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We present the results of numerical computations of the refraction of a plane shock 
wave a t  a CO,/CH, gas interface. The numerical method was an operator split 
version of a second-order Godunov method, with adaptive grid refinement. We 
solved the unsteady, two-dimensional, compressible, Euler equations numerically, 
assuming perfect gas equations of state, and comRared our results with the 
experiments of Abd-El-Fattah & Henderson. Good agrekment was usually obtained, 
especially when the contamination of the CH, ,by the GO, was taken into account. 
Remaining discrepancies were ascribed to  the uncertainties in measuring certain 
wave angles, due to sharp curvature, poor definition, or short length of the waves at  
large angles of incidence. All the main features of the regular and irregular refractions 
were resolved numerically for shock strengths that were weak, intermediate, or 
strong. These include free precursor shock waves in the intermediate and strong 
cases, evanescent (smeared out) compressions in the.weak case, and the appearance 
of an extra expansion wave in the bound precursor refraction (BPR). The structure 
of a BPR was elucidated for the 4rst time. 

1. Introduction 
We consider two gases meeting along a planc interface, and we assume for 

simplicity that they both obey the perfect gas equation of state (figure 1). We 
suppose that a plane incident shock i of wave velocity is propagated into one of 
the gases by the impulsive motion of a rigid boundary, such as a piston which drives 
into the gas at a velocity Upi with IUpJ < IQI. We also assume that all the boundaries 
of the system are adiabatic. Subsequently i meets the interface between the gases a t  
an  angle of incidence a, = 0 measured with respect to the interface. The shock i now 
begins to pass from the first, or incident gas I, into the second, or receiving gas 11, 
where it becomes the transmitted shock t .  When its new velocity U, differs in 
magnitude from 4, then by definition i has been refracted. Formally the relative 
refractive index n is defined by (Henderson 1989) 
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FIGURE 1 .  Refraction of a normal shock wave i at zero angle of incidence, a, = 0, at a plain 
interface between two media: (a )  before refraction ; ( b )  after refraction. 

The refraction is slow-fast when n < 1;  fast-slow when n > 1; and there is no 
refraction when n = 1. 

If in laboratory frame the velocities of the gas upstream and downstream of the 
incident shock are uo and u1 respectively, then the piston velocity is 

u . = u.-u 

In this frame of reference the gas upstream of i is undisturbed, so that uo = 0, and 
the boundary condition then becomes simply, Upi = ul. 

I n  general a reflected wave is also produced a t  the gas interface by the refraction 
(figure l b ) .  When i is a shock then so also will be t ,  but the reflected wave may be 
either an expansion e ,  or a shock r .  It is assumed that there is always continuity in 
the pressure P and in the particle velocity u across the interface. Following refraction 
this gives 

pz a 0’ 

The nature of the reflected wave may be determined 
together with the notion of wave impedance Z.  For 
incidence a, = 0 the incident wave impedance, Zi ,  is 

Alternatively, in shock wave coordinates we have 

(1.2) 

(1.3) 

with the help of (1  2 )  and (1.3) 
head-on refraction at angle of 
defined by 
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where p is the density, u is the specific volume, and we have used the fact that in 
shock wave coordinates uo = - q. (In general, an uppcr case U (q, Up,, etc.) always 
denotes a velocity with respect to laboratory coordinates whereas a small case u 
(uo, ul,  etc.) may denote a velocity in laboratory coordinates or shock wave 
coordinates depending on the context.) The transmitted and reflected wave 
impedances Z ,  and Z ,  are defined similarly. The pressure reflection ( R )  and 
transmission (5”) coefficients are 

with similar expressions for the shock intensity which is the average power flux 
through unit area in the direction of propagation, and the coefficient for the total 
power transmitted (Henderson 1989). The coefficients (1.6) and (1.7) show that when 
the impedance increases during refraction IZ,I > IZJ, then a shock r will be reflected 
from the interface back into the incident gas because then R > 0, but that when it 
decreases IZ,I < IZJ, then we obtain a reflected expansion with R < 0. When the 
impedances are equal, Z ,  = Z , ,  there is no reflected wave even though the two gases 
may differ in composition or in states. In this case R = 0. Now combining (1.4) for Z ,  
and Z ,  with (1.1) we obtain 

where u, is the specific volume of the gas upstream of the t shock. So even with 
Z ,  = Z i ,  the wave will still be refracted if ut ?= uo. 

