
JOURNAL OF COMPUTATIONAL PHYSICS 91, 278-297 (1990)

A Fast Vortex Method for Computing
2D Viscous Flow

SCOTT B. BADEN*

Lawrence Berkeley Laboratory,
Berkeley, California 94720

AND

ELBRIDGE GERRY PUCKETT'

Lawrence Livermore National Laboratory,
Livermore, California 94550

Received November 4, 1988; revised June 12, 1989

We present a fast version of the random vortex method for computing incompressible,
viscous flow at large Reynolds numbers. The basis of this method is Anderson’s method of
local corrections and similar ideas for handling the potential and boundary layer flows. The
goal of these ideas is to reduce the cost involved in computing the velocity field at each time
step from being quadratic to linear as a function of the number of vortex elements. We present
the results of a numerical study of the flow in a closed box due to a vortex fixed at its center.
Our results demonstrate that the addition of the viscous portions of the random vortex
method to the method of local corrections does not add appreciably to the cost. Furthermore,
the cost of the resulting method is linear when 0(104) vortex elements are used, in spite of
the fact that the majority of these elements he in a thin band adjacent to the boundary.

1. INTRODUCTION

The hybrid vortex sheet/random vortex method was developed by Chorin [l-3]
in order to compute incompressible, viscous flow at large Reynolds numbers. This
method has been used to model a wide variety of viscous flow problems including
flow past a circular cylinder [4-61, driven cavity flow [7], flow past a backward
facing step [8,9], wind flow over a building [lo], and stability of the boundary

* Present address: Computer Science and Engineering Dept., U.C. San Diego, La Jolla, CA 92093.
Work done under the auspices of the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract DE-AC03-76SFOOO98.

‘Present address: Mathematics Dept., U.C. Davis, Davis, CA 95616. Work done under the auspices
of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract
W-7405ENG-48. The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the
copyright covering this paper, for governmental purposes, is acknowledged.

278
0021-9991190 $3.00

A FAST VORTEX METHOD 279

layer [3]. The great advantage to this method-and vortex methods in general-is
that the computational cost is concentrated in regions of greatest physical interest.
This leads to excellent resolution of large scale features of the flow such as eddies
and recirculation zones. However, one drawback of vortex methods is that the cost
of directly computing the velocity due to N vortices at each of these N vortices is
O(N2), thereby making the computation prohibitively expensive for large numbers
of vortices.

Various solutions to this problem have been proposed. These solutions are
usually based on the fact that the velocity due to vortices far away is much
smoother than that due to vortices nearby and hence, the former is well represented
by a continuum approximation. The velocity at a given point may therefore be
divided into nearby and farfield components and-by finding an inexpensive
approximation to the farfield component and computing the nearby interactions
directly-the cost of computing the velocity at each of the N vortices becomes
O(MN), where M is the number of nearby interactions per vortex. These techniques
can be divided into two distinct groups: particle-in-cell methods [11, 121 and
adaptive multipole methods [13, 143. A good review of vortex methods and of
some of the techniques used to accelerate the velocity computation may be found
in Leonard [15].

In this work we employ recent innovations to speed up the velocity computation
in two dimensions. Most notable of these innovations is Anderson’s method of local
corrections [161. This is a particle-in-cell method which is more accurate than pre-
vious particle-in-cell methods. The increased accuracy preserves the effect of high
order vortex cutoffs and virtually eliminates the diffusive effects due to interpolating
the approximate farfield velocity onto the vortices. The method is capable of
economically computing with tens of thousands of vortex elements thereby permit-
ting detailed flow visualizations in reasonable amounts of time.

We tested our method on the flow in a unit box driven by a single vortex fixed
at the origin. This problem has previously been studied with the hybrid vortex
method by Sethian [17] who used the standard U(N2) method for computing the
vortex velocities. Our results are in good qualitative agreement with Sethian’s work.
The cost of our computation was linear in N and we estimate that if the direct
method had been used, then it would have taken well over 10 times as long to com-
plete. It is important to note that we find the cost to be linear in N even though
the majority of vortices are concentrated in a thin band of cells adjacent to the
boundary. This has important consequences for more general applications of the
random vortex method, since this will be true for many flows of interest.

2. THE BASIC NUMERICAL METHOD

In the hybrid vortex sheet/random vortex method the computational domain Q
is divided into two regions: an interior Q, away from the boundary %2 and a sheet
layer OS adjacent to the boundary. (We use the term sheet layer to distinguish the

280 BADEN AND PUCKETT

computational boundary layer from the physical boundary layer.) The random vor-
tex method [l] is used to solve the incompressible Navier-Stokes equations within
Q,, the vortex sheet method [2] is used to solve the Prandtl boundary layer equa-
tions within Q,. Each method is a particle method; the particles carry concentra-
tions of vorticity and the velocity field within each of the respective regions
is uniquely determined by the particle positions and the appropriate boundary
conditions. Both methods are fractional step methods. One of the fractional steps
transports the particles in their velocity field; the other applies a random walk to
account for the diffusive effects of viscosity.

In X2, the particles are called vortex blobs and in Q,, vortex sheets. The no-flow
boundary condition is satisfied on %Z? by imposing a potential flow on the interior
region which cancels the normal component of the velocity due to the blobs. The
no-slip boundary condition is satisfied by creating vortex sheets on ~%2 which subse-
quently participate in the flow. The two solutions are matched by converting sheets
that leave the sheet layer into blobs with the same circulation, converting blobs that
enter the sheet layer into sheets with the same circulation, and letting the velocity
at infinity in the Prandtl equations be the tangential component of the velocity on
the boundary due to the interior flow. The sheet creation process and subsequent
movement of the sheets into the interior of the flow mimics the physical process of
creation of vorticity at a boundary and constitutes one of the attractive features of
this numerical method.

