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A STUDY OF THE VORTEX SHEET METHOD AND
ITS RATE OF CONVERGENCE*

ELBRIDGE GERRY PUCKETTf

Abstract. The subject of this study is Chorin’s vortex sheet method, which is used to solve the Prandtl
boundary layer equations and to impose the no-slip boundary condition in the random vortex method
solution of the Navier-Stokes equations. This is a particle method in which the particles carry concentrations
ofvorticity and undergo a random walk to approximate the diffusion of vorticity in the boundary layer.
During the random walk, particles are created at the boundary in order to satisfy the no-slip boundary
condition. It is proved that in each of the L1, L2, and L norms the random walk and particle creation,
taken together, provide a consistent approximation to the heat equation, subject to the no-slip boundary
condition. Furthermore, it is shown that the truncation error is entirely due to the failure to satisfy the
no-slip boundary condition exactly. It is demonstrated numerically that the method converges when it is
used to model Blasius flow, and rates of convergence are established in terms ofthe computational parameters.
The numerical study reveals that errors grow when the sheet length tends to zero much faster than the
maximum sheet strength. The effectiveness of second-order time discretization, sheet tagging, and an
alternative particle-creation algorithm are also examined.
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1. Introduction. The vortex sheet method is a numerical method for approximating
solutions of the Prandtl boundary layer equations. It was developed by Chorin [9] for
use with the random vortex method [8] when approximating solutions of the Navier-
Stokes equations in domains with solid boundaries. The vortex sheet method is used
in regions adjacent to the boundary, while the random vortex method is used in the
interior of the flow. Both methods are particle methods. The particles carry concentra-
tions of vorticity; hence, the velocity field is determined by the particle positions. The
particles are advected in this velocity field and then undergo a random walk to model
the effects of diffusion. In the vortex sheet method, particles are created on the boundary
during the random walk in order to approximately satisfy the no-slip boundary
condition. The two methods are coupled by requiring that the circulation around a

particle remain the same when it passes from one region to the other and that the
velocity imposed on the boundary by the random vortex method is the velocity at
infinity in the Prandtl equations. Hybrid vortex sheet/random vortex methods have
been successfully used to model such problems as flow past a circular cylinder [5],
[6], [36]; driven cavity flow [7], [27]; boundary layer instability [11]; flow past a
backward-facing step [32]; turbulent combustion [15], [33], [34]; and wind flow over
a building [35].

Much theoretical work has been devoted to understanding the accuracy of the
vortex method (i.e., the random vortex method without the random walk used to solve
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A STUDY OF THE VORTEX SHEET METHOD 299

Euler’s equations) 1 ]-[3], 13], 17]-[ 19]. Although there are fewer theoretical results
for the random vortex method, it has been shown that the method converges in a
two-dimensional domain with a free-space boundary condition [16], [24]. There is
also a numerical study of the random vortex method [28] and a detailed numerical
investigation of a hybrid vortex sheet/random vortex method applied to flow past a
rearward-facing step [32]. However, to date there has been no theoretical or numerical
work to investigate the effectiveness of the vortex sheet method in approximating
solutions of the Prandtl equations. This is the goal of the present work.

We begin by reviewing the Prandtl equations. Then in 2 we describe the method
and discuss two conditions, based on a priori estimates, that the computational
parameters must satisfy. In 3 we show that the sheet-creation algorithm is equivalent
to interpolating the tangential velocity on the wall induced by the current positions of
the sheets. In 4 we examine the error after one timestep of the random walk and
sheet-creation process. We prove that this process is a consistent approximation to the
exact solution of the diffusion equation with the no-slip boundary condition in the
sense that the expected value of the computed solution is the exact solution plus some
error which goes to zero as the method is refined. We estimate the consistency error
in the L1, L2, and L norms and show that this error is entirely due to our failure to
satisfy the no-slip boundary condition exactly. We also derive bounds on the variance
of the computed solution and the probability distribution of the error after one timestep
of the random walk and sheet-creation process. Finally, in 5 we present the results
of extensive computations using the method to approximate Blasius flow. Our numerical
results demonstrate that the computed solution converges to the exact solution, provided
the parameters are chosen correctly. We endeavor to develop guidelines for choosing
these parameters so that the resulting computation is optimally accurate and efficient.
We also examine the merits of using a second-order time-integration scheme, a different
sheet-creation algorithm, and a variance-reduction technique known as sheet tagging.

1.1. The Prandtl equations. In two dimensions the Prandtl equations [10], [23],
[30], [37] are

(1.1a)

(1.1b)

with boundary conditions

(1.1c)

(1.1d)

(1.1e)

II "- UU -[- l)l,ly --Px -- lUyy,

u + Vy =0,

u(x,O,t)=O,

v(x,O,t)=o,

lim u(x, y, t)= U(x, t),
y

where x, y are orthogonal coordinates, u is the velocity component in the x direction,
v is the component in the y direction, p is the pressure, v is the kinematic viscosity,
and U(x, t) is the free-stream velocity. The free-stream velocity or "velocity at infinity"
is independent of y and assumed to be known. We also assume the flow has constant
density p 1.

These equations are derived from the Navier-Stokes equations under the assump-
tion that the velocity component perpendicular to the boundary is small relative to
the tangential component. They are valid for general laminar flows along curved walls,
as long as the boundary layer thickness is small compared to the wall’s radius of
curvature (White [37, p. 256]). Both the boundary layer equations [30] and the vortex
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300 ELBRIDGE GERRY PUCKETT

sheet method [ 11] may be generalized to three dimensions. For simplicity we work in
two dimensions and assume that the boundary is a fiat wall of length L, beginning at
(0, 0) and extending to (L, 0).

It follows from py =0 [30, p. 121] that the pressure is imposed on the flow from
outside the boundary layer and hence, is a known quantity. Furthermore, by (1.1b)
and (1.1d),

(1.2) v(x, y)= Ux(X, y’) dy’,

and we see that equations (1.1a)-(1.1e) are in fact an evolution equation for one
unknown u.

It will be useful to consider the Prandtl equations in vorticity formulation"

(1.3a)
Dto
Dt vtoy,

(1.3b) to -uy,

(1.3c) u+ vy =0,

where to is the vorticity, D/Dt=O+UOx+OOy is the material derivative, and the
boundary conditions remain (1.1c)-(1.1e). By (1.3b) and (1.1e),

(1.4) u(x, y, t)= U(x, t) + to(x, y’, t) dy’,

and it follows that all unknown quantities may be recovered from the vorticity. Thus,
the Prandtl equations may also be viewed as an evolution equation for the vorticity
to. This evolution is governed by equation (1.3a). In the vortex sheet method we split
this equation into two parts:

(1.5) Dto- 0,
Dt

(1.6) tot Ptoyy,

and solve each part separately.

2. The vortex sheet method. The vortex sheet method is a fractional step method
in which one step consists of solving (1.5) and the other of solving (1.6) subject to the
boundary condition (1.1c). The particles, called "sheets," carry piecewise linear con-
centrations of vorticity and the velocity field is reconstructed from the particle positions
using (1.4). (We use the words "sheets" and "particles" interchangeably.) The solution
of (1.5) is obtained by passively advecting the sheets in.this velocity field. The solution
of (1.6) is obtained by creating sheets at the wall in order to (approximately) satisfy
(1.1c) and then giving all sheets a random displacement in the y direction, reflecting
those which go below the wall. This creation of sheets mimics the physical creation
of vorticity at the wall.

2.1. Notation. Let Pa,u denote the solution at time At of the Prandtl equations
(1.1a)-(1.1e) with initial data u. Similarly, let Aatu denote the solution at time At
of the inviscid equation

(2.1a) Du_ -Px,Dt
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A STUDY OF THE VORTEX SHEET METHOD 301

(2.1b) ux + Vy O,

(2.1c) u(x, o, t) U(x), > O,

(2.1d) v(x, O, t)=0, t>0,

with initial data u, and let Datu denote the solution of the diffusion equation

(2.2a) ut Pglyy

(2.2b) u(x, O, t) O, > 0

with initial data u. (Here and in what follows we suppress explicit mention of the
dependence of the free-steam velocity U on the time for notational convenience.)
The vortex sheet method consists of finding approximations/at,/a to Aat, Dat and
then approximating PAtuO with/AtZAtu0. We write u k (PAt)kllO and k ()AtAt)kuO.
We always use the tilde to denote an approximation. Thus, ffk is an approximation to
u k, k is an approximation to to k, etc.

2.2. The approximate velocity field ik. For now we omit all reference to time and
consider the vortex sheet method approximation to the velocity field at a fixed instant
in time. The principle common to all vortex methods is that the velocity field is
completely determined by the vorticity field and boundary conditions. In the vortex
sheet method we replace the integral on the right-hand side of (1.4) by the sum

(x, y)= U(x)+Y. Wjbh(X-xj)H(y-y),

where H(y) is the Heaviside function,

0, x < 0,
H(y)=

1, x>=O.