More generally, the incident shock may meet the gas interface at  a non-zero angle 
of incidence ai =k 0 (figure 2 a ) ,  and different refraction phenomena then occur. The 
wave systems illustrated in figure 2 (a%) are called regular refractions by analogy with 
von Neumann’s (1943) classification of regular and Mach rejlections. His theory of 
regular reflection is easily extended to regular refraction and the results are in good 
agreement with experiment (Jahn 1956 ; Abd-El-Fattah, Henderson & Lozzi 1976 ; 
Abd-El-Fattah & Henderson 1978a, b ) .  

If a regular wave system is to exist, then all of its waves must travel at the same 
velocity U along the interface, and this fact gives immediately the fundamental law 
of refraction, namely 

Iql -m- lu,l Iv,l 1q=-- - 
Sinai sinu, sina, sina,’ 

where U, is the velocity of any wave in the reflected and centred expansion wave, and 
a, is the corresponding wave angle (figure 2c) .  Evidently, lU,l = c,, which is the local 
speed of sound. Under certain conditions this law may be violated ; for example with 
a continuous increase in the parameter ai the regular wave system may break up 
with the t shock moving ahead of the incident and reflected waves to form some type 
of irregular refraction with precursor waves (figure 2d-f ). In this event, 

m lql - lu,l - IU,l >- - 
sins, sina, sinu, sina,, 

(1.10) 
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FIGURE 2. ( a x )  Regular and (d- f )  irregular shock refraction systems for a slow-fast CO,/CH, gas 
interface, n < 1 .  (a) Reflected shock, RRR, lZ,l > IZJ, at > a,; ( b )  reflected Mach line degeneracy, 
IZ,I = IZJ, a, > a, = afm; ( c )  reflected expansion, RRE, IZ,J < lZ,l, a, > a,; (d )  free precursor von 
Neumann refraction, FPU'R; (e )  twin regular reflection-refraction, TRR ; (f)  twin Mach re- 
flection-refraction, TMR. i, Incident shock; t ,  transmitted shock; r ,  r', reflected shocks; e ,  reflected 
expansion wave; k, modified incident shock ; n Mach shock ; 8 ,  side shock ; s', modified side shock, 
m gas interface; I, Region of undisturbed CO,; 11, region of undisturbed CH,; MW, Mach line; 
do,,,, contact discontinuity; TP,,,,,, trajectory path of shock wave confluences ; x ( , , , ~ , ,  trajectory 
path angles of shock wave confluences; F,,,, shock triple points; G ,  quadruple point; 0 origin where 
i first encountered gas interface. 

For oblique refraction, ai > 0, it is necessary to generalize the definition of wave 
impedance to 

pz-Po 
u,, cos pi ' 2, = 

where pi is the wave angle measured with respect to  the disturbed gas interface (figure 
2a) .  Similar expressions are defined for the other waves, and with these definitions 
(1.6) and (1.7) remain valid. 

The refraction law (1.9) may be combined with the definitions of n,  Z i ,  and Z, to 
extend (1.8) to 

(1 .11)  

The particular angle at for which there is equality of impedance, 2, = Z,, is called the 
angle of intromission a, = aim, as in acoustic theory. The wave i is still refracted a t  
this condition because in general n =# 1 when a, = aim (figure 2 b ) .  

Using the refraction law we may also write 
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Thus cos at becomes pure imaginary when 1 - n-2 sin’ ai < 0, that is when oli exceeds 
the normal critical angle, a,, which is defined by 

I u,l 
I UI 

sma, = n = -. (1.12) 

Clearly a, only exists for slow-fast refraction, n < 1.  At the critical condition, t is 
perpendicular to  the gas interface a, = in ; that is, it is a normal shock. Accordingly 
the gas interface is not deflected in this special case and i t  remains everywhere in a 
single plane. It follows that when the pressure P2 is applied to the receiving gas it 
causes no deflection of the interface, so that it behaves like a rigid surface. In  this 
sense IZ,I = 00, when ai = a,. In  summary, by (1.11) n is a measure of the capacity 
of the gases to bend or refract the incident shock, while by (1.6) and (1.7) the wave 
impedances determine the nature of the reflected and transmitted waves. 