2.1. The Interior

In Q, we solve the 2D, incompressible Navier-Stokes equations. In vorticity form
these equations are:

w,+(u.V)o=R-‘do (2.la)

v.u=o (2.lb)

u = (0,O) on asz, (2.lc)

where u(x, t) is the velocity, w = uY - v, the vorticity, and R the Reynolds number.
The advection part of (2.lak(2.lc) are Euler’s equations:

o,+(u*V)o=O (2.2a)

v.u=o (2.2b)

u.n=O on a52 (2.2c)

At)= --o (2.2d)

u = ($p -ICld=VV, (2.2e)

where n is the outward normal to X? and + is the stream function.

A FAST VORTEX METHOD 281

We use the vortex method to solve equations (2.2ak(2.2e). Let At denote the
time step. In the vortex method the vorticity field at time k At is represented as a
sum of discrete patches of vorticity called vortex blobs,

c%,“(x) = 5 KJxi” - x) rj. (2.3)
j=l

Here XT is the position of the jth vortex blob at time k At, rj is its strength, K, is
the cutofffunction, and g is the cutoff radius. The strength rj is the circulation
about the jth vortex. The choice of cutoff radius and cutoff function is determined
by accuracy considerations. See Hald [181 and Beale and Majda [193 for a discus-
sion of different kinds of cutoffs and their effect on accuracy. We use the cutoff
proposed by Chorin [11:

1x1 < CJ
Ix1 > 0. (2.4)

We compute the velocity field fik induced by the vorticity distribution &’ in two
steps. First we find the free-space velocity ti; = V’s; such that @ satisfies (2.2d),
with o given by (2.3), and fik(x) =0 at x= co. We then find a potential flow
Gk=V’qk such that gk= -$ on &2. The sum of the two flows ii”=i$ +tip”
s:tisfies ($.2b)-(2.2e) wi(h + = i& + $.i.

The free-space velocity field ur is given by

ii?(x)= 5 u,(xjk-x)rj, (2.5)
jk= 1

x, # x

where U,(x) is the velocity induced at x by a vortex blob of unit-strength at the
origin. The blob velocity function U, is determined by the choice of K,; the U,
corresponding to (2.4) is

C-Y, x)Pn 1x1 0,
uu(x)= (-y, xy27c 1x12, i

1x1 < (7
1x1 2 0.

The potential flow tip” can be found by solving Laplace’s equation A?: = 0 subject
to the Dirichlet boundary condition $f = - @ on a!J and then differentiating per
(2.2e). There are several other ways to obtain approximations to 6:. We discuss our
choice after the description of the method of local corrections in Section 3.2 below.

Given the velocity field uk = i$ + fii we approximate the solution of (2.2ak(2.2e)
with initial data 6jk by transporting the blobs in this velocity field

x++ “’ = xi” + At II”(X;),
J

where the superscript “k + l/2” indicates the positions of the blobs after the first
fractional step. One can improve the accuracy of the advection step by employing

282 BADEN AND PUCKETT

a second- or fourth-order time discretization scheme and using two or more
velocity evaluations per time step (see [20, 211).

Here we used a second-order Runge-Kutta which required two velocity evalua-
tions per time step. We employ a time step constraint described in Section 2.3 below
to ensure that blobs do not leave Q during the advection step.

The second fractional step is the solution of the diffusive part of (2.la) subject to
the no-slip boundary condition:

co,= R-’ do (2.6a)

u.r=O on &2, (2.6b)

where z is a vector tangent to 852. The solution of (2.6a) with initial data Gk+ ‘I*
is obtained by letting all blobs undergo a random walk

where the rlj are independent, Gaussian distributed random vectors with mean 0
and variance 2 At/R. Any blobs that end up in the sheet layer or in the image of
the sheet layer as a result of the random walk become sheets, and any that end up
outside the image of the sheet layer are discarded. The no-slip boundary condition
(2.6b) is approximately satisfied by using the vortx sheet method to cancel the
tangential velocity on XJ induced by the blobs with positions xf + ‘. We will now
describe this method.

2.2. The Sheet Layer
Let 52, consist of those points in Q lying within a distance E of ati. In Sz, we use

the vortex sheet method to solve the Prandtl boundary layer equations:

(2.7a)

5= -Uy (2.7b)

u, + vy = 0 (2.7~)

(u, v) = (0, 0) at y=O (2.7d)

lim u(x, y, t)= Um(x, t). (2.7e)
Y-m

Here (x, y) denotes coordinates which are, respectively, parallel and perpendicular
to the boundary, (u, v) denotes the respective velocity components, r is the vor-
ticity, and U, is the velocity at infinity. We determine U, by linearly interpolating
the tangential velocity induced by the interior flow at discrete points on aQ. We
assume that the boundary is located at y= 0 and identify the four walls of the
domain 52 with the periodic interval [0,4]. As a result of this identification, we can
map Q, onto the rectangle [0,4] x [0, E]. This is a convenient way of dealing with

A FAST VORTEX METHOD 283

a vortex sheet that moves into a corner, for it does not involve special treatment
of the corners. Other workers (e.g., [7]) have employed special procedures for
sheets that move into a corner.