The function bh, called the cutoff or smoothing function, is defined by bh(x)--b(x/h),
where b can be chosen in many ways. All cutotts that we consider will be normalized
so that b(0)= 1 and have compact support,

(2.4) b(x) 0 for Ixl R.

Typically, R 1 or R 2. We discuss cutoffs at length in 3.
Each term of the sum in (2.3) is referred to as a vortex sheet. The jth sheet has

center (x, y), strength or weight tot, and length 2Rh, where R depends on the particular
smoothing function chosen. The parameter h is frequently referred to as the "sheet
length," even though the actual length is usually nh for some integer n > 1. From (2.3)
we see that the jump in t along the jth sheet is tojbh (X- Xj). This is the motivation for
referring to the computational elements as "vortex sheets."

We can rewrite (2.3) as

a(x, y)= U(x)+ Z tojbh(X--Xj)6(y--y’) dy’

where 6 is the Dirac delta function. Thus, our approximation to the vorticity is

(x, y)=Y oa.ibh(X--Xj)6(y.i-- y

and we see that each sheet carries a linear concentration of vorticity that varies like
bh(X--xj) as we move along the line segment (-Rh <-_ x-x <-_ Rh, y y).
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302 ELBRIDGE GERRY PUCKETT

Using (1.2) we find that our approximation to v is given by
(x, y)=-Ux(x)y-Y oObh(X--X) min (y, y).

For cutoffs that are not differentiable everywhere (this is the case for the most commonly
used cutoff) we can use a divided difference approximation to Oxbh"

(:.5) (x, y)=-U(x)y-2 ooh- bh x+--x --bh x----x min(y,y).

Z3. ltegrfi f te ets fie. Our approximation (a, B) to the velocity
field (u, v) is completely determined by the positions of the panicles (x, y) and their
weights . Denote the timestep by t, the position of the jth panicle at time kt by
(x, y) and the velocity field derived from these positions by (a, ). Given (a, )
the velocity field at the next timestep is determined as follows.

2.3.1. The advection step. The solution of the advection equation (2.1a)-(2.1d)
with initial data (k, k) is found by moving the sheets according to

(2.6a) X+1/2= x+ Atk(x, y),
(2.68) y+1/2 y+t(x, y).
Thus, the velocity field after the first of the two fractional steps, denoted by
(+/2, +1/2), is

ff+’/2(x, y)= U(x)+E w;bh(X-X+’/2)H(y+’/2-y),
J

+/;(x, y)=- U,(x)y-2 WOxbh(X--x+/) min (y, y+/z).

Note that since the sheet strengths remain constant in the advection step, +/
-0ra+/ approximates the solution of (1.5) with initial data in the sense that
voicity is constant on approximate panicle paths (x, y) (x+/2, y+/2).

In (2.6a), (2.6b) we have used Euler’s method to solve the system of ordinary
differential equations (ODEs)"

(2.7a) dX- u(x, y, t),
dt

(2.7b) dyj
v(xj y, t)dt-

with the right-hand side replaced by ffk and k. We can choose to solve the system
(2.7a), (2.7b) with a higher-order ODE solver. Extensive theoretical work (e.g., [1],
[21]) has demonstrated the effectiveness of using a higher-order ODE solver in the
vortex method solution of the Euler equations. However, to date there has been no
such work on the use of a higher-order solution of (2.7a), (2.7b) for the vortex sheet
method. In 5.4 we present the results of a numerical experiment, comparing a
second-order solution of (2.7a), (2.7b) with the first-order solution given by (2.6a),
(2.6b).

2.3.2. The particle-creation and diffusion step. The second part of the splitting
procedure is the random walk solution of (2.2a), (2.2b) with initial data 6k/l/,_. This
consists of creating sheets at gridpoints on the wall to approximately satisfy the no-slip
boundary condition (1.1c), and then letting all sheets undergo a random walk in the
y direction, reflecting those sheets that go below the wall.

Choose h so that the wall length L is an integral multiple of h, L rh. Choose
equally spaced points al,’", a on the wall with al h/2, ai--ai-l--h, and a=
L- h/2. We approximately satisfy (1.1c) by requiring that at the end of every timestep,
lk+(ai, O)O. This is accomplished as follows. Let tOmax denote a computational
parameter called the maximum sheet strength. All to will be chosen so that ]to] _-< Wmx.
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A STUDY OF THE VORTEX SHEET METHOD 303

This is the parameter that most directly influences the accuracy of the random
walk. Let ui a//(ai, 0). At each a we create q-> 0 sheets with centers (x, y) (a, O)
and strengths o so that

qi qi

ak+l/2(aj, O).+ O)ilbh(aj--xi)g(yi--O lj-[- a)ilbh(aj--ai) (.Oma
i=1 /=1 i=1 /=1

for each j. We assume that for a given the (.Oil are all equal and sometimes write
rather than Wil.

We have considerable leeway when choosing q and w. We therefore discuss this
aspect of the algorithm in greater detail. We begin by describing the version originally
proposed by Chorin in [9]. We then present a variation on his idea which leads to
fewer sheets at the expense of approximating the no-slip boundary condition less
accurately. Assume that R 1 in (2.4). Hence, bh(ai- aj) ij, where 6o is the Kronecker
delta function. This is the case for the most commonly used cutoff. In 3.3 we will
remove this assumption and describe a different creation algorithm for which R 2.

PARTICLE-CREATION ALGORITHM A. In this version a sheet is created at ai if
lu, l>__ e where, for example, e might be chosen to be on the order of the computer’s
roundoff error. Let Ix] denote the greatest integer less than or equal to x. If lull_> e,
then we create

Ui[/ 60ma if O)ma divides u evenly,
qi [[U/I/(/)max - 1 otherwise,

sheets at (ai, 0), each of strength wi =-u/qi. Otherwise we set qi--0 and create no
new sheets at (a, 0). As we shall see presently, the random walk does not alter the
tangential velocity at the wall. Hence, the tangential velocity at time (k + 1)At satisfies

0, ifqi>O,
(2.8) [tk+l(a,, 0)1 [U, + q,m,[ <

e, if q 0.

PARTICLE-CREATION ALGORITHM B. An alternate version of this particle-creation
algorithm was used in [32], as well as in the present work. At the ith gridpoint we
create qg-- [[Uil/Wmax] sheets, each with strength w, =-sign (Ui)(.Oma and center (a,, 0).
Our approximation to the tangential velocity at time (k + 1)At now satisfies

(2.9) la+’(a,, 0)1 [u,- q, sign (Ui)0max[ < (.0ma

Note that Algorithm B is not Algorithm A with e Wmax, since in Algorithm B
all sheet strengths have the same magnitude (.Oma In 5.6 we will show that this
diminishes the number of sheets in the flow without adversely affecting the overall
accuracy of the method.

Now let every sheet (including those just created) take a random walk in the y
direction, reflecting those sheets that go below the wall. The new particle positions are
given by

where j is a Gaussian-distributed random number with mean 0 and variance 2,At.

The tangential velocity at time (k + 1)ZXt is therefore

a+l(x, y)= U(x)+ E tjbh(X--x+l/)H(lY
j=l

qi

(2.10) + o,bh(X- a,)n(],]- y)
i=1 /=1

Nk+l
U(x)+ oOjbh(X-x+l)H(y+l-y)

j=l
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304 ELBRIDGE GERRY PUCKETT

where Nk (respectively, Nk+l) is the number of sheets in the flow at time kAt (respec-
tively, time (k + 1)At). Using the notation introduced in 2.1 we write k/l= )A,/1/2.

It is appropriate to make several remarks here concerning the random walk and
sheet-creation algorithm. Let E denote the expected value with respect to the ’j and

’i in (2.10). A consequence of Theorem 4.1 is that for each x [0, L],

(2.11) /k+l(x, 0)--0 DA,k+I/2(X,, y)’- E[JAtak+l/2(X, y)].

We then show that for either of the creation algorithms described above

(2.12) IlOA,ak+l/2(x, Y) E[A,ak+l/(x, y)] I1 O((h + O)max)(/ml) 1/2s)

for s 1, 2, oo. Thus, lAtlk+l/2 is a consistent approximation to OAtlk+l/2 with trunca-
tion error O((h+wmax)(vAt)l/2s). It follows from (2.11) and (2.12) that this error is
entirely due to our failure to satisfy the no-slip boundary condition exactly. In 3 we
will show that the cutoff function determines how well ak+(X, 0) satisfies the no-slip
boundary condition at each point x on the wall.

In the original version of the vortex sheet method, Chorin created twice as many
sheets as needed, the total of which was twice that needed to cancel the velocity at
the wall [9, p. 423]. He then let these new sheets random walk without reflection,
throwing away those sheets that went below the wall. (Of course the other sheets
underwent a random walk, with reflection, as above.) In a more recent version 11, p. 6],
Chorin again created twice as many sheets as needed, but this time he employed a
rejection technique to ensure that exactly half of these sheets took their random walk
in the positive y direction. However, (2.11) and (2.12) show us that these special
procedures are unnecessary. It is sufficient to create sheets as in Algorithms A or B
above and allow them to undergo a random walk with reflection. These results also
demonstrate that the sheet creation and random walk are part of the same process.
Together they comprise one step of a two-step fractional-step method, rather than two
separate steps of a three-step method. We emphasize that to obtain (2.11) and (2.12)
the new sheets must undergo a random walk immediately after being created, without
waiting a timestep before diffusing them from the wall.