Whitham’s (1958, 1959) theory has been extended in an attempt to  describe both 
regular and irregular refractions (Catherasoo & Sturtevant 1983 ; Schwendeman 
1988). It is attractive not only for its simplicity but also because it often agrees 
remarkably well with experiment. However, it is an approximate theory, and it does 
not describe wave reflections properly, nor disturbances that arise in the downstream 
flow and subsequently overtake a shock. I n  refracting systems difficulties can also 
arise which are apparently associated with the formation of a ‘shock-shock’ on an 
interface, or even when one is close to it. Furthermore i t  cannot deal with shock 
discontinuities at a gas interface (Catherasoo & Sturtevant 1983). 

By contrast the von Neumann theory is exact (within its assumptions) but it is 
only adequate for describing regions of uniform flow, which restricts i t  to  regular 
refractions. Irregular refractions have non-uniformities and it is then necessary to 
solve the equations of motion everywhere in order to obtain an adequate description 
of the phenomena. 

In  the present paper, we present the results of our numerical studies of slow-fast 
refraction with particular emphasis on the irregular systems. The numerical method 
that we used is an adaption of second-order, finite-difference solution of the Euler 
and continuity equations for the two-dimensional, unsteady, compressible flow of 
perfect gases. It is an operator split version of the second-order Godunov method 
developed by van Leer (1979), Collela & Glaz (1985), and Colella & Woodward (1984). 
The results are compared with the experimental data of Abd-El-Fattah & Henderson 
(1978 b ) .  Agreement with experiment is satisfactory for much of the data, particularly 
if allowance is made for the effects of gas contamination in the experiment. Some 
discrepancies do exist, especially for the a, data for irregular systems. This is ascribed 
to uncertainties in the measurements caused by the sharp curvature of the 
transmitted wave at large angles of incident aa. 

2. The experiments 
The experimental method has been described by Bitondo (1950), Jahn (1956), 

Abd-El-Fattah et al. (1976), and Abd-El-Fattah & Henderson (1978a, b) .  The 
experiments of the last named authors appear to be the most extensive and we 
describe them briefly. A delicate polymer membrane was set up in a shock tube; its 
functions were to  define the initial gas interface as a plane surface, and to prevent the 
gases from mixing until the incident shock arrived. The mass of the membrane was 
between 0.5 and 1.0 x kg m-2, and its thickness was between 5.5 and 6.5 x lop8 m. 
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In order to set up a slow-fast interface such as CO,/CH,, the CO, was slowly 
introduced onto one side of the membrane while the CH, was introduced onto the 
other. The gases were continuously circulated through the shock tube to minimize 
mutual contamination by diffusion and leakage across the membrane. The 
contamination was monitored continuously by a thermal conductivity meter, and 
typically the CH, was contaminated by about 10 % by volume with CO,, but the CO, 
was much purer. It should be noted that the volume of CO, in the shock tube was 
about 250 times larger than the CH,. 

= Po/Pl, was started in the CO,, and 
arranged to strike the membranelgas interface a t  a predetermined angle of incidence 
ai. The shock shattered the membrane and entered the CH,, and was thus refracted. 
The wave system was photographed by a schlieren optical system, and transducers 
measured the speed and strength of the incident shock. 

Recently, Haas & Sturtevant (1987) have experimented with weak shocks 
refracting at cylindrical and spherical interfaces. The gases were initially prevented 
from mixing by the use of plastic membranes or soap bubbles. However, in the 
interest of simplicity we will confine our attention to plane gas interfaces. 

