
April 19, 1999 7:26

Proceedings of the
3rd ASME/JSME Joint Fluids Engineering Conference

July 18-22, 1999, San Francisco, California, USA

FEDSM99-7109

A SECOND-ORDER ACCURATE, LINEARITY-PRESERVING VOLUME TRACKING
ALGORITHM FOR FREE SURFACE FLOWS ON 3-D UNSTRUCTURED MESHES

D. B. Kothe ∗, M. W. Williams, K. L. Lam,
D. R. Korzekwa, and P. K. Tubesing

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

E. G. Puckett

Department of Applied Mathematics
University of California, Davis

Davis, California 95616
egpuckett@ucdavis.edu

ABSTRACT
The design of an optimal casting process begins with a

fundamental understanding of the free surface flow dynamics
brought about by the discharge of molten metal into a mold
cavity. For the foundries at the Los Alamos National Labora-
tory (LANL), this discharge is initiated by a gravity pour pro-
cess which results in a turbulent and topologically complex 3-D
flow as the mold cavity is filled. To better understand the mold-
filling portion of LANL casting processes, a new casting simula-
tion tool1 has been recently developed. A key method embodied
in this tool is a novel volume tracking algorithm capable of faith-
fully replicating the kinematics of free surfaces moving within 3-
D domains partitioned by generalized unstructured meshes. The
method exhibits several desirable properties: robustness, second-
order temporal and spatial accuracy, and a suitability for any un-
structured mesh comprised of elements bounded by ruled surface
faces. Details necessary for algorithm implementation, e.g., ex-
act volume truncation expressions, are given along with several
illustrative numerical simulations.

INTRODUCTION
Computational simulations of the mold filling portion of a

casting process demands an accurate and robust algorithm for
tracking the molten metal free surface. Many candidate algo-

∗Address all correspondence to this author at dbk@lanl.gov.
1See http://public.lanl.gov/mww/HomePage.html for details.

rithms are available today, and many more are likely to be de-
vised; see (Kothe et al., 1998; Kothe, 1999) for reviews. The re-
quirements list we impose upon an interface tracking algorithm
optimal for mold filling simulations is long and formidable. We
seek an algorithm that:

• is globally and locally mass conservative;
• maintains at least second order accuracy in time and space;
• maintains compact interface discontinuity width;
• is topologically robust;
• is amenable to three-dimensions;
• is amenable to general unstructured meshes;
• can accomodate additional interfacial physics models;
• can track interfaces bounding more than two materials;
• is computationally efficient;
• can be implemented by novices; and
• can be readily maintained, improved, and extended.

We have expended considerable time and effort in quanti-
tatively comparing most popular candidate algorithms in 2-
D (Rider and Kothe, 1995). While equivalent 3-D comparison
studies have yet been undertaken, we currently conclude that a
clear interface tracking algorithm “winner” is not apparent at this
time. Each algorithm has readily identifiable strengths and weak-
nesses, which, if understood and quantified, could result in a hy-
brid, unified algorithm possessing the strengths of many different
algorithms.

1 Copyright  1999 by ASME



WHY VOLUME TRACKING?

To date we have embraced volume tracking al-
gorithms, where we have found them useful on 2-
D structured (Rider and Kothe, 1998) and unstruc-
tured (Mosso et al., 1997) meshes as well as 3-D structured
meshes (Kothe et al., 1996). We have devised and implemented
volume tracking algorithms which reconstruct piecewise linear
(planar) fluid interfaces from discrete fluid volume data. If the
piecewise linear interface reconstruction geometry is linearity-
preserving, i.e., reconstructs planar interfaces exactly, then we
declare the algorithm to be spatially second order. By detailing
the algorithm’s extension to 3-D unstructured meshes in the
following, the first seven requirements previously listed have at
least been addressed (although not adequately); work remains
before the remaining four requirements can be addressed, and
focused analysis is needed on all requirements before victory
can be declared. Volume tracking has been our choice to date
because other algorithms have fallen short in satisfying some
of the more important requirements such as topological robust-
ness and the maintainence of local conservation and compact
interface width.