2.4. The CFL condition. The most well known and perhaps the only universally
acknowledged condition on the parameters in the vortex sheet method is the so-called
"CFL" condition. For Umax--max U(x) this condition states that At and h must be
chosen so that

(2.13) AtUmaxh.

This requirement was originally proposed by Chorin in [9]. The justification usually
given for (2.13) is that we want to ensure that the distance a sheet travels downstream
in one timestep is no more than one sheet length. Hence, sheets created at the ith
gridpoint must influence the (i + 1)st gridpoint before moving on downstream. This is
essentially an accuracy criterion (as opposed to a stability criterion). It ensures that
information propagating in the streamwise direction influences all features of the flow
that are at least O(h).

We now offer another justification for (2.13) which takes into account the rate at
which vorticity diffuses across the boundary layer in the vortex sheet method. Consider
sheets created at the ith gridpoint ai at a given timestep. Since the velocity is 0 at the
wall, the only movement imparted to these sheets at the next timestep will be due to
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A STUDY OF THE VORTEX SHEET METHOD 305

the random walk. We seek a condition to ensure that these sheets remain in the
boundary layer after this random walk. For the fiat plate problem, the boundary layer
thickness above a point x is

.5 U(x)

(Schlichting [30, p. 140]). The random walks are drawn from a Gaussian distribution
with mean 0 and standard deviation tr =x/2,At. Thus, if (2.13) holds, then

5 /’2 ,h
tr < 5 ta2 U(x)

where al hi2 is the first gridpoint on the wall. This implies that, on the average,
more than 98 percent of the sheets created at a will remain in the boundary layer
after taking one timestep. Since the boundary layer increases with increasing x for the
flat plate problem, this will also be true for the sheets created at the other gridpoints.
Similar conditions may be found for other flows; all that is required is an estimate of
the boundary layer thickness.

We now propose another constraint which relates tOma to h and At. Consider the
flat plate problem with initial condition

Umax, y>0,
(2.14) u(x’ Y)

O, y O.

At the first timestep we need to create K sheets of strength tOma at each ai in order
to cancel the velocity Umax just above the wall. Thus, after the random walk, we will
have approximated u(ai, y) by a step function ff(a, y) with K jumps, each of strength
Omax, such that t(a,0)=0 and t(a,c)= Uma The task is to choose tOma (or
equivalently K) in a manner consistent with our choice of At and h. It is reasonable
to require that we resolve u to the same extent that we are resolving features in the
streamwise direction. Therefore, let K CL! h for some constant C, and let (.Oma

Umax/K. Using (2.13) we obtain

h2

(2.15) Omax Co At

where Co 1/CL is a constant with dimensions 1/L. Our experience with the test
problem described in 5 has been that the best results were obtained with Co < 1/L.
The argument presented here can be easily generalized for flows other than the fiat
plate problem with initial data (2.14). Since

tg tOjbh X Xj O tomax/ h

sheets induce local (nonphysical) streamwise gradients in t and o3 that are O(tOmax/h).
Condition (2.15) relates the size of these gradients to the timestep. In 5 we present
numerical results that demonstrate the importance of (2.15).

2.5. Sheet tagging. In [9] Chorin proposed the following "variance-reduction
technique." During the sheet-creation process each sheet is assigned a positive integer,
called a tag, as follows. Let Tk be the last tag assigned at the kth timestep. Then,
during the (k + 1)st timestep, the first sheet created at every gridpoint is assigned the
number Tk + 1, the second sheet is assigned Tk + 2, and so on until all sheets have a
tag. Thus, no two sheets created at the same gridpoint will have the same tag, while
one sheet at each gridpoint will have the Same tag (except, of course, when more sheets
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306 ELBRIDGE GERRY PUCKETT

need to be created at one gridpoint than at another). When the sheets undergo the
random walk all sheets with the same tag are assigned the same random walk.

The motivation behind this procedure is twofold. First, if we use the vortex sheet
method to model flow past an infinite plate with constant free-stream velocity
10, pp. 92-95], then, with sheet tagging,.the vortex sheet method reduces to the random
walk solution of the heat equation. This eliminates all error due to the advection step.
Second, on heuristic grounds it is believed that vorticity leaving the wall diffuses at
the same rate everywhere along the wall, and it was thought that the sheet tagging
mimicked this process. Our experience has been that, with the exception of the infinite
fiat plate problem, sheet tagging does not improve the accuracy of the vortex sheet
method. In the remarks after the proof of Theorem 4.7, we show how the variance of
the solution can actually increase when different sheets with the same tag overlap. In
5.7 we present the results of numerical experiments that substantiate our contention

that the sheet-tagging procedure does not improve the accuracy of the method.

3. Smoothing. It is instructive to examine the smoothing process from the follow-
ing perspective. Given tk+1/2 we would ideally like to create sheets at the wall so that
tk+l satisfies (1.1c) for all x[0, L]. Let g(x)=6k+l/2(x,O) and let " and ’j be
independent, Gaussian-distributed random variables with mean 0 and variance 2uAt.
Then

yk+l/2"k+l(x, y) =- U(x) +E wjbh(X x+l)H(IUopt +
~k+lis the optimal choice for k+l For Uop, satisfies the no-slip boundary condition exactly

at every x and hence, by (2.11),

for all x e [0, L]. However, we need to write k+ as the sum ofvoex sheets. Therefore,
our task is to find q and , such that

qi

if(X)=---- i toilbh(X--ai) tl:bh(X--ai)
i=1 /=1 i=1

is a good approximation to g. This amounts to finding a that interpolates g at the
gridpoints ai. We will now examine several ways in which this can be done.

3.1. Piecewise constant cutoffs. It is natural to consider choices for the cutoff b
that result in piecewise constant . For example, let b(x)= s(x), where s is defined by

(3.1) s(x) g(1/2- lxl).
It has been observed, however, that the vortex sheet method performs poorly when
this cutoff is used. We offer the following possible explanation. For this choice of b
the tangential velocity is piecewise constant as a function of x. Consequently, our
approximation to the derivative 0xff in (2.5) is poor. This in turn leads to large errors
in the particle paths through (2.6b).

3.2. Piecewise linear smoothing. An obvious improvement over (3.1) is to choose
b so that the resulting is a piecewise linear approximation to g. Thus, let b(x) l(x),
where

(3.2) l(x) =- iflxl_-< 1,
otherwise.

With this choice of smoothing the functions bi(x)= bh(X--ai), i= 1,..., r are a basis
for the space of piecewise linear polynomials on [0, L] with breaks at the ai (see
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A STUDY OF THE VORTEX SHEET METHOD 307

Schultz [31, 2.1]). These functions are frequently referred to as "hat" or "tent"
functions. This cutoff was first used by Chorin in [9] and is currently the most widely
used cutoff. It has been used successfully for a wide variety of problems. For example,
see Cheer [5], [6], Ghoniem, Chorin, and Oppenheim [15], Sethian and Ghoniem
[32], Sethian [33], [34], and Tiemroth [36].

3.3. Spline smoothing. Finally, we present an algorithm in which ff is a piecewise
cubic interpolant of g. This may be accomplished in more than one way. For example,
we can choose b so that is only C at the breakpoints ai, or C2 at the ai, etc. See
de Boor [4] or Schultz [31] for details. Here we suggest a cutoff B(x) such that is
C2 at the breakpoints. Define

(3.3)
f1/4(2-Ixl)-(-I1),

I t)
0,

if0-< Ixl <_- 1,
if 1 <-[xl<=2,
if Ix[ > 2.

For b(x)= B(x) the bh are known as B-splines [4], [31].
Note that with this choice of b the support of bh is now 4h, rather than 2h. Thus,

the sheets overlap each other more than with the piecewise linear cutoff defined by
(3.2); each sheet centered at ai now influences three gridpoints, rather than just one.
Thus, in the sheet-creation algorithm we can no longer simply choose oi so that
lui "-I-qitoil < (.Oma Instead, we must now solve a system of linear equations

Oi-- -- O -[-1/40i+ Ui, 2, r- 1

and choose qi, oi so that [ai + qo[ < (.Oma We also must decide what to do at the
endpoints, 1 and i- r. Endpoint conditions have been extensively studied in the
context of the spline interpolation of a function (for example, see de Boor [4]).

For the cubic spline cutoff defined by (3.3) the sheet-creation algorithm should
result in fewer sheets. For example, let L--1 and consider the periodic problem in
which x L is identified with x =0 so we have a --at+l, etc. Let h =0.2, tOmax---3 -1
and u 1.0, 1,. ., r. With the piecewise linear cutoff we will create three sheets
at every gridpoint, each of strength to- 3-1. On the other hand, with the B-spline
cutoff we will create two sheets at every gridpoint, each of strength toi 3 -1.