In the vortex sheet method the vorticity at time t = k At is approximated by a
sum of linear concentrations of vorticity,

Ptx9 Y)=C 5jbl(x-x,k)8(Yf-YY),

where lj is the strength of the jth vortex sheet, (XT, $) is its center, 6 is the Dirac
delta function, and bl is the smoothing function. We use the “hat” function originally
proposed by Chorin [2],

b,(x) = :, - Ix/l7 l-4 G L
9 otherwise. (2.8)

The parameter 1 is often referred to as the sheet length, although for b, defined by
(2.8) the sheets are of length 21.

With the aid of (2.7b) and (2.7e) we can express the tangential velocity u in terms
of the vorticity and so obtain an approximation iik from zk

Ck(x, y) = Um(x, k At) + c &b/(x-x,“) H(y,” - y), (2.9)

where H(y) is the Heaviside function. Similarly, we use (2.7~) and (2.7d) to w;ite
v as an integral over U, and approximate U, with a centered divided difference to
obtain

-(b,(x+f-xf)-b,(x-i-x;)) Min(y, yf).

In the advection step we evaluate the velocity (iik, v”“) at the centers of the sheets
and advance each sheet one time step of length At accordingly. If we denote the
velocity at the center of the jth sheet at time k At by (ii,“, $), then the sheet
positions after the advection step are given by

(xi”+“*, y;+“*) = (x;, y,“) + At@, sj”). (2.10)

To satisfy the no-slip boundary condition u =0 at y=O we create sheets on the
boundary as follows. Let ai, i = 1, M, denote equally spaced gridpoints at y = 0
with grid spacing 1. The sheets at the positions given by (2.10) generally induce a
non-zero tangential velocity on the boundary, iik+ l/*(x, 0). Let ui = iik+ “*(a,, 0)
and let <,,, denote a computational parameter called the maximum sheet strength.

284 BADEN AND PUCKETT

Then for each i we create qi= [luJ4,,,] sheets with centers (a;, 0) and strengths
-s&V(4) t,,, , where [x] denotes the greatest integer less than or equal to x.

The numerical solution of the diffusion equation is found by letting all sheets
(new and old) undergo a random walk in the y direction, reflecting any that go
below the boundary. The new sheet positions at time (k + 1) At are thus given by

where the qj are independent Gaussian distributed random numbers with mean 0
and variance 2 At/R. At the end of the diffusion step any sheets which have left the
sheet layer become blobs.

In our implementation all sheets have magnitude r,,,. We do not create sheets
at a, if Iui(< <,,, and hence the no-slip boundary condition is satisfied at ai only
up to order c,,,. Other workers (e.g., [2, 3, 5, 71) create sheets at the ith gridpoint
whenever luil > tmin for some tmin < r,,, and require that the sum of the strengths
of these sheets exactly cancels ui. However it has been shown [22] that this greatly
increases the number of sheets created without improving the accuracy of the com-
putation. The sheet creation algorithm presented here significantly reduces the total
number of vortex elements in the computation. This results in a more economical
method.

2.3. Choosing the Computational Parameters
There are four computational parameters in this method: the time step At, the

sheet length 1, the maximum sheet strength t,,,, and the cutoff u. Since the circula-
tion remains constant when a sheet becomes a blob we have Irj(= /<,,,. Following
Chorin [3] and Sethian [173 we set (T = i/z. The reader should consult [3, 6,9,22]
for a more detailed discussion of the relationship between the various parameters.

The only generally agreed upon constraint that the parameters in the vortex sheet
method must satisfy is the so called “CFL” condition:

At max U, d 1. (2.11)

The justification usually given for (2.11) is that one wants to ensure that sheets
move downstream at a rate of no more that one grid point per time step. This is
an accuracy condition (as opposed to a stability condition) which ensures that
information propagating in the streamwise direction will influence all features of the
flow which are at least O(I).

To ensure that vortex blobs do not exit the box during the advection step we
enforce a constraint similar to (2.11) in the interior; no vortex is allowed to move
more than a distance 0.9~ (where E is the sheet layer thickness) in any direction
during an advection step. We incorporate these two constraints into one global
constraint on the time step as follows. At each time step we determine the
maximum velocity component of uk over the centers of all vortices and the points
ai on XL We then adjust At accordingly before moving any vortex element.

A FAST VORTEX METHOD 285

3. THE FAST VORTEX METHOD

3.1. The Method of Local Corrections
Traditionally vortex methods entail solving an N-body problem directly, at a cost

that is quadratic in N, the number of vortices. This limits the number of elements
that can be handled in a reasonable amount of computer time, perhaps to no more
than a few thousand vortices. It turns out that there are faster ways of computing
the mutually-induced velocity field on a collection of vortices. These methods are
based on the idea that interactions involving distant length scales can be effectively
approximated with a relatively inexpensive computation. Only interactions
involving nearby vortices need to be computed directly, and these account for
only a small fraction of the N* interactions computed by the direct method.

We use a strategy based on the above observation, known as the method of local
corrections [161. It is similar to the particle-particle, particle-mesh algorithm of
Hackney et al. [121 and more accurate than either this algorithm or Christiansen’s
vortex-in-cell [111 (the latter method does not compute close interactions directly).
The method of local corrections exploits the fact that a vortex blob behaves like a
point source of vorticity outside the cutoff radius (r, and hence induces a harmonic
velocity field there. This allows one to take advantage of high order interpolation
formulas for harmonic functions. The procedure for obtaining the velocities is
similar in approach to that employed by Mayo [23] for obtaining the potential due
to a charge distribution on the boundary of an irregular domain.