A WALK THROUGH THE ALGORITHM

Our volume tracking algorithm seeks discrete numerical so-
lutions to

∂ fk

∂t
+ u ·∇ fk = 0 , (1)

where u is the flow velocity and fk is the volume fraction of
material k. Here we invoke a one-field approximation, as derived
in (Kothe, 1999). Since fk delineates the presence (or absence) of
each fluid, fk serves as a Heaviside function H for each material
k. Equation (1) is therefore an evolution equation for the location
of each fluid, with the volume fractions fk discretely approximat-
ing H. The volume fractions fk are bounded by 0≤ fk ≤ 1, where

fk =

 1, inside fluid k ;
> 0,< 1, at the fluid k interface ;

0, outside fluid k .
(2)

Since fluid volumes are volume-filling, volume fractions must
sum to unity, ∑k fk = 1, throughout the domain. In seeking solu-
tions to Eq. (1), fluid volumes are marched forward in time as so-
lutions to the volume integral of Eq. (1) (Rider and Kothe, 1998).
Key differentiating aspects of a given volume tracking algorithm
include the temporal integration scheme and the accuracy with
which fluid truncation volumes at control volume faces are esti-
mated. Truncation volumes follow from a required reconstructed
interface geometry assumption. For this work, we fit the fluid
volume data to a reconstructed interface whose geometry is piec-
wise linear (planar), given by the equation

n̂ ·x−ρ = 0 , (3)

where x is a point on the plane and ρ is the plane constant. This
approximation is a good one if the radius of curvature of the inter-
face is at least two to three times the characteristic mesh spacing.

We now summarize our volume tracking algorithm template:

1. Estimate the interface topology from discrete fk data. For
piecewise linear schemes, this requires an estimation for the
interface normal n̂.

2. Reconstruct the interface in each cell by locating the inter-
face surface within the cell in a volume conservative manner.
For piecewise linear schemes, this requires finding the plane
constant ρ in Eq. (3).

3. Define the flux volume boundaries at each control volume
face.

4. Compute the fluid volume truncated by the interface surface
within each flux volume (Vtr).

Various methods for accurate estimation of the interface normal
n̂ can be found in (Kothe et al., 1996; Williams et al., 1999a); in
the following we detail how Vtr can be computed exactly within
volumes bounded by logical hexahedra typical of most unstruc-
tured meshes.

Reduction to a Surface Problem
Let the truncation volume Vtr be the volume of the portion of

the interior of the hexahedron behind the interface plane p. The
problems to be solved are

• the direct problem: given the cell, ρ, and n̂, find V ; and
• the inverse problem: given the cell, ρ, n̂, and V , find ρ.

The truncation volume is given by

Vtr =

∫
v

1dτ =
1
3

∫
v

∇ · (x− n̂ρ) dτ(x)

=
1
3

[ 6

∑
f =1

∫
tr

(x− n̂ρ) ·dS f (x)+

∫
tr

(x− n̂ρ) ·dSp(x)
]
,(4)

where dτ is an element of volume, dS f is a vector element of
surface on cell face f , and dSp is a vector element of surface on
the truncating plane. The surface integrations above are confined
to the portions of the surfaces behind the plane (tr), and the dS f

elements point along the outward normals on each S f . In Eq. (4),
since dSp = n̂|Sp|, then (x− n̂ρ) · n̂ = 0, hence

Vtr =
6

∑
f =1

Vf , where 3Vf =

∫
tr

(x− n̂ρ) ·dS f (x) . (5)

Hence, to compute Vtr, we consider each truncated face f sepa-
rately.
In performing the surface integrals above, we must first define
the properties of each control volume, which is a computational
cell characterized as a logical cube having eight vertices, twelve
edges, and six faces; vertex positions arbitrary; edges that are
straight lines; and faces that are ruled surfaces. Note that this

2 Copyright  1999 by ASME



definition easily allows the cell in physical space to be a tetra-
hedron, prism, pyramid, or hexahedron, since any of the eight
vertex physical coordinates can coincide.

r

r

r

r
r

r

r

r

�
�
�

�
�
�

�
�
�

�
�
�

1

23

4

5

67

8

B
B
B
BB

r
r���������

��r

���
���

��r��
�
�
��

A
A
A
AAU

q
n̂

xp

Figure 1. A LOGICAL CUBE TRUNCATED BY A PLANE WHOSE CON-

STANT ρ IN EQ. (3) IS n̂ ·xp, WHERE xp IS A POINT ON THE PLANE.