Extensive computations with the B-spline cutoff show that, provided (2.15) is
satisfied, we do indeed produce fewer sheets. For appropriate choices of the parameters
the B-spline cutoff leads to 20-25 percent fewer sheets. However, when the vortex
sheet method is used as a stand-alone method for solving the Prandtl equations (as it
is in 5) the added cost of evaluating (3.3) as compared to evaluating (3.2) seems to
offset the savings due to fewer sheets. On the other hand, when the vortex sheet method
is used in conjunction with the random vortex metho.d, with the sheets eventually
becoming vortices, the B-spline cutoff also results in fewer vortices. However, it is not
clear whether this will lead to a more economical computation since the B-spline
sheets have 1/2 times more circulation per unit strength than the piecewise linear sheets.
The B-spline cutoff does not seem to improve the accuracy of the vortex sheet method
or its rate of convergence, most likely because the dominant source of error comes
from the use of the random walk to solve (2.2a).

3.4. Smoothing perpendicular to the wall. Let us now consider the smoothness of
our approximation as a function of y. From (2.3) it is apparent that k(x, y) is a step
function in y for each fixed x [0, L]. This is analogous to the random gradient method
described in [25]. In both cases it is natural to inquire what happens ifwe use something
smoother than a step function. In unpublished work, the author replaced the step
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308 ELBRIDGE GERRY PUCKETT

function approximation described in 2 of [25] with a piecewise linear function and
used it to compute the traveling wave solution described in 9.1 of [25]. The piecewise
linear version produced a significantly better approximation to the initial data at time

0. After several timesteps, however, the error was comparable to that incurred by
the original method. This is because the accuracy in approximating the initial data by
a step function is O(N-1), where N is the number of particles (jumps in the function).
When we use a piecewise linear approximation this accuracy improves. This accounts
for the observed decrease in the initial error. However, the error due to solving the
diffusion equation by random walking the particles is O(v/--1) (see [20], [25], [29],
and the results in 4 below). This rapidly overwhelms the error due to our interpolation
of the solution. Similarly, with the vortex sheet method any improvement in accuracy
obtained by using a higher-order approximation to u:(x, y) as a function ofy is quickly
lost by the random walk.

4. The error due to the random walk operator Da,. In this section we prove several
bounds on the error that result from using the random walk and sheet-creation algorithm
to approximate the exact solution of (2.2a)-(2.2b). The purpose of these estimates is
to examine the relationship between the parameters v, At, O)max, and h and the error
made by one timestep of the random walk and sheet-creation process. This analysis
also clarifies the relationship between the accuracy with which the no-slip boundary
condition is satisfied and the error due to the random walk.

We begin by proving that the random walk and sheet-creation algorithm is
consistent in the L1, L:, and L norms"

(4.1) O(((.Omax-+- h)(vAt) 1/2)
for s 1, 2, o. We define u,/a,u and what we mean by Ea,u below. We then
derive bounds on the variance of a,u and on the probability distribution of the L2

error IIDa,u-/a,ull_. These latter bounds are essentially a generalization of Hald’s
work in [20]. To establish them we first prove

(4.2) var H(l y + [ y) dy F( y)x/2vAt

for some function F, which is bounded between (2-x/)/x and 4/x/-. (For y =0
this is Hald’s result.) Then, using the fact that the random walks ’ taken at a given
timestep are independent, we use (4.2) to show

(4.3) Ilvar (/At//0)[[1 Cvx/2vAtcomax.
It follows from (4.1) and (4.3) that the error in the diffusion step decreases as v--> 0.
Thus, we get better results from the random walk at small viscosities for no additional
work.

It will be apparent from the proof that (4.3) exhibits the correct dependence on
the parameters v, At, and COma In this regard we note that Hald has shown the following:

var O(y) dy
(2- v/) x/ZvAtO)ma

where O is the random walk solution after one timestep of length At to

0 lOyy, 0 <= y <
(0, t) 1, O<t,

O(y, 0) =0,
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A STUDY OF THE VORTEX SHEET METHOD 309

and we have written tomax instead of N-1 since all of Hald’s particles have strength
N-. (This is the second equation in the proof of Theorem 2 in [20].) In other words,
the L norm of the variance of 19 is exactly O(x/t’Attomax). In the case of (4.3) equality,
in general, fails to hold, but the amount by which the right- and left-hand sides differ
does not depend on ,, At, or tomax.

4.1. Notation. In what follows we let u be an arbitrary function of the form
N

(4.4) u(X, y)= U(x)+ , tojbh(X-xj)n(yj- y),
j=l

with Itojl -< tomax for all j. We assume the use of piecewise linear smoothing: bh(X)
b(x/h) with b defined by (3.2). However, all of the results in this section remain valid
with minor modifications if B-spline smoothing is used. We also assume that the yj in
(4.4) have been chosen so that

(4.5) y, yj, j.

Therefore, the vorticity field to
o corresponding to (4.4) is a measure whose mass is

Io" Io Io(4.6) II ll tojbh(X--Xj)(yj--y) dxdy- Itojl bh(X--X) dx,
j

where the sum is over all sheets in the flow. We remark that in the vortex sheet method
(without sheet tagging) the probability that yk. y.kjor y/k+l/2 yk+l/2j for some j is
0. Hence, assumption (4.5) is reasonable.

We assume that the ai have been chosen as described in 2.3.2. Let and & be
independ.ent, Gaussian-distributed random variables with mean 0 and variance 2,At.

Define Datu by

(4.7)

N

atu(x, y) U(x)+ Y oobh(X-x)H(ly+ l-y)
j=l

qi

if" toilbh(X-- a,)n(lff.l-- y),
i=l /=1

where qi and to, are chosen as in Algorithm A, Algorithm B, or by solving the no-slip
boundary condition exactly at each a,

qi

(4.8) toil---u(a,, 0), i= 1,..., r.
/=1

We let E/a,u denote the expectation of/a,u taken with respect to the random walks, ’,, and
var (/a,u) E (/a,u E/a,u)2

denote the variance of/atu with respect to these random walks.
We will obtain bounds in the L1(12),L2(12), and L(12) norms, where 12=

[0, L] x [0, oo) is our computational domain. For a function f(x, y) defined on 12 we
will sometimes need to consider the sup norm off as a function defined on the wall
alone,

IIf(’, o)11 -- sup If(x, o)1.
xe[0,L]

Furthermore, if f is piecewise C on [0, L] and C on the open intervals (b-l, b),
where 0= bl --< -< b, L then, following Schultz [31, p. 2], we define

II0xf(’, 0)Ill-=max sup Ioxf(x, 0)1.
bi_l=X__b

The L- norm of f(x, O) and Of(x, O) arc defined similarly.
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310 ELBRIDGE GERRY PUCKETT

4.2. The analysis. We begin by showing that the exact solution Datu is the
expected value of our random walk process when the no-slip boundary condition is
solved exactly at each point on the wall.

THEOREM 4.1. Let u be given by (4.4) and let Datu denote the exact solution of
(2.2a)-(2.2b) with initial data u. Let , j be Gaussian-distributed random variables with
mean 0 and variance 2vAt and let E denote the expected value with respect to these
random variables. Then

(4.9) DAtUO(x, y)= E I U(x)+, tOjbh(X-x)H(ly + ’1 Y) u(x, 0)H(Iffl-Y)/
L

Proo The exact solution to (2.2a)-(2.2b) on the half plane y0 can be found
by extending the initial data antisymmetrically about x 0,

u(x,y)-u(x,-y), y<0,
and solving the diffusion equation on the entire real line -< y < with initial data
u. We can write down the solution of this latter problem by using the fundamental
solution of the heat equation on ,

1
u(x, s) ds.