A shock of prescribed inverse strength 

3. The computations 
3.1. The numerical method 

We used a second-order finite-difference solution of the Euler and continuity 
equations on a rectangular grid with reflecting boundary conditions on three sides 
and inflow boundary conditions on the fourth. The numerical integration of the 
equations was accomplished with an operator split version of a second-order 
Godunov method (van Leer 1979; Colella & Woodward 1984). In  our implementation 
we employed the efficient algorithm for the solution of the Riemann problem 
developed by Colella & Glaz (1985). Since the method is a conservative finite- 
difference scheme, mass, momentum, and energy were all conserved. The method is 
accurate to second order in space and time for smooth flow, and captures shocks and 
other discontinuities with minimum numerical overshoot and dissipation. It has been 
used quite extensively to compute unsteady shock reflections in gases, and has a 
demonstrated ability to resolve complex interactions of discontinuities in good 
agreement with experiment (Glaz et al. 1985). 

An important feature of the numerical method is that it employs a dynamic 
regridding strategy called adaptive mesh refinement (AMR). This entails placing a 
finer, rectangular grid over any region of particular interest or excessive error, with 
the grid spacing being reduced by an even factor - typically 2 or 4. The boundary of 
the refined grid always coincided with the cell edges of the coarse grid. Multiple levels 
of refinement were possible with the maximum number of nested grids being supplied 
as a parameter by the user. In the present work, we determined those regions that 
required refinement by estimating the local truncation error in the density, and 
refining wherever the error was greater than an initially specified amount. In 
addition, we refined to the maximum extent all multifluid cells (those containing 
both gases) and all cells lying within two cell widths of a multifluid cell. Special care 
was taken to ensure that the fluxes on boundaries between coarse and fine grids 
matched; the details are given by Berger & Colella (1989). Adaptive gridding was a 
crucial component of our method which enabled us to  resolve important features of 
the flow economically. A typical run with two levels of gridding and a refinement 
factor of 4 took 10 minutes of CPU time on a CRAY XMP computer. 
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Pure carbon Pure Contaminated 
dioxide methane methane 

Y 1.288 1.303 1.301 
p 44.01 16.04 18.84 

TABLE 1. Properties of the pure and contaminated gases 

The gas interface was modelled using an algorithm of Noh & Woodward (1976) 
known as SLIC (Simple Line Interface Calculation). Here a number fi3, between 0 and 
1, and called the volume fraction, was associated with each grid cell through which 
the gas interface passed. This fij was the volume fraction of the cell occupied by one 
of the gases. Obviously the other gas occupied the fraction 1-fi3. During each 
integration sweep a simple picture of the interface consisting entirely of vertical and 
horizontal line segments was constructed from this volume fraction information. 
This was used to determine how much of each gas was convected out of the cell and 
into adjacent cells on this pass, and hence to update the volume fractions associated 
with each cell. One of the drawbacks of volume-of-fluid-based interface tracking 
schemes such as SLIC is that  in a region undergoing expansion or compression both 
of the gases in a multifluid cell will be expanded or compressed equally, in spite of 
the density differences that may exist between them. To use this method with the 
present problem we incorporated a scheme due to Colella, Ferguson & Glaz (1990) in 
which the equations of gas dynamics are supplemented with evolution equations for 
the volume fraction, total energy, and mass density of each gas in the multifluid cells. 
This formulation takes into account the compressibility of each gas component in a 
multifluid cell so as to  ensure the correct individual expansions or compressions. 

3.2. Outline and plan of the numerical work 
We shall present the results of our computations as though we had done a series of 
experiments in a shock tube. This means that in a particular sequence, the ratios of 
the specific heats yi,  yt of the gases and their molecular weights pt,pt were held 
constant and so also was &. The only parameter that  varied through the sequence 
was ai. This was assumed to  be initially near the condition for head-one incidence a t  
a, = 0 ; it was then increased in discrete steps until it approached glancing incidence 
at a, = in; thus 0 < a, < in. A particular refraction was uniquely defined once the 
values of (yi, yt ,  p i , p t ,  ti, ai) together with the system boundaries were given. 
Typically the phenomena that appeared from this procedure were a sequence of 
regular refractions followed by an irregular sequence. 