The local corrections algorithm is nearly as accurate and considerably faster than
the direct method. For example, it can perform a velocity evaluation on a collection
of 12,848 VorticesAistributed evenly among two patches of constant vorticity-in
under 7s on the Cray X-MP; the direct method takes 56s. The amount of speedup
one obtains with the method of local corrections depends on the distribution of the
vortices in the computational domain, with maximum speedup occurring when the
vortices are uniformly distributed in the domain. Note, however, that one of the
conclusions of this study is that the speedup due to this method is still significant
even though the vortices are not uniformly distributed in the computational
domain. See Anderson [163 and Baden [24, Sect. 31 for a more detailed discussion
of the speed and accuracy of the method of local corrections.

The method of local corrections distinguishes between two kinds of vortex
interactions: (1) far-field interactions approximated by solving a discrete Poisson
equation, (2) N-body interactions computed exactly for vortices close enough to
one another. A finite difference mesh, with spacing h, is superimposed on the
domain; it is used to compute the far-field interactions. A second mesh of spacing
h called the chaining mesh, with boxes whose centers coincide with the grid points
of the first mesh, is also used. The edges of the chaining mesh coincide with L%2; the
edges of the first mesh extend beyond &Z2 by h/2 in each direction. We denote this
extended domain and its boundary by Q’ and aQ’, respectively.

The computation is organized around the boxes of the chaining mesh. An integer
C, called the correction distance, is chosen to distinguish nearby vortices from

58119112.3

286 BADEN AND PUCKETT

distant ones. Vortices interact directly only if both indices of the boxes containing
them differ by no more than C. It has been observed that, for a given level of
accuracy, C is a constant which is independent of N. The accuracy of the algorithm
improves with increasing C, but this increases the cost; C = 2 appears to effect a
reasonable tradeoff between speed and accuracy. These issues have been studied in
great detail by Baden [24, Sect. 33 and the interested reader is referred there for a
more complete discussion of the relationship between C and the speed and accuracy
of the method. Note that the method of local corrections in predicated on the
assumption that vortex blobs behave like point vortices at distances greater than
Ch from their centers and hence we must ensure that G < Ch.

In the following discussion we omit mention of the time step k for notational
convenience. In the method of local corrections we first compute an approximation
$ to the free-space velocity iif by solving a discrete Poisson equation on the first
finite difference mesh,

AhUh = 5 g,(x -xi), XESZ’ (3.la)
j= 1

d(x)= 2 (-(y-yj),x-xj)/2n Ix-xjl*, x E aGY. (3.lb)
j=l

Here Ah is the discrete Laplacian, xi is the center of the jth vortex, and

A’YFY, x)/2~ Ixl*h
k%(x)= ()

L
1x1 < Dh and IYI GDh
1x1 > Dh and IYI > Dh.

The function g, approximates the discrete Laplacian of the velocity field due to a
point vortex at the origin, and is zero outside a square neighborhood of the vortex.
The parameter D is an integer called the spreading distance and must satisfy D G C.
Thus, like C, D is also independent of N, and the cost of computing the right-hand
side of (3.la) is proportional to N. To compute the boundary condition (3.lb) we
evaluate the velocity induced on XY by point sources of vorticity centered at
the xj.

Having set up the right-hand side and boundary conditions for (3.la), (3.lb), we
use a fast Poisson solver to obtain $. (We used a solver that was accurate to fourth
order in the mesh spacing h.) This velocity field will be interpolated onto the centers
of the vortices; but first it must be corrected to account for the influence of the
nearby vortices which do not act like point sources of vorticity.

The local corrections are done one box at a time. Associated with each box is a
surrounding region of 52 that is C boxes thick on each sidedalled the correction
neighborhood-and an interpolation stencil. (We use a five-point stencil; the inter-
polation procedure is accurate to lifth order.) The local corrections are done in two
steps. In the first step we compute the point vortex velocities at each point of the
interpolation stencil which are due to the vortices in the correction neighborhood
and subtract these values from $5 We use these corrected values of ti; when inter-

A FAST VORTEX METHOD 287

polating onto the vortices in the box. In the second step we compute the influence
of each vortex in the correction neighborhood on each vortex in the box using the
exact blob velocity function U,.

Several extensive studies have been performed to determine the accuracy of the
method of local corrections [16,24, 251. These studies have demonstrated the effec-
tiveness of the method in preserving the accuracy of high order cutoffs when the
vortex method is used to approximate a solution of the Euler equations. Further-
more, a very careful investigation by Baden [24] of the flow field due to two
patches of vorticity of opposite sign has shown that any diffusive effects due to the
mesh are negligible.

3.2. The Potential Flow
In our solution of the potential flow problem we employ a modified method of

images scheme suggested by Anderson [26]. This method is based on the observa-
tion that the potential flow I$, is the flow due to an infinite set of images of the
vortices in the box [27, p. 3781. The positions of these images may be found by
periodically extending the box in the plane and reflecting each vortex about the
walls of the boxes. The idea is to include any images that are within one correction
distance of aa in the computation of Q and hence, in the computation of I$. The
reason for including these im,ages is because their influence on nearby vortices
inside Q cannot be accurately represented in a finite difference solution of tip. This
is because of the sharp gradients in the velocity field near the boundary due to the
images. We eliminate the contributions of these images to tip by explicitly including
them in the computation of fij:, where they can be locally corrected.