4vt
exp

4vt

Now let c bh(x x), where we have suppressed the dependence On x for notational
convenience. Then

1 Io (-(y-s)2.)(U(x)+cH(y_s))dsDau(x’ Y) 4uA exp
4vAt

1 I (-(Y- S)2)( U(x) +E cH(y + s) ds
vAt exp

4vAt- exp U(x) dCAt t

exp d+ c4t
_

} exp d+_. c (4vAt o_y- exp U(x) d

2
exp U(x) d-44 4At

1
exp+. c4t _ d

exp d+ c44vAt 4vAt

1
exp d exp dec44At 4At } c’4t 4pAt

u(x)+E c[n(ly + Cl-y)]- u(x,
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A STUDY OF THE VORTEX SHEET METHOD 311

It is apparent from (4.9) that the amount by which /Atu0 differs from Dzxtu
depends on how well we approximate u(x, 0) by creating new sheets at the wall. We
now show that the maximum value of this difference is O(h + o)max)"

THEOREM 4.2. Let u and )atu be defined by (4.4) and (4.7), respectively. Then

(4.10) EtS,u- D,ull(R) -< 1/2110u( 0) I]ooh / o)max

Proof Let u q’
--1 o),. Then, since " and the ’, are identically distributed, (4.7)

and (4.9) imply that

(4.11) EJa,u(x, y)- DAtU(X, y): -[ i lbh(X--a,)--10(X, O)]EH(II-Y).
L i=1 .1

For all y, IH(ICl-Y)I_-< 1, and hence

IIE5,u- D,ulloo <- u:b(x- a,)- n(x, O)
i=1

Define u u(a, 0). By definition of the u and one of (2.8), (2.9), or (4.8) we have

(4.12) lu$- u,I- q,o, / u,I < COmax-

Note that for all x, Y-7=1 Ibh(x- a,)l- 1. Therefore,

ubn(x ai) u(x, O)
i=1

i Ubh(X-- ai)- Uibh(X- ai)
i=1 i=1

-" . Uibh(X- ai)- u(x, O)
i=1

o)max /1/2110u( 0) IIh,

where we have used the fact that Uibh(X--a) is the piecewise linear interpolant of
u(c, 0) with breaks at the ai and Exercise 2.3 of Schultz [31] to obtain

(4.13) i Uibh(X- ai) u( O)
i=1

1 I]0u( O)lloh.

We now prove that/a,u is a consistent approximation to DA,U in the L norm.
THEOREM 4.3. Let u and IA,U be defined by (4.4) and (4.7), respectively. Then

IIE,u-D,ulll II0u( ", 0)llooh+o)max /4vAt.

Proof. Let ui and u[ be as in the proof of Theorem 4.2. From (4.11) we obtain

(4.14) Ubh(X-- ai) u(x, O)
i=1

dx H<II-y) dy.

We use (4.12), (4.13), rh L, and J Ib(x-a,)ldx= h to estimate the first integral on
the right in (4.14)"

ubh(x a,) u(x, O)
i=1

i uibh(X a,)- uibh(x-
i=1 i=1

u,b(x- a,) u(x, O)
i=1

L
tO)max’l-’" Ilau(., 0)llooh.
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312 ELBRIDGE GERRY PUCKETT

In order to estimate the second integral, we write

1
H(lrl y) exp dsr=(4.15) EH(ll-y)=x/4r,A 4,At /,/r;7a,

d,

whereby

fo IoIr 2e-’V2
EH(II- y) dy=

/
ddy e-c/: d dy

The last equality follows from integration by pas with respect to y.
Next we prove the consistency of Da in the L2 norm. This theorem will also help

us establish a bound on the probability distribution of the error in the L2 norm
(Theorem 4.8).

THEOREM 4.4. Let u and atu be defined by (4.4) and (4.7), respectively. en

(4.16) IIEa,u- Da,ull= k max+-- IlOxU(., (2at)/.

oo Again let u and u be defined as in the proof of Theorem 4.2. From (4.11)
we find - O ,ull= Ubh(X- a,)- u(x, O) dx

i=1

x (En(ll-y))= aN

The right-hand side of (4.16) is the product of two one-dimensional norms. The first
of these is

Ubh("-a)-u(., 0)[].
i=1 2

We can evaluate the first term on the right by using (4.12) and the fact that bh(X- ai) <=
1 for all x:

i=1 Uibh(’--ai)][
2

/rtOmax"

To evaluate the second term we use Theorem 2.4 of Schultz [31 to bound the L2 norm
of the ditterence between u(x, 0) and its piecewise linear interpolant Y, Uibh(X--ai),

U,bh(’-a,)- u( 0) <=--I[0u( 0)ll2h.
i=1 2 7/"

We evaluate the other expression on the right-hand side of (4.16) by using (4.15) and
Lemma 1 of Hald [20] with a b 2eAt,

(;o ),/2 (io iy 2e-C2/2 i 2e-C/2 )1/2(En(Icl _y))2 dy
/

dC de dy- (2At)1/4"
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A STUDY OF THE VORTEX SHEET METHOD 313

U in the LIn order to establish a bound on var/at norm we will need the
following two lemmas, both of which are generalizations of previous work by Hald.
The first lemma is a straightforward extension of Lemma 1 in [20] and we refer the
reader to it for details of the proof.

LEMMA 4.5. For y >-- 0 define

(4.17) F(y)=2 (v/ -Y/2"{x/- fog -e )----t- e-’2/2 d + e’12 d.

en F(0) (2-)/, F() 4/, an< for all y [0, ),

<
4

(4.18)
(2-)

F(y)

Furthermore, for all y 0 we have

F(yj)=fOfy2e-(-y)2/2 foV2e-(-y)z/2d d dy.

We also need to establish a bound on the L norm ofthe variance ofthe independent
summands H([y+ l-y). Hald proved this lemma in [20] for the case when y=0.

LEMMA 4.6. Let y 0, F(y) be defined by (4.17) and be a Gaussian random
variable with mean 0 and variance 2uAt. en

o
var H(ly + ffl-Y) dy F(y/42uAt)VEuAt.

oof First note that

S(ly + -y) exp
4at de P(IY + Y)EH(I +-) 4i

Hence, since H(y): H(y) and 1 P(a b) P(a < b), we have

varn(l + cl-) e(ly + 1 y)e(I y + Cl < y).

Fuhermore,

1
H(ly +P(lY +

4At exp
4vAt d

+4 exp
] d

since the Gaussian curve is centered at y. Similarly,
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314 ELBRIDGE GERRY PUCKETT

Now let zj yj/x/2vAt. Then, using Lemma 4.5, we find

varH(ly+l-y dy= P(ly+l>- y)P(ly+l<y) dy

--< exp d"4uat 4uAt

exp d dyx4t 4pt

----fOlly/2e-(c-)2/a d oY/2e-(C-)2/a d dy

=J2atF(z).
Our bound on the L norm of the variance of au now follows easily.
THEOREM 4.7. Let u and a,u be given by (4.4) and (4.7), respectively. en the

inequality in (4.3) holds with

c,,-- I111 + Lllu(., 0)11oo

Proof. Since the ’ and sri are independent, identically distributed random vari-
ables, we have

2 bh(X xj) dx varH(ly+1 y) dyTM (Da,u) II1 to
(4.19) ,q b(x-a) dx varg(ll ) de.

i=1

Since 0 bh (X) 1 for all x, we have

Io2 b(X Xj max

For the piecewise linear bh we have

b2h(X ai) dx h
--1

where is defined by (3.2). By definition of the qi and toi we find

qiqi
2 < ",E (’Oil--’(-Omax E ItOil[<tOmaxltlO(ai, 0)[<tOmaxllU0( 0)lloo"

/=1 /=1

Using Lemma 4.6, rh L, and (4.18), we now obtain (4.3),

Ilvar (3,u) _-< F(){ll,oll +tll u( ", 0) IIoo}x/,AtOmax <_- C/2vAttOmax.
It is apparent from (4.3) that the L norm of var atu goes to zero like x/-. In

other words, the statistical fluctuations in our random walk approximation to Datu
diminish with diminishing v. Furthermore, a careful inspection of the proof will reveal
that the bound in (4.3) exhibits the correct dependence on 9, At, and tOmax. In other
words, the bound is sharp. Also note that this proof relies on the independence of the
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A STUDY OF THE VORTEX SHEET METHOD 315

random walks. When sheet tagging is used this independence is lost since sheets with
the same tag overlap. This loss of independence results in a term of the form

[c [,o 2 tojtOlbh(X-xj)bh(X-Xl)E[H(lYj + [-y)H(ly,+ ffl-y)] dy dx
do dojl

2 oooo,bh(x-x)bh(x-x,)E[H(lyj+l-y)]E[H(lyl+,l-y)]dydx,
j#l

being added to the right-hand side of (4.19). (Here the sum is over all sheets, new and
old.) Since this term will, in general, not be negative it follows that the sheet tagging
can in fact increase the variance. This observation is corroborated by the numerical
results presented in 5.7.

Finally, we derive a bound on the probability distribution of the error in the L2

norm. Our proof is based on ideas found in the proof of Theorem 2 of Hald [20].
THEOREM 4.8. Assume that h2<-_ tOma 1, let u and/Atu0 be defined by (4.4) and

(4.7), respectively, and define

Then for all y > O,

(4.20)

2(v- 1) o((g/’+ fr--1 Iloxu., o)Iloo)

P(llatu- Datull= e /O)max) Co/2vAty--.
Remark. By using the well-known inequality

E[Z]<-a 1+ E P(Z>-ra)
r=l

for all random variables Z => 0 and real numbers a => 0 (see 12]) we can use (4.20) to
establish a bound on the expected value of the error in the L2 norm,

EIl,u- Datull=<= (1 + 2CD)x/tOmax(2At) 1/4.

Proof. Chebyshev’s inequality (Feller [14, p. 151]) implies

P(ll,u-D,ull= __> ’)/N/-O)m) E[IIDtu- DAtf,/0]] 22](tOmax3/2) -1.
Since E(Ja,u-Da,u)2=var()a,u)+(EJa,u-Da,u)2 we can use Fubini’s
theorem to obtain

E[lla,u- Da,ull] Ilvar/a, I11 + IlEa,u- Datull
The inequality in (4.20) now follows from Theorems 4.4 and 4.7, and our assumption
that h2 __< tOmax.