Ruled Surfaces
Before defining a ruled surface, consider the following defini-
tions for the four-vertex cell face shown in Fig. 2. Let the four
vertices of a face be labeled x1, x2, x3, and x4, ordered coun-
terclockwise, with the outside of the face above the plane of the
paper, as shown in Fig. 2. The points (x1,x3) and (x2,x4) are

���
���

���
��

r���
�
�
�
�
�
�
rXXXXXX r

A
A
A
AAr

1

2

3

4

β

α���
��:

�
�
�
���

Figure 2. A RULED SURFACE IS DEFINED BY FOUR (IN GENERAL

NONPLANAR) POINTS CONNECTED BY STRAIGHT LINES. THE SUR-

FACE IS PARAMETERIZED BY α AND β.

therefore diagonal pairs. The successor vertex, x′i, is defined as
the vertex next to and ahead of x′i in the counterclockwise ro-
tation, i.e., x′1 = x2, x′2 = x3, x′3 = x4, and x′4 = x1. Similarly,
the double-successor vertex, x′′i , is the diagonal partner vertex,
and the triple-successor vertex, x′′′i , is the predecessor vertex, i.e.,
x′′′1 = x4.
Several vectors and scalars associated with a ruled surface can be
defined. First, a deviation vector B is given by

B = x1−x2 + x3−x4 , (6)

hence B = 0 only if the face is a parallelogram. When |B| 6=
0, then |B| measures the deviation of the ruled surface from the

parallelogram configuration. Next, the vector k, given by

k = (x3−x1)× (x4−x2) , (7)

possesses a magnitude which is twice the face area if the face xi

lie in a plane. The area of the ruled surface in Fig. 2 is also |k|/2,
independent of whether the four xi lie in a plane. A volume vtet,
given by

vtet = (x1−x2)× (x2−x3) · (x3−x4) , (8)

is six times the volume of the tetrahedron formed by the four xi

in Fig. 2. This volume is zero only if the four xi lie in a plane.
The cross-vectors Xi are defined by

Xi = (x′′′i −xi)× (xi−x′i) , (9)

e.g., X1 = (x4− x1)× (x1− x2). The cross-vector magnitude is
twice the area of the surface bounded the three vertices in its
definition. We also define the signs εi, 1 ≤ i ≤ 4 as ε1 = ε3 =
+1 and ε2 = ε4 = −1. Given the definitions above, we see that
2vtet = B ·k, and, if |B|= 0, then X1 = X2 = X3 = X4.
Let α and β in Fig. 2 be parametric variables with ranges 0 ≤
α ≤ 1, 0 ≤ β ≤ 1. Then (1−α)x1−αx2 and (1−α)x4−αx3

are points on the lines (x1,x2) and (x4,x3), respectively. Given
this relationship, one can write an expression for any point x on
a ruled surface as

x = x1 + α(x2−x1)+ β(x4−x1)+ αβB . (10)

If the face is planar, then x is a point inside the quadrilateral, but,
more generally, x(α,β) given by Eq. (10) is a 2-D surface seg-
ment of 3-D space whose borders are the straight lines (x1,x2),
(x2,x3), (x3,x4), and (x4,x1). Through any point (α0,β0) on this
surface, there are two straight lines, namely x(α0,β), 0≤ β≤ 1,
and x(α,β0), 0≤ α≤ 1, through it which lie entirely on the sur-
face. Thus it is called a ruled surface. The ruled surface can, un-
der suitable translation and rotation of coordinates, also be con-
sidered a parabolic hyperboloid whose surface area is the mini-
mum area that can be passed through its four straight lines.
The ruled surface element dS is given by

dS =
[
X1 + α(X3−X4)+ β(X3−X2)

]
dαdβ . (11)

Integrating dS over the ruled surface, on obtains:∫ 1

0
dα
∫ 1

0
dβ
[
X1 + α(X3−X4)+ β(X3−X2)

]
=

1
2

k (12)

The trace of the ruled surface on the truncating plane given by
Eq. (3) is a hyperbola on that plane, and the trace of the trun-
cating plane on the ruled surface is a hyperbola on the (α,β)
surface.
Let µi = n̂ · xi, where i denotes any of the four vertices on the
ruled surface. Further, define ρi = min(ρ,µi), hence ρ−ρi = 0
if xi is in front of the plane, otherwise ρ− ρi = µi. Let the xi

be relabeled xa, xb, xc, and xd and set µa = n̂ · xa, µb = n̂ · xb,
µc = n̂ ·xc, and µd = n̂ ·xd according to the convention that: µa ≤
µb ≤ µc ≤ µd . Given this convention, then, as the plane moves
with increasing ρ from ρ = −∞ to ρ = ∞, xa is the first vertex
passed, then xb, xc, and xd are successively passed. Successor