To accommodate the image vortices in the computation of ii; we extend Q’ by
D + C boxes in all directions. For a vortex in .R, which is within C boxes of the wall
and away from a comer, one image is generated by reflecting the vortex in the
plane of the wall and taking the negative of the strength. For a vortex in a corner
three images are generated: one reflected in the plane of each of the two adjacent
walls and one reflected through the corner. The first two images have strengths of
opposite sign from that of the original vortex, while the third image has the same
strength as the original.

We compute $i, an approximation to $, on the unextended domain Q, as
follows. We first solve the discrete Laplace equation Ah?;=0 subject to the
Dirichlet boundary condition $2 = - $,. on &2, taking care to include the influence
of the image vortices when setting up the boundary conditions. We use divided dif-
ferences to obtain iii at the grid points and then interpolate to obtain approximate
values for ii, at arbitrary x E Q (here we use a four-point stencil). All of the finite
difference formulas we used are accurate to fourth order. We take a single-sided
divided difference of 6:: at the boundary to obtain the tangential velocity 6:. t.
However, we compute the normal velocity on the boundary i$ f II (= -4. n)
directly, since we know of no fourth-order formula for computing the tangential
derivative of $i at the boundary. Since the stream function induced by a vortex and
its image(s) algebraically cancel one another on the wall(s) closest to them, we do

288 BADENAND PUCKETT

not compute such influences when setting down the boundary conditions for $i.
This is done to avoid a possible loss of accuracy due to roundoff errors. We also
employ algebraic cancellation in the direct computation of iii . n.

3.3. Speedup of the Vortex Sheet Method

We have employed one relatively simple modification of the original vortex sheet
algorithm which significantly speeds up the computation of the velocity of a sheet
which is due to the other sheets. From (2.9) it is apparent that the velocity of a
given sheet is affected only by those sheets within a distance 21 of its center. We
divide the sheet layer 52, into M “bins,” where M is the number of grid points ai on
the boundary at which sheets are created. The ith bin extends over ai - f/2 <x <
a, - Z/2 and 0 < y < co. (Recall that a, --a,- i = 1.) Thus, sheets in the ith bin are
influenced only by other sheets in the ith bin and the two adjoining bins. At the end
of each time step we sort the sheets by bin. Assuming the sheets are uniformly dis-
tributed (in the x-direction) over Q,, the cost of the sheet velocity evaluations is
now O(N,) rather than O(Ni), where N, is the number of sheets in the flow.

4. COMPUTATIONAL RESULTS

4.1. The Results of a Numerical Study

We present results for the “spinup” problem. In this problem a single vortex is
fixed at the center of the unit box 52, with sufficient strength to induce a unit
velocity at the center of each wall. We set the numerical parameters as follows: the
Reynolds R = 1000; the sheet layer thickness E = 0.02; the maximum sheet strength
t,,, = 6.25 x 10e3; and the sheet length 1= 0.1. The initial time step was At, = 0.05.
As described in Section 2.3 the cutoff radius was chosen to be (T = l/x. In the interior
we used a second-order Runge-Kutta time integration scheme. This requires two
velocity evaluations per time step, a fact which should be kept in mind when we
discuss the computation time below. Due to doubts about the effectiveness of a
higher order time discretization in the vortex sheet method (see [17,221) we used
only the first-order Euler method (2.10) in the sheet layer. We used a 60 x 60 grid
for both the chaining mesh and the Poisson solver; so the parameter denoted h in
Section 3.1 is h = 0.0166. We set both the correction distance C and the spreading
distance D equal to 2.

We ran the calculation until time t = 5.0 on a Cray X-MP. Figures 1 and 2 show
a series of snapshots taken at various times during the run. The formation of eddies
is quite clear and our results appear to be in good qualitative agreement with those
of Sethian [17]. However, in the computation shown here there are roughly 10
times as many computational elements, each with one-eighth the strength.

During the initial time step 3760 vortex sheets were created. During the second
time step 156 sheets left the sheet layer and became blobs. The maximum (com-
ponentwise) velocity of these blobs was 0.98, so the time step was reduced to 0.018.

A FAST VORTEX METHOD 289

.2 -

a .

.o

-1 .

-. 2-

-.3 -

-A -

T=5.0086352’ ’ ’ ’

FIG. 1. A single stationary vortex induces a counterclockwise flow. Vector velocity plots clearly show
the formation of counterrotating eddies. To emphasize the details near the walls, the vector lengths have
been scaled so that the vectors in the center region have a constant length. Thus the vectors near the
walls appear relatively larger than they actually are.

The time step slowly decreased throughout the run and attained a minimum value
of 0.0074. This run took 380 time steps and consumed 2889 s (48.15 min) of CPU
time on a Cray X-MP. Of this, only about 2.2% of the time was spent in the sheet
calculation. At the end of the run there are 13,175 blobs, 2365 images, and 4267
sheets.

In Fig. 3 we plot the number of computational elements versus the time step. It
is apparent that the total number of vortex blobs and images steadily increases with
time but that the number of sheets is roughly constant.

*M
B 8

 a
 t

ib
w

?o
%

R
$

./l
rrr

rtf
ltr

tlr
llr

lrr
rt

11
11

11

~~
~~

frr
rrr

rrr
rrr

r~
~r

lrT
lllll

l
X)

5~
~~

~~
~~

frr
fft

rrr
rfr

rti
frr

irt
r.

,~
~~

~,
tr~

trf
rrr

rtr
rrr

rrr
rrr

rl
~~

~f
~/

/ff
/t?

rlt
ttt

tIlr
ftt

rIr
t

30

-
~c

///
~~

/tl
?t

ttt
trr

rrr
rlr

lr~
l.