4.3. Remarks. Theorems 4.2, 4.3, and 4.4 state that our random walk approxima-
tion/a,u to the solution Datu is consistent in the L1, L2, and L norms, respectively.
The term in (4.10) that is O(t0max) is due to our failure to satisfy the no-slip boundary
condition exactly at the gridpoints ai. The term that is O(h) is due to using a piecewise
linear interpolation to the tangential velocity u(x, 0) at the wall. Ifwe use a higher-order
interpolation, the order ofthis last error increases. For example, with B-spline smoothing
it is O(h2). However, numerical results [26] have demonstrated that B-spline smoothing
does not lead to an appreciable improvement in the overall accuracy of the method
(although it may reduce the total number of sheets in the flow). This is because, as
with all Monte Carlo methods, the dominant source of error is that due to the random
walk.
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316 ELBRIDGE GERRY PUCKETT

Assume for the moment that we have the necessary estimates for the splitting
error, the error due to approximating Aa, by Aat, and the stability of Aat. Then, by
individually considering the errors made at each timestep, we can use (4.20) and the
assumption that At.= O(to2m/3x) to prove that the expected value of the error in the L2

norm after k time steps is O(At)+O(tolm/3ax)+O(hq), where q>0 would depend on
our estimate of the error due to approximating Aa, by ,at. (For an example of this
type of argument see 3 of Puckett [25].) It has recently been shown that, for the
free-space problem, the random vortex method converges like O(log N/x/) in
the L2 norm (Long [24]). This corresponds to a rate of log (tOrnax)-lx/tOmax for the vortex
sheet method. (The log N is most likely a spurious term introduced by the analysis.)
Based on the above observations we believe that the dependence of the vortex sheet
method on (.Oma is O((.OPmax) for some p, with 1/2-< p =< 1/2, and that it is very likely that p 1/2.

5. Numerical results.
5.1. The test problem. We model two-dimensional flow past a fiat plate with a

constant free-stream velocity, U(x)= Uo. This is known as Blasius flow [30], [37].
Here we take Uo 1. This is a stationary flow that has the well-known similarity solution

(5.1) u(x, y)=f’(rl),

(5.2 "rl y/x/-,

where f satisfies the ODE

(5.3a) if"+ 2f" 0,

(5.3b) f(0) 0, f’(0) 0, f’() 1.

While we cannot write down f exactly, it is a simple matter to solve (5.3a)-(5.3b)
numerically with great accuracy (White [37, p. 262]), thus obtaining an effectively exact
solution.

Blasius flow.is a solution of equations (1.1a)-(1.1e) over the semi-infinite fiat
plate, 0 < x < o, 0 <-y <. There is a small neighborhood of the leading edge of the
plate in which the transverse velocity component is of the same order of magnitude
as the tangential velocity component; hence the Prandtl equations are not valid in this
region. In order to ameliorate the effects of this leading edge singularity and to
conveniently handle the downstream boundary condition, we consider the following
periodic problem.

We compute over the portion of the plate from a 3h to b 1 + 3h. We map
physical space, 12 {(x, y)" x > 0, and y _-> 0}, onto the periodic domain llc {(x, y)"
3h -<_ x -<_ 1 + 3h, and y ->_ 0} by the transformation (x, y) 12 (x*, y*) 12c, where

(5.4a) x* x mod 1,

(5.4b) y* yx/x*/x.

Sheets whose centers move to the right of x b have their centers transformed according
to (5.4a)-(5.4b) so that they now appear to lie near the beginning of l-lc. Similarly,
sheets that move backward, to the left of x a, are rescaled and placed at the end of
fc. Furthermore, when calculating the velocity of a point that lies within one sheet
length of the edge of our computational domain we take care to include the influence
of sheets that lie near the other end. Thus we have eliminated the effects of the leading
edge singularity by imposing as an upstream boundary condition the computed velocity
profile that results from identifying x a and x= b with appropriately scaled y
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A STUDY OF THE VORTEX SHEET METHOD 317

coordinates. This also eliminates spurious effects due to throwing sheets away after
they pass x b (e.g., [9, p. 433]).

One drawback of the periodic formulation of this problem is that the total number
of vortex elements in the flow increases with time. Once a sheet is created, it exists
for the remainder of the computer calculation. Therefore the amount of vorticity above
a given portion ofthe plate also increases with time. For Blasius flow this is nonphysical.
It is our contention, however, that this is a good test of the algorithm’s effectiveness.
Vorticity creation is an important phenomenon and we would like to approximate it
as accurately as possible. Successful strategies for minimizing the error here will lead
to a better overall algorithm.

All results shown here are at time T 2 with v 10-4. We used the piecewise
linear cutoff (3.2) and initial data (2.14) with Umax 1.

5.2. Measurement of the error. In order to eliminate the dependence of the Lp

norm of the error on the viscosity for 1 <_-p < o% we measure all such norms in the
transformed-variables (x,

(Ia) IoX )lip(5.5) Ilu- all In(x, )- a(x, n)l dn dx

where r/is given by (5.2). Furthermore, for p 1 we divide the error in the L norm by

II1 Ulll (1 -f’(r#)) dr# dx (*7 -f(n))l"= 1.7208’r#=O

(see [30], p. 130) and report the "normalized" error:

Ilu-alllllll-ulll.
To estimate the integral norm in (5.5) we used

Ilu all. h lu(a,, rl)- a(a,, rt)lp drl
i=1

( frO )liph 1/p (x//)-1 lu(a,, y)- t(a,, y)l" dy dx
i=1

The one-dimensional error above ai was calculated using the trapezoid rule

(5.6) lu(a,, y)- a(ai, y)l" dyE ((eru)p + (eru+l)p)
(Yj+I--Yj)

where errs ]u(ai, Ys)-(a, Ys)l, the sum is only over those Ys such that

(5.7) bh a, xj) y O,

and we have ordered the Ys so that Ys <- Yj+I for all j. In other words, we use a grid
that corresponds to the location of the sheets above ai. To ensure that the sum in (5.6)
starts at y =0, we place a sheet with no weight at (ai, 0). The value of u(a, Ys)=
f’(Ys/x/) was determined by linear interpolation from an array containing values of
f’ at equally spaced points r/=0.0, 0.01,.’., 8.0. We estimate the sup norm of the
error similarly,

Ilu- all max (lu(a,, ys) a(a,, y)l),
where the max is taken over all i,j satisfying (5.7).

The velocity, vorticity, drag, and each of the various norms of the error are random
variables. We therefore make several different runs, which we refer to as trials. Each
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318 ELBRIDGE GERRY PUCKETT

trial has a different starti’ng seed for the random number generator. We estimate the
expected value of a randomly varying quantity O by O, where

(5.8)
i=1

and O is the value of O calculated from the ith trial. We estimate the standard deviation
of O by

(5.9) tr-x/n-1 ,=1

We will also have occasion to refer to the standard error ro of the estimate in (5.8)
defined by

(5.10) r

([22, p. 21]), where r is the true standard deviation for the parent distribution of the
Oi. The quantity ro is simply the standard deviation of the distribution of the O’s and
is therefore a measure of how good an estimate (5.8) is of the true mean. Since we do
not know r we will use (5.10) with (r replaced by from (5.9). Unless noted otherwise,
all of the data below are estimates based on n 25 trials.

5.3. An estimate of the rate of convergence. We begin by presenting numerical
results which demonstrate that the vortex sheet method converges when it is used to
model the Blasius flow. Table 1 contains 1 and for the (normalized) L norm of
the error. In all runs displayed here At h! Umax. Note that as we move down a column
the error eventually levels out. Since At and h are constant along columns it follows
that the error which decreases along the columns is due to tOma alone. The "plateau"
at the bottom of the column is due to those sources of error that depend on At and
h. Similarly, it is apparent that for fixed values of tOrnax the error decreases with
decreasing h, provided tOmax<ha/2LAt. This corresponds to Co<I/2L in (2.15).
However, after leveling off the error begins to increase when this condition is violated.
We observed this phenomenon consistently in all of our runs; it occurred with both
the piecewise linear and B-spline cutoffs. We will investigate this behavior more
thoroughly in 5.5 below.