We shall compare our numerical results with the experimental data obtained by 
Abd-El-Fattah & Henderson (1978b) for the slow-fast, n < 1, CO,/CH, gas interface. 
There were two artifacts in those experiments which we took into account in our 
computations in order to make the comparison as accurate as possible. These were 
the inertia of the membrane and the contamination of the gases by diffusion and 
leakage across it. 

Membrane inertia We calculated the membrane density from the published data, 
and it was about 680 times denser than CO, a t  standard conditions. Using this factor 
in the computations, the membrane was treated as though it  were superdense carbon 
dioxide. Generally its effect was negligible ; all we noticed was a slight displacement 
in the pressure contours when the contours were compared with, and without, the 



8 L. F .  Henderson, P .  Colella and E .  G .  Puckett 

P 
1.0 lo% 

RRE 

€1 

RRE - RRR 

E ,  = A,  
-6  - 3  0 3 6 

6 (deg.1 

FIQURE 3 ( a , b ) .  For caption see page 10. 

membrane for the same refractions. In view of this we deleted it from the remainder 
of our computations. 

Gas contamination The published data showed that the methane was contaminated 
by about 10% by volume with carbon dioxide, but that the CO, itself was 
approximately pure. (Remember their volume ratio in the shock tube was about 
250: 1 in favour of the CO,.) The properties of the pure and contaminated gases are 
presented in table 1.  Contamination is a significant effect and it will be discussed 
below. 

4. Results and discussion for a weak shock refraction sequence 
4.1. The polar diagrams 

The sequence and its polar diagrams are presented in figure 3. They are similar to the 
ones described by Abd-El-Fattah & Henderson although here we assume that the 
CH, is not contaminated by the CO,. When ai is comparatively small, there is a 
regular refraction with a reflected expansion (RRE) (figure 3a) ,  so IZJ < IZJ, R < 0, 
1 > T > 0. Since the refraction is slow-fast, n < 1,  we have by (1.11) that ut > ui, 
that is t is steeper than i .  The reflection e ,  is a centred, Prandtl-Meyer, expansion fan 
and it is plotted in the polar diagram as the isentropic curve c. It intersects the polar 
for the t shock at the point el which defines the von Neumann solution for RRE. The 
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solution requires there to be continuity in the pressure and in the streamline 
direction 6, everywhere along the gas interface. Although (1.2) remains valid when 
ai f 0, (1.3) must be replaced by 

where So, 6, and 6, are the deflection angles for the i, r and t waves respectively. This 
is the continuity condition for the streamline direction. I t  is sometimes convenient 
to replace (1.2) by the equivalent expression 

S0+6, = s,, (4.1) 

(P, -P1) + Pl -Po) = (8 -Po). 
For reflected expansions we must replace (4.1) by 

Uptcosp,+~oos/3*dUp* = ~p,cosP,,  

where Ups,%,, are the driving piston velocities of the i and t shocks, dU, is the 
infinitesimal withdrawing piston velocity for an arbitrary j th  wave in the reflected 
expansion, and pi, ,8,, /3* are the wave angles which are defined with respect to the 
disturbed gas interface (figure 2a and 2c). 

If ai is now increased continuously, the polars shrink somewhat and the 
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FIGURE 3. Polar diagrams for a weak shock refraction sequence with 6, = 0.78 a t  a pure CO,/CH, 
gas interface. (a+) Regular refraction, (d )  transition, and ( e 3 )  irregular refraction. (a) Reflected 
expansion, RRE, at a, = 27', IZ,I < IZJ ; ( b )  degenerate refraction at  the angle of intromission at = 
a,, z 32.0592', 2, = Z , ,  R = 0, T = 1, the condition for total energy transmission; (c) reflected 
shock, RRR, at  a, = 33.27', 12,) > IZJ; (d )  the shock critical angle a,, % 34.4885'; ( e )  bound 
precursor refraction, BPR, a, > asc; (f) free precursor refraction, FPR, s and t are evanescent 
waves; (9 )  free precursor von Neumann refraction, FNR, Mot, M,,, M,,,, free-stream Mach numbers 
upstream, and relative to  the i, t ,  and r shocks respectively; ( ~ ~ , h ~ , h , )  solutions of the von 
Neumann regular refraction theory; D, disturbed gas interface; A , ,  intersection point of the 
primary polars (i, t ) .  For other symbols see the caption to figure 2 .  