3 Copyright  1999 by ASME



vertices will also be denoted a′, a′′, so that a′′ = a + 2. With this
notation, all possible plane/ruled surface truncation alteratives
divide into six unique cases for Vf :

Case 0: ρ≤ all µi, then Vf = 0;
Case 1: µa < ρ≤ µb, then Vf has only one truncated corner;
Case 2: µa ≤ µb < ρ< µc ≤ µd and b 6= a + 2;
Case 3: µc ≤ ρ < µd , then only one corner has not been trun-

cated;
Case 4: µd ≤ ρ (Vf = Vf tot);
Case 5: µb < ρ < µc and b = a + 2, which can occur for “bow-

tied” surfaces.

Given the integral, Knm, defined as

Knm =

∫
tr

αnβm dαdβ , (13)

then Vf can be expressed as

3Vf = (x1− n̂ρ) ·
[
X1K00 +(X3−X4)K10

+(X3−X2)K01
]
− vtetK11 . (14)

Upon analytically performing the K integrals, a general expres-
sion for Vf follows:

Vf =
1
6 ∑

i
εiYi

(ρ−ρi)
2

λi
+

vtet
2 ∑

i
εi
[
J1(wi)−2J2(wi)+ J3(wi)

] (ρ−ρi)
4

λ2
i

,(15)

where

Yi = (x′′′i − n̂ρ) · (xi− n̂ρ)× (x′i− n̂ρ) ;

λi = εi(µi−µ′i)(µi−µ′′′i ) ;

wi =
ν
λi

(ρ−ρi) , where ν = n̂ ·B ; (16)

and

J1(w)−2J2(w)+ J3(w) = 2
∞

∑
n=0

(−w)n

(n + 2)(n + 3)(n + 4)
. (17)

If w is large, i.e., w > 10−2, we compute J0 and J1, J2, J3 suc-
cessively by recursion. But if w is small, i.e., w ≤ 10−2, then
compute according to the power series in Eq. (17).
The expression for Vf in Eq. (15) is quite general, being appro-
priate for cases 1, 3, and 5 mentioned previously. Cases 0 and 4
are trivial, but Eq. (15) may break down for case 2 because one
of the λ’s in the denominator can vanish. In this case, the terms
in Eq. (15) need to be rearranged.
It is useful to definte Vf tot, which is our case 4, where all four
vertices are behind the interface plane, i.e., all µi ≤ ρ. Using
Eq. (14), and integrating over the entire ruled surface, which
yields K00 = 1, K01 = K10 = 1/2 and K11 = 1/4, gives:

Vf tot =
1
2

(
xcm− n̂ρ

)
·k , xcm =

x1 + x2 + x3 + x4

4
. (18)

NUMERICAL EXPERIMENTS
We consider three numerical experiments as a demonstration of
the versatility of the volume tracking algorithm. For the first, vol-
ume data derived from a known fluid topology is reconstructed
as interface planes. This static test assesses the algorithm’s abil-
ity to replicate complex topologies. For the second, this topology
is then moved, hence the time-integration properties of the vol-
ume tracking algorithm can be scrutinized. For the third, we task
the algorithm to track time-dependent free surfaces in a real flow
situation. Here we simulate the side fill of a plexiglass box with
water and qualitatively compare the computed free surface topol-
ogy with the actual topology observed in digital video images of
the fill.

The Logo
Consider a 3-D version of the familiar ASME logo. Each letter
in the logo is three-dimensionalized by extruding an outline of
the letter (an n-sided polygon) in the xy-plane a small distance
along the z-axis. After extrusion, each letter fits within a 0.05×
0.04× 0.01m box, and the entire logo resides within a 0.17×
0.04×0.01m box.

Static Interface Reconstruction. Figure 3 demonstrates
the ability of the volume tracking algorithm to reconstruct the
3-D logo, as seen in the xy-plane. Note that all three meshes
are too coarse (∼ 0.30m mesh size) for the volume track-

Figure 3. RECONSTRUCTED INTERFACE PLANES BOUNDING THE

ASME LOGO IN THREE DIFFERENT MESHES: AN ORTHOGONAL

(41 × 26 × 26) HEXAHEDRAL MESH (TOP) AND TETRAHEDRAL

MESHES CONSISTING OF 63,159 (MIDDLE) AND 123,738 ELEMENTS

(BOTTOM).