TABLE
Discrete L norm of the error. Estimated mean and standard deviation of the error.

h (At h/Umax)

Oma 5-1 10-1 20-1 40-1

5-1 0.4002+/-0.0734
10-1 0.2989+0.0638 0.2983+0.0521
20-1 0.2580+0.0475 0.2239+0.0399 0.2230+/-0.0279

40-1 0.2663+/-0.0473 0.1773+0.0239 0.1657 +/-0.0112 0.1903+0.0165
80-1 0.2483+0.0243 0.1636+/-0.0202 0.1267+/-0.0126 0.1346+/-0.0101
160-1 0.2529+/-0.0252 0.1594+0.0104 0.1088+/-0.0103 0.0990+/-0.0075

320-1 0.2473+/-0.0146 0.1528+/-0.0093 0.1007+/-0.0069 0.0778+/-0.00771
640-1 0.2511 +0.0088 0.1534+0.0068 0.0806+/-0.0075 0.0627 +0.00602

Here n 16, where n is the number of trials.
2n=2.
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A STUDY OF THE VORTEX SHEET METHOD 319

In Fig. 1 we plot the log of the errors in Table 1 versus log h -1 for various
relationships between tOma and h. The first data point in each sequence is h 5-1 and
tOmax 10-1. For h fixed the abscissa corresponds to tOmax’-- 10-1, ", 80-1. (For tOmax
fixed the last two data points are not displayed in Table 1.) When tOmax"-O(h2) the
resulting curve is nearly linear. This indicates that the error due to tOma is decreasing
at least as fast as that due to h. We can attempt to discern a dependence of the error
on h of the form error= O(h q) from this data. The slope of the line connecting the
first and last points of the bottommost curve is -0.7510=-, implying q . However,
if instead we choose the data from the last row of Table 1 (the error due to tOma should
be very small here), then we find q . There is not enough data here to determine q
beyond all doubt. We conjecture q >= and wonder why there is no evidence for q 1.
In Fig. 2 we plot the standard deviations that correspond to the data in Fig. 1. The

0.50

0.32

0.20

0.13

0.08

0.05

0.2 0.1 0.05 0.025

FIG. 1. Log versus log 1/h.

0.079
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0.032

0.020

0.013

0.008

0.005

.m- w fixed

.- h fixed
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.-or- w 0 (h**2)

0.2 0.1 O.O5

h

FIG. 2. Log t versus log 1/h.
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320 ELBRIDGE GERRY PUCKETT

nearly linear decay of the lowest curve again indicates that when tOmax O(h2) the
error due to tOmax decreases at least as rapidly as that due to h.

We repeated this experiment with the timestep halved, At h/2 Umax, in an ettort
to determine if any of the errors would decrease when At alone was decreased. These
errors, presented in Table 2, were remarkably close to those in Table 1, sometimes
agreeing to several decimal places. Furthermore, many of these new errors lie within
three standard errors of the values in Table 1 (using t from either table), making the
two quantities statistically indistinguishable from eaeh other. This was also true for
the errors in the L2 norm. We conclude that the errors presented in Table 1 do not
diminish when h and tOma are fixed and At is decreased. This indicates that the errors
due to temporal discretization are much smaller than the other sources of error. This
may be because we are computing a stationary flow, and we caution the reader against
drawing conclusions for more general flows.

We made a sequence of runs under the assumption that the error is O(x/t0max)+
O(h2/3) We set h O( .3/4

tt, mx), At h Umax, and, starting with tOmax 0.025 and h -0.2,
made five runs decreasing t0mx by two on each run. The results appear in Table 3.
Note that the errors here are the results after only one trial, rather than being our
estimate of the expected value 19.

The column labeled "time" contains the time in CPU minutes it took for one trial
on a CRAY X-MP. The FORTRAN program was designed to be as fast as possible.
In particular, we vectorized every loop that would admit vectorization. We also
employed a "bin" data structure in which all sheets lying in a- h/2 _-< x < a + h/2 are
kept in the same bin. Thus, to compute the velocity of a sheet in the ith bin we need
only loop over those sheets in adjacent bins. Hence, instead of every sheet interacting

TABLE 2
Discrete L norm of the error. The errors in Table do not decrease as At is decreased with h

and tO left fixed.

h (At= h/2Umax)

tOma 5-1 10-1 20- 40-1

5- 0.4318+0.0733
10-1 0.3215+0.0762 0.2967+/-0.0469

20-1 0.2762+0.0670 0.2336+/-0.0310 0.2463+0.0331
40-1 0.2721 +0.0502 0.1787 +0.0256 0.1778+0.0134
80-I 0.2402+0.0351 0.1586+/-0.0232 0.1276+0.0158

0.2170+0.0167
0.1498+0.0096

TABLE 3
,3/4(One trial per row.) A convergence study with h O(’max) and At h/ Umax.

L Lnorm norm norm Sheets Time t av 2av

40-1 0.2817 0.2489 0.2708 226 0.002 0.0044 0.00161
80-1 0.1617 0.1756 0.2677 939 0.022 0.0024 0.00070
160-1 0.1044 0.1070 0.1536 2954 0.218 0.0013 0.00037
320- 0.0823 0.0915 0.2719 13755 3.638 0.0009 0.00029
640-1 0.0592 0.0631 0.1141 37206 31.131 0.0007 0.00019
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A STUDY OF THE VORTEX SHEET METHOD 321

with every other sheet in the advection step, for a total of N2 interactions, each sheet
has approximately 3hN interactions. This results in an algorithm that is approximately
O(3hN2). (The actual amount of work depends on how uniformly the sheets are
distributed along the plate.)

We also measured the error in approximating the displacement thickness and
momentum thickness. The displacement thickness above x, l(X), defined by

a,(x) 1 u.(x, y)
U(x) ]

dy

is the amount by which a streamline has been displaced by the thickening of the
boundary layer from the beginning of the plate to x. The momentum thickness above
x, 82(x), defined by

2(x) Io u(x,y)( u.(x,y) dy
U(x)

1-
U(x) ]

is a measure of the amount of momentum that has been lost due to the boundary layer.
See Schlichting [30] or White [37] for more details.

We measured the average error in these quantities along the wall as follows. The
average error in the displacement thickness 8lav is defined by

1
(5.11) (,av

ri=l

where 1 is the trapezoid rule approximation to 1 given by (5.6) with u(ai, y) replaced
with 1. Similarly, 82av is the average error in the momentum thickness defined by
(5.11) with 81 and gl replaced by 2 and ’2, where 2 is the trapezoid rule appro.ximatio.n
to 2. Note that we have not scaled out the effect of v in our calculation of i1 and 2
and hence, lav and 2av are O(v/-)= O(10-2).

In Fig. 3 we compare the L error from Table 3 with the conjectured rate of
convergence. It is apparent that for this choice of parameters the L error on the average

10 0

10-1,

10-2

one norm
predicted rate

0.025 0.0125 0.00625 0.003125 0.0015625

wmax

FIG. 3. Actual versus predicted rate.
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322 ELBRIDGE GERRY PUCKETT

decreases at a rate close to the anticipated one. In other words, the error may decrease
by more or less than x/ from one row to the next, but from the first row to the last
row the error has decreased by approximately a factor of 4. These remarks also apply
to the L2 error and the average error in the momentum and displacement thicknesses.
The L norm was not as well behaved. This is not surprising since for random walk
methods there can be small sets (in (x, y)-space) on which the error is large (e.g., Hald
[20, 5]). Of course the integral norms ameliorate the effects of large errors on small
sets.

Our goal here has been to demonstrate that we need not average to use effectively
these random walk methods. The fact that most of the results reported on in this paper
are averages should not be construed as suggesting that we must always "ensemble
average" to get reasonable results. It is apparent from Table 3 that we can make one
run as long as it is in a regime of small variance. Based on our experience this can
best be accomplished by ensuring that t0max is always small compared to h2/LAt and
by decreasing tOma faster than h and At. Here we have chosen tOma h2/8LAt, which
corresponds to Co L/8 in (2.15) and let (.Omax’-" 0(h4/3). In general we recommend
taking tOmax O(h2q) with _-< q_-< 1. Our experience with q > has not produced as
consistently good results as those shown here, but we do not have enough evidence
to unequivocally state that the optimal choice of q is .

5.4. Second-order integration in time. Next we investigate the effect of solving
(2.7a), (2.7b) with a second-order ODE solver. We conduct the same experiment as
in Table 1 but with (2.6a), (2.6b) replaced by

yk+l/2 y+ Atl/2(xj y:)x+/ x+ Ata/_(xj, yj),
where

At
lkxj= x+-- (x, y),

At
k(x, y)Y Y+’

is the position of the jth sheet after one half of a timestep and (11/2, 1/2) is the velocity
field induced by the sheets when their centers are at these positions. Comparing these
results with Table 1, we observe no increase in accuracy over Euler’s method solution
of (2.7a), (2.7b). This is consistent with the results displayed in Table 2. Of course we
did not use second-order operator splitting (i.e., Strang splitting), and hence do not
expect to see all sources of error that depend on At decrease. Nonetheless, there
appears to be no improvement in the error due to second-order time discretization. It
is instructive to compare these results with the effect of using second-order time
integration in a one-dimensional random particle method as shown in Tables 3 and 4
of [25].

