 and 4 show that 
the convolution method produces unit nor- 
mal approximations which are better than 
first order accurate, though not quite sec- 
ond order in the L” norm. For unstructured 
grids (Tables 3 and 6, the method produces 
extremely nice results; doubling the number 
of mesh cells can reduce the L” errors by a 
factor of 4. Keep in mind that these are three 
dimensional problems and for a uniform grid 
doubling the mesh size is equivalent to reduc- 
ing the cell size by about 80%. A crude esti- 
mation for the unstructured grid implies the 
algorithm is well above second order accu- 
rate. The results using a “generalized” least 
squares linear regression (LSLR) method are 
also give for reference. By “generalized” here 
we mean that the LSLR method is also ap- 
plicable for unstructured grids. Note that 
the results for this method offer a lower er- 
ror for the coarse grid calculations yet it fails 
to converge in the L” norm. 

Table 1: Errors in calculated unit normals 
for a plane inclined at 30 degrees, using the 
convolution method. . - 

i, 

Table 2: Errors in calculated unit normals 
for a plane inclined at 30 degrees, using a 
least squares linear regression algorithm. 

Table 3: Errors in calculated unit normals 
for a plane inclined at 30 degrees, using 
the convolution method on an unstructured 
tetrahedron mesh with E = 0.15. 

61 
0.050 0.15 0.26993-03 O.l420E-01 

Table 4: Errors in calculated unit normals 
for a spherical drop, R = 0.25, using the 
convolution method. 

2 

American Institute of Aeronautics and Astronautics 

D
ow

nl
oa

de
d 

by
 U

C
 D

A
V

IS
 o

n 
A

ug
us

t 2
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.1
99

9-
10

76
 



(c)l999 American Institute of Aeronautics & Astronautics 

Williams, Kothe, Puckett AIAA 99-1076 

Table 5: Errors in calculated unit normals 
for a spherical drop, R = 0.25, using a least 
squares linear regression algorithm. 

Table 6: Errors in calculated normals for a 
spherical drop, R = 0.25, on an unstructured 
tetrahedron mesh with E = 0.15. 

. 

Figure 1: Side view of an interface recon- 
struction and normal approximations to a 
plane on a lo3 mesh. The plane is tilted at 45 
degrees, normals were found at cell centers 
and the algorithm preserves linearity for all 
uniform grids. For this example E = 0.150. 

Preserving Linearity 

face for three dimensions. The interface re- 
construction algorithm used here is a piece- 
wise planar reconstruction which reproduces 
a planar approximation to the interface in 
each cell containing the interface. The unit 
normal, ii, determines the orientation of the 
plane while the placement of the plane is de- 
termined by the volume fraction, f of the 
cell. The interface reconstruction algorithm 
takes I? and returns a value of p for the equa- 
tion of a plane given by 

ii-x=p (3) 

which satisfies the volume fraction for each 
cell containing the interface. 

The algorithm for determining normals 
discussed in the previous section can repro- 
duce linear interfaces exactly but only for 
special circumstances. If the true planar in- 
terface passes through cell centers then this 
method is indeed linearity preserving when 
used with a radially symmetric kernel. An 
example of this feature is plotted in Figure 1. 

While a quantitative estimate of linear 
preservation is difficult to obtain, figures 2 
and 3 imply that this algorithm converges 
rapidly to one which preserves linearity on a 
uniform mesh. The thin white lines across 
the plane in these figures demonstrate a lack 
of linear preservation. Note that a larger 
radius of support for the kernel, K, has 
a dramatic effect on linear preservation for 
coarse grids (see Figures 2(a-b) and 3(a-b)). 
Figure 4 examines linear preservation on an 
unstructured mesh. Just as one might ex- 
pect, the figures shows that linear preserva- 
tion may be more difficult to obtain when 
using this scheme on unstructured grids. 

The term “linearity preserving” refers to 
an interface reconstruction algorithm which 
can exactly reproduce a linear interface, i.e. 
a line for two dimensions or a planar inter- 3 
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(a) A lo3 mesh with 6 = 0.150. 

AIAA 99-1076 

(a) A lo3 mesh with 6 = 0.150. 

(b) A lo3 mesh with E = 0250. (b) A lo3 mesh with E = 0250. 

(c) A 203 mesh with 6 = 0.150. 

Figure 2: The interface reconstruction and 
normal approximations to a plane in the unit 
cube. The plane is tilted at 30 degrees, nor- 
mals were found at cell centers and the al- 
gorithm rapidly approaches linear preserva- 
tion. 

(c) A 203 mesh with E = 0.150. 

Figure 3: The interface reconstruction and 
normal approximations to a plane in the unit 
cube. The plane is tilted at 67 degrees, nor- 
mals were found at cell centers and the al- 
gorithm rapidly approaches linear preserva- 
tion. 
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(a) 7454 cell tetrahedron mesh. 

(b) 14298 cell tetrahedron mesh. 

(c) 33153 cell tetrahedron mesh. 

Figure 4: Side view of an interface recon- 
struction and normal approximations to a 
plane on 3D unstructured meshes. The plane 
was originally tilted at 45 degrees, E = 0.15 
was used for all meshes. Normals were found 
at cell centers and the algorithm does not 
preserve linearity. 