4 Copyright  1999 by ASME



ing algorithm to reconstruct the hole in the A. Note also that
the reconstructed logo has a smoother surface in the hexahe-
dral mesh relative to the tetrahedral meshes. The tetrahedral
mesh “fuzziness” exhibited on the logo surface is primarily due
to less than second-order accuracy in computing the interface
normal n̂. The normal n̂ is estimated with the procedure out-
lined in (Williams et al., 1999b; Williams et al., 1999a), which
is strictly linearity-preserving only for orthogonal hexahedral
meshes. As indicated in (Williams et al., 1999a), however, an
algorithm for estimating n̂ with convolutions and an appropri-
ate kernel appears promising, able to achieve near linearity-
preserving results on complex tetrehedral meshes. This approach
is therefore likely to deliver strict linearity-preservation on gen-
eral unstructured meshes in the near future.

Moving the Interface. Now consider what happens when
the logo is allowed to fall into a pool under the force of grav-
ity. The logo is assumed to be an inviscid incompressible fluid
ten times more dense than a background fluid (also inviscid
and incompressible). The logo initially hovers 0.02m above
the pool, which is 0.03m deep. The computational domain, a
0.20×0.12×0.04m box, is partitioned with 80×48×16 orthog-
onal hexahedral cells, offering ample resolution for the volume
tracking algorithm to resolve the hole in the letter A. At time

Figure 4. SIMULATION RESULTS FOR THE ASME LOGO FALLING

INTO A POOL. SHOWN ARE ISOSURFACES OF THE ONE-HALF VOL-

UME FRACTION LEVEL AT TIMES OF 0.0s, 0.08s, 0.10s, AND 0.12s,

RESPECTIVELY.

zero the logo is allowed to fall, eventually splashing into the pool
within 0.20s, as seen in Fig. 4. The splash is not overly energetic
because the logo possesses a relatively small free-fall velocity at
impact due to its short initial height above the pool. The letters
in the logo also experience appreciable drag and distortion im-
parted to them by the upward-moving background fluid, which
has sizeable inertia due to its relatively high density.

Free Surface Flow Validation
We now present very preliminary results for a series of free sur-
face flow validation experiments currently ongoing at LANL.
The principal purpose of this series of experiments is the valida-
tion of the free surface flow algorithm in a regime relevant to the
gravity-pour mold filling portion of LANL casting operations.
The experimental plan calls for varying fluid/fluid configurations
possessing flow regimes that are either energetic or dominated by
surface tension, as measured by the Weber, Bond, and Reynolds
numbers. Obvious examples are the classic free surface fluids,
water/air (presented here), for a more energetic flow, and gal-
lium/water, for less energetic flow dominated by surface tension.
To closely replicate current LANL mold-filling processes, these
experimental free surface flows must be truly three-dimensional,
initiated by the gravity-fill of a container from one or more aper-
tures along its top or side.

The Gravity-Fill Experiment. The current experimental
configuration is shown in Fig. 5. The filling container is a box,
whose simple geometry allows the quick and easy generation of
computational meshes. The box is constructed from plexiglass
so that the filling fluid free surface dynamics can be easily ob-
served with a digital video camera. Square inflow apertures and
circular outflow vents on all surfaces of the box are available in
various locations. The square inflow aperture holes come in three
sizes: 6.35×10−03, 9.525×10−03, or 1.27×10−02 m on a side.
For the water/air experiment, the box initially contains air at at-
mospheric pressure, which is vented out of a circular hole along
the top surface during the fill. Water supplied from a reservoir
(0.165m above the box surface) enters the square inflow aperture
under the action of gravity. For these experiments, the inflow ve-
locity, based on observations and pressure-head calculations, is
∼ 1.0 m/s, but more precise inflow conditions will be determined
in the future. The video camera records thirty digital images each
second (see Fig. 6).

Simulation Results. Our first simulation of the side-fill ex-
periment is shown in Fig. 7. The filling box is resolved coarsely
with a computational domain partitioned with 10× 15× 25 or-
thogonal hexahedral cells. Our initial results are very promis-
ing, with the inflow stream shape (position and inflection) and
opposite-side impact time and position captured correctly. The
filling dynamics below the inflow stream along the box bottom
are not captured as well as the inflow stream, however, because

5 Copyright  1999 by ASME



r

r

r

r

r

r

r

r

��
�

��
�

��
�

��
�

0.0762m

0.1270m

0.0508m

p -1.0 m/s
inflow

0.0762m

6

?