,~
r~

,//
/r/

/tl
ttI

?t
ltr

rrr
rrr

r~

,~
~~

,/,/
~,

,t,t
tIr

lttl
trt

trr
tI

~~
-~

cr
//~

/~
?l,

t?
trt

t/t
ftt

ttt
r?

r.
-~

cc
//,/

,/,/
,,tt

ttt?
tIr

rfr
frr

~~

~~
,r,

,/,/
,,r

rrt
tttt

ttlt
ttfl

~~

,~
-~

ro
~/

~/
~~

//,
,,ll

tfI
tIt

Ir.

-~
~~

~~
,/,

/,/
///

tr1
ttr

tft
tfr

1

I
,~

~c
r,,

,,//
////

rr/
//l/

l/r/
/

t
m

~c
-c/

///,
/,/

/,//
,,,t

1/,

,/,,
?.

~~
c~

~c
~,

,~
,//

,,r
rrr

//r
r/,

/,,
/

~~
-~

~~
c,~

,,/
,/,

,,,
rtr

rtr
,~

,,

.3
0-

~-

.~
o,,

,,/,
~/

,///
//tr

ttr
~,

,,.

=-
3=

=~
:~

:~
:::

:::
:::

:::
3:

:,')

f
j

.3
5-

-

cr
~~

r,,
/,,

~,
/,,

/,,

1
,~

-~
CC

ro
r,,

r,/
/,/

rtt

.-"
/'

-,-
-~

co
r,/

,~
or

,,,
rrI

\,=
;:t

(.
-4

0

dC
CC

CA
M

M
/C

/r/

,,/I

I.
,,,

\
.

.._

22

~*
CC

//.
./L

-~
~,

,-l
\

,
,

,
H-

4,

--w
-r/

#/
/

/,/,
,

-e
-

,
f

&j

--^
-d

-c
c~

///
/,,

r
._

t

P
'

1
r

A
'--

-X
L

e
!&

.y$
‘:'i

dd

-d
-c

ro
rl

t
A#

/_
<

\
\

.5
0

3-
4-

,d
dr

//n
.,,

,,-
.-,

_C

A FAST VORTEX METHOD 291

ii
6 .-
z
5
E

10000

6

0

Vortices

----- Vortices & Images

0 100 200 300 400

Time Step

FIG. 3. The number of vortex elements varies as a function of time. The number of vortex blobs and
images increase while the number of vortex sheets remains relatively stable.

0 100 200 300

Time Step

0

FIG. 4. The cost of a time step evaluation drops substantially when the local corrections algorithm
is used to evaluate velocities instead of the direct method. The relative speedup of our method increases
with the number of vortices N, and N is increasing with time. The times are reported in seconds of CPU
time on a Cray X-MP and were measured with the second routine on the Cray.

292 BADEN AND PUCKETT

tion and using the statistics obtained from our trial run we estimate that, if the
direct method had been used for the run shown in Figs. 1 and 2, then it would have
computed a total of 3.9 x 10” interactions, at a cost of at least 31,471 s (524.5 min)
of CPU time. We estimate that the cost of any additional computation, e.g., the
potential flow, the random walks, and the sheet velocities, would add only about
5% to the running time of the computation. Thus, our method took less than one
tenth as long as the direct method would have. Furthermore, the speedup is an
increasing function of N; by the end of the run our method is 14.54 times faster.

In Fig. 5 we plot the total computational cost per time step as a function of N,
the number of vortex blobs. Remember, the times shown in Figs. 4 and 5 are the
total cost per time step. In addition to the vortex blob velocity evaluations this
includes all overhead (such as data structures), the Poisson solves, the random
walks, and the sheet computation. For comparison we have plotted this against a
linear function of N defined by f(N) = 0.0008 . N + 0.663. It is clear that the cost of
our method is linear in N over the range of N shown.

Note that the actual speedup achieved by the method of local corrections
depends on the distribution of the vortices in Q,. For example, if all of the vortices
are concentrated in one box, then all vortex interactions will be computed directly
and the method of local corrections is no faster than the direct method. Conversely,
the method of local corrections should achieve its maximum speedup when the
vortices are uniformly distributed in Q,. Similar remarks apply to the bin data

12

- 60x 60 mesh
lo-

----- 0.0006’N + 0.663

6-

6-

- I

0 2000 40bo SO@00 SOi0 IO;00 l2;OO 14

N = number of Vortex Blobs

I00

FIG. 5. For the problem presented here the total cost of a time step evaluation is roughly a linear
function of the number of vortex blobs. The dotted line plots a hypothetical linear cost function.

A FAST VORTEX METHOD 293

structure used to increase the speed of the vortex sheet method. It is important to
note that in the problem presented here the vast majority of vortices lie within a
thin band adjacent to the boundary and therefore the vortices are not uniformly
distributed in Sz,; yet we still obtain significant speedups over the direct method.

4.2. The Effect of the Computational Parameters on Cost and Accuracy

There are essentially two groups of computational parameters in our method:
those associated with the standard random vortex method and those associated
with the method of local corrections. Included in the former group are the maxi-
mum sheet strength t,,,, the sheet length 1, the time step At, and the blob core
radius rr. The choice of core function, the effect of r~ on the accuracy, and the rela-
tion between At and 0 has been well documented in the literature. We refer the
reader to [18-20,281 for further information.