Reconstructing Interfaces 

The interface reconstruction used for this 
report is a piecewise planar reconstruction. 
There are various reasons why one may want 
to reconstruct the geometry of the interface 
within a cell, e.g. visualization or to apply 
forces acting on the interface such as sur- 
face tension forces or drag due to viscous 
fluid motion. For each cell, the plane given 
by the values of i? and p determines which 
edges of the cell are intersected by the pla- 
nar interface approximation. These points 
of intersection are the vertices of the poly- 
gon which represents the planar interface for 
that cell. An example of a polygon outlined 
by the planar interface reconstruction within 
an unstructured cell is shown in Figure 5. 
Once an interior reference point (Pi) is es- 
tablished, the polygon can be reconstructed 
as conjoined triangles where the polygon ver- 
tices and Pi form the vertices for each trian- 
gle. 

It may also be necessary to order the ver- 
tices in some fashion, e.g. for a reconstruc- 
tion for interface visualization. This can be 
accomplished by determining the magnitude 
of the angle between some reference vector 
(VI) and the vector formed by the vertex 
and the reference point (see Figure 5); the 
vertices are then ordered by the magnitude 
of this angle, 0,. The area of the interface is 
easily found as the summed area of all of the 
triangles. The reconstructed interface can be 
quite discontinuous. Figure 6 shows a typical 
planar interface reconstruction in two adja- 
cent unstructured cells. For a given volume 
fraction distribution, one can see that the in- 
terface in surrounding cells has no effect on 
the final geometry of the plane reconstructed 
in some given cell. 

Figures 7 and 8 show examples of an in- 
terface reconstruction for some simple ge- 
ometries on unstructured meshes. The fig- 
ures also show the outlines of the cells which 
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Figure 5: Example of a typical interface re- 
construction within a cell. Planar interfaces 
are reconstructed as conjoined triangles. 

- 

AIAA 99-1076 

Figure 6: Example typical of a discontin- 
uous planar interface reconstruction in two 
adjacent unstructured cells. 

Table 7: Calculated surface areas and errors 
for a spherical drop, R = 0.25, using E = 
0.15. 

contain the interface. As expected, the fig- 
ures become sharper and more defined as the 
number of cells is increased. The calculated 
areas for these geometries is shown in Ta- 
bles 7 - 9. Tables 7 and 8 show results for 
the calculation of the surface area of a spher- 
ical drop for structured and unstructured 
meshes. The estimation of areas is nearly 
second order for uniform meshes, while the 
results for the unstructured mesh are incon- 
clusive. The calculated surface areas for a 
cube on an unstructured mesh are shown in 
Table 9. These results show the results to be 
well over second order accurate. It should be 
noted that the results for the cube will not 
converge to the exact solution for a constant 
E, since the convolution method will tend to 
“smooth” the sharp corners. 

Table 8: Calculated surface areas and er- 
rors for a spherical drop, R = 0.25, on an un- 
structured tetrahedron mesh, using E = 0.15. 

Table 9: Calculated surface areas and errors 
for a cube, 0.4X0.4X0.4, on an unstructured 
tetrahedron mesh, using E = 0.15. 
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(a) 7454 cell tetrahedron mesh. 

(b) 14298 cell tetrahedron mesh. 

(c) 33153 cell tetrahedron mesh. 

Figure 7: Planar interface reconstruction 
of a sphere on an unstructured mesh. The 
outlines of cells containing the interface are 
also shown. 

(a) 7454 cell tetrahedron mesh. 

(b) 14298 cell tetrahedron mesh. 

(c) 33153 cell tetrahedron mesh. 

Figure 8: Planar interface reconstruction 
of a cube on an unstructured mesh. The 
outlines of cells containing the interface are 
also shown. 
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Velocity Filter 

Numerical models inevitably introduce 
nonphysical modes into the velocity field 
when modeling fluid flows with large den- 
sity ratios (see [Rid98]). This is one reason 
why it is important to implement some form 
of “filter” to dampen these high frequency 
nonsolenoidal modes. Here we have imple- 
mented a vertex-based velocity filter which 
detects several nonsolenoidal modes of the 
velocity field not “seen” by the cell centered 
algorithm. The filter subtracts a correction 
term from the current velocity field, U. A 
correction term is found by solving 4, where 
V . U, is the divergence of the velocity found 
at the cell vertices. 

$6 = (LyV . ii, (4 

The correction term is then applied to 
yield a new velocity, u, here jV . 4, is the 
cell centered correction term. L 

u=+q$ (5) 
c 

Figure 9 shows a vortex velocity field with 
nonsolenoidal noise added to the velocity 
after one time step with and without the 
implementation of the velocity filter. Fig- 
ure 9(b) shows that the filter is quite effective 
in eliminating the artificially induced, non- 
physical components from the velocity field. 

AIAA 99-1076 

: , :’ _,- _ 

(a) Without filter 

: /‘Y-. _ 

(b) With filter 

Figure 9: Vortex velocity field with non- 
solenoidal ‘Yroise” added. Results show one 
time step evolution with and without filter- 
ing. 
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Conclusions 

We have demonstrated that the convolu- 
tion method can produce better than sec- 
ond order accurate normals to an interface 
for some given geometries. This method, in 
conjunction with a piecewise planar interface 
reconstruction algorithm, gives results which 
demonstrate a strong convergence towards a 
linear preserving algorithm. These compo- 
nents (normal approximation and interface 
reconstruction) may also be implemented on 
unstructured meshes without severe detri- 
mental effects. Although the interface re- 
construction can be quite discontinuous, the 
method shows convergence to well defined 
interfaces upon mesh refinement. The inter- 
face area calculations show themselves to be 
nearly second order for some cases. The ver- 
tex based velocity filter has been shown to be 
effective for removing nonsolenoidal modes 
in the velocity field. 

L 
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