6vent

?
g

Figure 5. SCHEMATIC OF THE BOX GRAVITY-FILL EXPERIMENT.

WATER ENTERS A SQUARE (0.00635m) APERTURE AS SHOWN.

Figure 6. DIGITAL VIDEO IMAGE OF THE WATER/AIR FREE SUR-

FACE 0.60 SECONDS AFTER INFLOW IS INITIATED.

of the coarse simulation resolution and the incorrect 10:1 den-
sity ratio. For example, an unrealistically high background fluid
density gives the background fluid enough inertia to impart ap-
preciable drag to the filling fluid along the inflow wall at the
bottom, causing it to “pile up”. Simulations with the correct
density ratio (800:1) are likely to be devoid of this artifact. Cur-
rently high density ratios place restrictions on the flow algorithm,
which, however, can be alleviated with a nonsolenoidal filtering,
as discussed in (Kothe, 1999; Williams et al., 1999a). This work
is currently underway, and will be used in subsequent validation
simulations.

ACKNOWLEDGMENT

We are indebted to Charles Zemach of Fluid Dynamics Group T-
3 at Los Alamos National Laboratory for his analytical volume
truncation solutions. This work was supported by the United
States Department of Energy Accelerated Strategic Computing
Initiative Program.

Figure 7. SIDE-FILL SIMULATION RESULTS CORRESPONDING TO

FIG. 6, EXCEPT THAT THE WATER/AIR FREE SURFACE IS APPROX-

IMATED WITH TWO FLUIDS HAVING A 10:1 DENSITY RATIO. INTER-

FACE PLANES ARE SHOWN AT 0.224s, 0.264s, 0.350s, AND 0.420s.

REFERENCES
D. Kothe, D. Juric, K. Lam, and B. Lally. Numerical recipes for mold
filling simulation. In Proceedings of the Eighth International Confer-
ence on Modeling of Casting, Welding, and Advanced Solidification
Processes, 1998.
D. B. Kothe. Perspective on Eulerian finite volume methods for incom-
pressible interfacial flows. In H. Kuhlmann and H. Rath, editors, Free
Surface Flows, pages 267–331, New York, NY, 1999. Springer-Verlag.
D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein.
Volume tracking of interfaces having surface tension in two and three
dimensions. Technical Report AIAA 96–0859, AIAA, 1996. Presented
at the 34rd Aerospace Sciences Meeting and Exhibit.
S. J. Mosso, B. K. Swartz, D. B. Kothe, and R. C. Ferrell. A parallel,
volume-tracking algorithm for unstructured meshes. In P. Schiano,
A. Ecer, J. Periaux, and N. Satofuka, editors, Parallel Computational
Fluid Dynamics: Algorithms and Results Using Advanced Computers,
pages 368–375, Capri, Italy, 1997. Elsevier Science.
W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal
of Computational Physics, 141:112–152, 1998.
W. J. Rider and D. B. Kothe. Stretching and tearing interface tracking
methods. Technical Report AIAA 95–1717, AIAA, 1995. Presented
at the 12th AIAA CFD Conference.
M. W. Williams, D. B. Kothe, and E. G. Puckett. Approximat-
ing interface topologies with applications to interface tracking algo-
rithms. Technical Report 99–1076, AIAA, 1999. Presented at the 37th
Aerospace Sciences Meeting.
M. W. Williams, D. B. Kothe, and E. G. Puckett. Convergence and ac-
curacy of kernel-based continuum surface tension models. In W. Shyy,
editor, Fluid Dynamics at Interfaces, pages 347–356, Boston, MA,
1999. Cambridge University Press.

6 Copyright  1999 by ASME


	ABSTRACT
	INTRODUCTION
	WHY VOLUME TRACKING?
	A WALK THROUGH THE ALGORITHM
	Reduction to a Surface Problem
	Ruled Surfaces

	NUMERICAL EXPERIMENTS
	The Logo
	Static Interface Reconstruction
	Moving the Interface

	Free Surface Flow Validation
	The Gravity-Fill Experiment
	Simulation Results


	ACKNOWLEDGMENT