The effect that t,,,, 1, and At have on the accuracy of the vortex sheet method
has been studied by Puckett [22]. Briefly, the conclusions drawn there are that
<,,, is the key parameter, the error behaves roughly like O(z), and that one
should use caution when decreasing the sheet length 1. Here we have adopted the
point of view that to attain greater accuracy one should generally decrease <,,, and
leave I fixed. These conclusions seem to be in agreement with Ghoniem and
Sethian’s exhaustive study of the effect of these parameters on the random vortex
method when it is used to model the flow past a backward facing step [9].

As mentioned in Section 2.3 we choose r~ = l/n. This relation is due to Chorin [3]
and is based on the observation that for this choice of cr the velocity due to a blob
tends toward that due to a sheet with the same circulation as the blob approaches
the boundary.

The method of local corrections has three important parameters: the mesh size
h, the spreading distance D, and the correction distance C. The effect of these
parameters on the accuracy and speed of the method has been extensively studied
by Anderson [161 and Baden [25]. The interested reader is referred there for a
detailed discussion of this issue. Based on the above-mentioned work we choose
C = D = 2 as this appears to result in the most cost-effective trade-off between speed
and accuracy.

In order to assess the effect of the sheet strength t,,, and the mesh size h on the
cost of the method we ran a sequence of runs on a Cray 2. All parameters except
for Lax and h have the values that were used for the results discussed in Section 4.1
above. In Fig. 6a we plot the total CPU time per time step as a function of l,,,
for a set of four runs with h = 0.0333. Note that the cost is roughly O(t;LX). Since
decreasing &,,,, by 2 roughly doubles the number of computational elements, this
corresponds to a method for which the cost is linear in the number of computational
elements. After the 200th time step or so the increase in cost from t;,,, = 0.0125 to
r max = 0.00625 is somewhat more than 2. This may be because we are now computing
too many direct interactions. In other words, we may have saturated the correction
neighborhoods near the boundary with vortices.

294 BADEN AND PUCKETT

8

30 x 30 mesh
.’

‘A

.’
- Wmax = 0.05 ,.--
--m-m Wmax

=
0.025 ..-- ,.--

.-.-. Wmax
=

0.0125
.-

,.*-

“___..‘.. Wmax = 0.00625 /‘-
,.-- .-

6-
,,-- .-

,.-- ,,--
,,-- .-

.+-* 4- .- ,.--
.’

.- .‘.--
/ ..--

,*’ I *,.-*-
._.-.- . ..-

,_.-.-

-e--e
c

.’ *_.-.- .-
:)--e

_.-* C.-

” I

0 2io 3io . 4 IO

Time Step

FIG. 6a. The actual cost per time step on a 30 x 30 mesh for four values of t,,,,,

10

8

6

4

2

0

i
:

4;
b

1-

60 x 60 mesh

- wrnax = 0.05
---w- wmax = 0.025
e.‘.‘.‘.‘. wmax = 0.0125

---------- Wmax = 0.00625

Time Step

FIG. 6b. The actual cost per time step on a 60 x 60 mesh for four values of t,,,. Note that the cost
doubles when &,,, is halved. Since halving i;,,, doubles the number of computational elements, this
corresponds to a method which is linear in the number of computational elements.

A FAST VORTEX METHOD 295

To test this hypothesis we decreased h by 2 and repeated the four runs. It is
apparent from the results in Fig. 6b that the cost is now O(<$J over the entire
range of l,,,. It should also be remarked that since the number of images is a
function of Ch there are more images for h =0.0335. This will increase the cost
somewhat, However as h is increased by 2 the number of images is observed to
increase by roughly a factor of 4 for all values of t,,,. Yet for all values of t,,,
but 0.00625 the cost with h = 0.0166 is the virtually the same as with h = 0.033.
Therefore we conclude that the increase in cost after the 200th time step when
h = 0.0333 and t,,, = 0.00625 is because there are too many vortices per interaction
neighborhood.

It is important to note that this test problem is a grueling one for the method
since vortices are never thrown away. In many applications vortices will be discar-
ded after reaching a certain point downstream. In these problems the total number
of vortex elements in the flow tends toward a fixed number-rather than always
increasing with time.

4.2. Generalization of the Method to More Complex Domains

The method presented here can readily be generalized to other, more complex
geometries. In most cases the details of the algorithm are essentially the same. As
with the standard random vortex method, it is necessary to solve a potential
problem at each time step in order to satisfy the no flow boundary condition. The
actual details of the implementation of this Poisson solve always depends on the
particular geometry of the domain. However, there are a wealth of techniques for
solving such problems, many of which have been developed specifically for vortex
methods (e.g. [4, 5, 9, 10, 141). For domains which can described as the union of
rectangles (such as a backward facing step) one could easily apply a domain
decomposition method such as one of those described in [29]. We also remark that
finite element methods have been receiving some attention lately as a means of
programming a random vortex method for an arbitrary geometry.

The generalization of the method of local corrections to any of these geometries
can be organized around the solution of the potential flow problem. One must
simply devise an efficient scheme for determining which vortices are close to one
another and then find a stencil upon which to base the interpolation of the farfield
velocity. There is no need for a rectangular grid structure since the interpolation
formulas are based on the fact that the components of the velocity are the real and
complex parts of an analytic function in the complex plane (see [16]). Hence the
accuracy of the interpolation scheme is only a function of the maximum distance
between the points on the stencil.