TABLE 4
Discrete L norm of the error. Second-order integration in time.

h (At h/Umax)

(/)max 5--1 10-1 20-1 40-1

5-1 0.4224 + 0.0995
10- 0.3290+0.1044 0.3183+0.0494
20- 0.2736+0.0551 0.2316+/-0.0276 0.2547 +/-0.0285

40-1 0.2261 +/-0.0425 0.1701 +/-0.0227 0.1759+/-0.0201 0.2271 +/-0.0204

80- 0.2325+/-0.0285 0.1552+/-0.0225 0.1323+/-0.0128 0.1537+/-0.0114
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It is unclear to what extent this lack of dependence on the timestep is due to the
stationary character of the test problem. Nevertheless, we feel compelled to make
several comments regarding second-order time integration. There seems to be a preva-
lence of opinion among users of hybrid vortex sheet/vortex blob methods that the use
of a higher-order time integration will result in a better solution. Presumably this
opinion is based on theoretical results for the vortex method solution of Euler’s
equations with higher-order time integration (e.g., [1], [21]). However, the following
points should be made in regard to the vortex sheet method: (i) A second-order scheme
takes in twice as much work. (ii) We are constrained by (2.13) to decrease At as rapidly
as h. (iii) Our results indicate that for the Blasius flow problem the dominant sources
of error are those that depend on h and t0max. Hence, we may be doing twice as much
work for a negligible gain in accuracy. The first two considerations also apply when
the vortex sheet method is used to model other flows. We note that, for somewhat
different reasons, Sethian [33] has also questioned the effectiveness of using a second-
order time-integration scheme with the vortex sheet method.

5.5. The behavior of the algorithm with decreasing h. Let us consider the depen-
dence of N on tOma For example, assume that 0)ma divides Umax 1 evenly and let
the initial data be given by (2.14). Let Nx denote the number of sheets above x. Then

-1 for each gridpoint ai on the wall. In general,at the first timestep we have Na, tO

at least for reasonable pressure gradients (UUx small), we expect that N O(toax)
for any x. In Table 5 we show the average number of sheets in the flow at time T 2.0
as a function of Omax, h, and At. It is apparent that if tOma is decreased by 2 with h
and At fixed, then the average number of sheets does not increase by significantly
more than 2.

TABLE 5

Discrete L norm of the error. Gradual increase of the L error for decreasing h, At, and fixed O)ma

h (At-- h/Umax)

tOnax 0.2 0.1 0.05 0.025

Sheets Error Sheets Error Sheets Error Sheets Error

0.2 26 0.4317 63 0.4449 179 0.5434 880 0.6860
0.1 54 0.3106 125 0.2915 328 0.3331 1074 0.4169
0.05 109 0.2724 253 0.2054 641 0.2317 1986 0.2858
0.025 222 0.2524 498 0.1681 1248 0.1630 3702 0.1989

We would also expect that letting h go to h/2 with tOma fixed would produce
similar results. This turns out not to be the case. It is apparent from Table 5 that under
these circumstances the average number of sheets in the flow always increases by more
than 2, often by much more. Since At h/Umax in all these runs, we can inquire if this
unexpected increase is due to the increased number of timesteps as we decrease At.
To answer this question we made a sequence of runs fixing At 0.0125 and reducing
h as before. The results appear in Table 6. It is apparent that the average number of

Some of the numbers here differ from those in Table even though the choice of parameters is the
same. This is because these trials were made on a different computer with a different random number generator.
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324 ELBRIDGE GERRY PUCKETT

TABLE 6
Discrete L norm of the error Gradual increase of the L error for decreasing h and fixed At, ttlma

h (At 0.0125)

O)ma 0.2 0.1 0.05 0.025

Sheets Error Sheets Error Sheets Error Sheets Error

0.2 31 0.4380 79 0.4489 242 0.5339 1056 0.7514
0.1 64 0.3640 158 0.3110 451 0.3647 1427 0.4549
0.05 128 0.2849 320 0.2310 909 0.2549 2745 0.3228
0.025 246 0.2733 612 0.1789 1712 0.1839 4978 0.2167

sheets continues to grow by significantly more than 2 as we move to the right along a
row. Therefore, this phenomenon is not due to decreasing At.

Note that the factor by which the number of sheets grows is largest in the upper
right-hand corner in both Tables 5 and 6. These regions also display an increase in
the error as h is decreased with (.Oma left fixed. Both phenomena may be due to the
fact that (2.15) is being violated. However we can make no definite assertion. We do
note however that an abnormal growth in the number of sheets seems to characterize
those regions of parameter space that have large errors. We consider this important
for several reasons. The amount of work to compute the velocity at each of the sheets
is at best O(hN2). Thus, since decreasing h results in many more sheets than decreasing
tOmax by the same amount, it also results in a more expensive computation. For the
same reason decreasing h leads to a larger value of o3 II, whereas decreasing tOma does
not significantly alter II,;11. Consequently, the bounds in 4.2 that depend on
deteriorate when h is decreased. Unfortunately, we cannot pursue a strategy of only
decreasing tOmax eventually there is no improvement, except possibly a reduction in
the variance. It is therefore necessary to toe a fine line between decreasing h too rapidly
and not decreasing h fast enough.

5.6. A comparison of particle-creation algorithms. In this section we present the
results of a numerical experiment designed to compare the two particle-creation
algorithms described in 2.3.2. We obtained the errors in Table 7 with creation
Algorithm A using a value of e 10-6. Table 8 is a duplicate of Table 7, except here

TABLE 7
Discrete L norm of the error. Average number of sheets and mean of the error using Algorithm A.

h (At h/Umax)

tOma 0.2 0.1 0.05 0.025

Sheets Error Sheets Error Sheets Error Sheets Error

0.2 60 0.3600
0.1 88 0.2957 289 0.2738
0.05 145 0.2525 422 0.2166 1407 0.2310
0.025 255 0.2327 676 0.1783 2021 0.1690 7060 0.1965
0.0125 477 0.2021 1150 0.1400 3109 0.1164 9835 0.1362
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TABLE 8
Discrete L norm of the error. Average number of sheets and mean of the error using Algorithm B.

h (At h/Umax)

tOma 0.2 0.1 0.05 0.025

Sheets Error Sheets Error Sheets Error Sheets Error

0.2 27 0.3610
0.1 53 0.2763 124 0.2766
0.05 109 0.2410 251 0.2090 638 0.2087
0.025 216 0.2378 495 0.1709 1256 0.1612 3749 0.1808
0.0125 430 0.2222 972 0.1549 2370 0.1258 6775 0.1329

we used creation Algorithm B, i.e., the same algorithm used for all other experiments
in this paper. Note that here the errors are in the discrete L2 norm. In all instances
Algorithm A results in an increase in the number of sheets in the flow but with little
or no improvement in accuracy. We also tried replacing e 10-6 with e tOmax/2 and
observed a similar result: there was no noticeable improvement in the error but more
sheets than with Algorithm B. We conclude that Algorithm B is more efficient and
recommend that all users of the vortex sheet method employ it.

5.7. Sheet tagging. Finally, we made a sequence of runs to examine the effective-
ness of the sheet-tagging procedure. In Table 9 we present 19 and t for the error in
the L norm. These figures should be compared with Table 1. It is apparent that the
sheet tagging leads to neither a decrease in the error nor a reduction in the variance.
We do not recommend the sheet-tagging procedure.

TABLE 9

Discrete L norm of the error. Sheet tagging.

h (At h/Umax)

O)ma 0.2 0.1 0.05 0.025

0.2 0.5508 +/- 0.2671
0.1 0.4574 +/- 0.1933 0.3677 +/- 0.1938
0.05 0.2922+/-0.1145 0.2524+/-0.0748 0.2844+/-0.0777

0.025 0.2422+/-0.1236 0.1729+/-0.0399 0.2026+/-0.0437 0.2045+/-0.0236

0.0125 0.2406+/-0.0893 0.1638+/-0.0637 0.1413+/-0.0308 0.1490+/-0.0179

5.8. Conclusions. We have proved that one timestep of the random walk and
sheet-creation process is a consistent approximation to the exact solution of the heat
equation subject to the no-slip boundary condition. This is true in each of the L1, L2,
and L norms. Furthermore, it follows from the proof that the truncation error is
entirely due to our failure to satisfy the no-slip boundary condition exactly at each
point on the boundary.

We have demonstrated numerically that the vortex sheet method converges when
it is used to approximate Blasius flow, provided certain conditions on the computational
parameters are satisfied. These include two accuracy conditions of the form AtUrnax--< h
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326 ELBRIDGE GERRY PUCKETT

and 60max Coh2/At, where Co=O(1/L) and a relative rate of refinement condition
tOmax O(h2q) for some q with 2/3<=q<= 1. We have also shown that the error will
eventually increase when the second condition is not satisfied; for example, this occurs
when h goes to zero much faster than tOmax.

We have been unable to observe any improvement in the accuracy of the method
when a second-order time-integration scheme is used, or when the other parameters
are fixed and the timestep is decreased. This may be because the test problem is a
stationary flow. However, we suggest workers carefully consider the advantages and
disadvantages of a second-order time-integration scheme before using one with the
vortex sheet method.

We have also demonstrated that the most efficient sheet-creation algorithm is one
for which all sheet strengths have equal magnitude, 6t)max" Algorithms that create
sheets with varying magnitudes end up producing more sheets without improving the
accuracy of the method. Finally, we have shown that the sheet-tagging procedure is
not an effective variance-reduction technique and therefore should not be used.
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