The implementation of the vortex sheet method is the same as it would be with
a standard O(N2) random vortex method, with the addition of the bin data struc-
ture for reducing the number of comparisons as described in Section 3.3 above. In
other words, one must simply divide the boundary up into bins and devise a
scheme for keeping track of which sheets are in a given bin.

296 BADEN AND PUCKETT

5. CONCLUSIONS

The goal of this paper has been to demonstrate a fast, accurate vortex method
for computing two-dimensional, incompressible, viscous flow at large Reynolds
numbers. We have shown that the cost of the method remains linear even though
most of the computational elements are concentrated in a thin band adjacent to the
boundary. This remains true even for computations with more than 20,000 com-
putational elements. Our test run modeling the flow induced by a central stationary
vortex in a square box is in good qualitative agreement with the earlier results of
Sethian [171.

A typical run of the type shown here-beginning with no vortex elements, running
for 380 time steps, and ending with 13,175 blobs, 2365 images, and 4267
sheets-consumed 48.15 min of CPU time on a Cray X-MP. This run would have
taken at least 10 times longer to complete if the vortex blob velocities were com-
puted using the direct method. Moreover, the speedup improves as the number of
computational elements increases. At the end of the run the cost of one complete
time step for nearly 20,000 vortex elements-including two velocity evaluations,
one random walk, and one Poisson solve in the interior and one velocity evaluation
and random walk in the sheet layer-was 11.27 s of CPU time. The direct method
alone would take at least 163.79 s-nearly 15 times as long.

We remark that our code can be readily modified to execute in parallel on a
multiprocessor such as the Cray X-MP as discussed by Baden [25,30]. Future
work in this area should include a careful comparison on a Cray or similar vector
computer between the type of algorithm presented here and a hybrid vortex code
based on an adaptive multipole algorithm such as described in [13]. It will also be
a great interest to extend these methods to three dimensions.

ACKNOWLEDGMENTS

The authors would like to thank Chris Anderson, Alexandre Chorin, Phil Colella, and Jamie Sethian
for their advice and support during the course of this work.

REFERENCES

1. A. J. CHORIN, J. Fluid Mech. 51, 785 (1973).
2. A. J. CHORIN, J. Comput. Phys. 27, 428 (1978).
3. A. J. CHORIN, SIAM J. Sci. Stat. Comput. 1, 1 (1980).
4. A. Y. CHEER, SIAM J. Sci. Stat. Comput. 4, 685 (1983).
5. A. Y. CHEER, J. Fluid Mech. 201, 485 (1989).
6. E. TIEMROTH, Thesis, U. C. Berkeley Naval Arch. Dept., 1986 (unpublished).
7. Y. CHOI, J. A. 6. HUMPHREY, AND F. S. SHERMAN, J. Comput. Phys. 75, 359 (1988).
8. A. F. GHONIEM, A. J. CHORIN, AND A. K. OPPENHEIM, Philos. Trans. Roy. Sot. London A 304, 303

(1982).
9. J. A. SETHIAN AND A. F. GHONIEM, J. Comput. Phys. 74, 283 (1988).

A FAST VORTEX METHOD 291

10. D. M. SUMMERS, T. HANSON, AND C. B. WILSON, Int. J. Numer. Methods Fluids 5, 849 (1985).
11. J. P. CHRISTIANSEN, J. Comput. Phys. 13, 363 (1973).
12. R. W. HOCKNEY, S. P. GOEL, AND J. W. EASTWOOD, J. Comput. Phys. 14, 148 (1974).
13. L. GREENGARD AND V. ROKHLIN, J. Coyput. Phys. 73, 325 (1987).
14. L. GREENGARD, SIAM J. Sci Stat. Comput. 11, 603 (1990).
15. A. LEONARD, J. Comput. Phys. 37, 289 (1980).
16. C. R. ANDERSON, J. Comput. Phys. 62, 111 (1986).
17. J. A. SETHIAN, J. Comput. Phys. 54, 425 (1984).
18. 0. H. HALD, SIAM J. Numer. Anal. 16, 726 (1979).
19. J. T. BEALE AND A. MAJDA, J. Comput. Phys. 58, 188 (1985).
20. C. R. ANDERKIN AND C. A. GREENGARD, SIAM J. Numer. Anal. 22, 413 (1985).
21. 0. H. HALD, SIAM J. Numer. Anal. 24, 538 (1987).
22. E. G. PUCKETT, SIAM J. Sci. Stat. Comput. 10, 298 (1989).
23. A. MAYO, SIAM J. Numer. Anal. 21, 285 (1984).
24. S. B. BADEN, in Lecture Notes in Mathematics, Vol. 1360 (Springer-Verlag, New York, 1988).
25. S. B. BADEN, Thesis, Lawrence Berkeley Laboratory Report No. LBL-23625, 1987 (unpublished).
26. C. R. ANDERSON, UCLA Mathematics Department, Los Angeles, private communication (1987).
27. R. COURANT AND D. HILBERT, Methods of Mathematical Physics (Interscience, New York, 1962).
28. M. B. PERLMAN, J. Comput. Phys. 59, 200 (1985).
29. Proceedings, of the Second International Symposium on Domain Decomposition Methods, Los Angeles,

1988, edited by T. F. Chan, Roland Glowinski, Jacques Periaux, and Olaf B. Widlund (SIAM,
Philadelphia, 1989).

30. S. B. BADEN, in Proceedings of the Third SIAM Conference on Parallel Processing for Scientific
Computing, Los Angeles, 1987, edited by Garry Rodrigue (SIAM, Philadelphia, PA, 1988).