intersection point A ,  of the primary polars (i ,  t )  moves downwards towards the point 
i which is the map of the incident shock. As this happens the strength lP, - PJ of the 
expansion decreases and eventually vanishes a t  the angle of intromission ai = aim x 
32.0592", which corresponds to E ,  = i = A , .  The reflection is reduced to a Mach line 
degeneracy (P,-PJ = 0 and the other wave impedances become equal: 2, = Zi, R = 
0, T = 1. This is the condition for total transmission, and here also a, > ai (figures 2 b  
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(c) a, = 33.27" ; 

FIGURE 4(a-c). For caption see page 13. 
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FIGURE 4(d-f). For caption see facing page. 

and 3 b ) .  As a, continues to  increase, at > aim, the reflection becomes a shock (RRR) 
(figure 3 c ) ,  and now IZJ > IZ,I,R > 0, T > 1, with again a, > a,. The von Neumann 
theory gives two solutions A, and A, for RRR, but experiment shows that it is the 
weaker A, solution which appears physically. I n  this respect note that A, is the 
continuation of the el solution while A ,  is not; in fact at the intromission angle, el and 
A ,  are identical and degenerate: = A,  = A ,  = i. 
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I 1 I 

FIQURE 4. Contour plots of log P for a weak shock refraction sequence with 6, = 0.78 at a pure 
CO,/CH, gas interface. (a) a, = 27', RRE; ( b )  total transmission at the angle of intromission, 
a, = a,, x 32.0592'; (c) a' = 33.27', RRR; (d) R R R S B P R ,  A1 = A2, at the shock critical angle 
asc z 34.4885'; (e) a, = 38', BPR; (f) a, = 43', FPR; (9 )  a, = 49', FPR; (h )  a, = 65', FNR. (The 
straight line running diagonally from upper left to lower right represents the initial, undisturbed 
gas interface. It is not a pressure contour.) 

As a, continues to increase, A, and A, approach each other and eventually coincide, 
A, = A, (figure 3 4 .  This takes place at the shock critical angle a1 = a,, x 34.488'. In 
general this angle does not coincide with the normal critical angle a,, defined by (1.12), 
and usually occurs before it, us, < a,. For a, > a,,, the A, and A, solutions are no 
longer physically significant because they are unreal. The refraction is now irregular 
and precursor compression waves may develop (figure 3e-g). In the experiments of 
both Jahn and Abd-El-Fattah & Henderson the precursors did not appear as soon as 
the shock critical angle was exceeded. In fact, a, had to increase somewhat beyond 
a,, before they were observed. We shall return to this point later. 

4.2. The numerical results for the sequence 
The numerical results presented here are all for uncontaminated gases with no 
membrane. We believe that these results will be of more general interest than those 
which include the artifacts of the experiments. Selected contour plots for the 
sequence are shown in figure 4, a schlieren photograph from the experiments is shown 
in figure 5 (a)  and colour contour plots to compare with the schlieren photograph arc 
shown in figure 5 ( b ,  c) (plate 1). Of course the comparison can only be qualitative 
because the numerical results do not include the artifacts. However, note that the 
numerical results exhibit all of the essential features of the flow which are found in 
the schlieren photo and that these features appear to be in the same relation to one 
another as in the schlieren. We present a more detailed comparison in $4.4 below. 

Incidentally, we prefer the colour contour plots to grey scale plots of the same 
quantities because we believe that the eye is more sensitive to changes in colour than 
to changes in contrast. We find that colour reveals more detail - such as very weak 
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FIGURE 5. ( a )  Schlieren photograph and (b ,  c) colour contour plots for a weak irregular shock 
refraction, FKR at a CO,/CH, gas interface with ti = 0.78 and a, = 60'. 

waves or weak contact discontinuities - than black and white, or shades or grey. For 
example, cornpare the clarity of the two contact discontinuities cd, and cd, (figures 
2f and 1 0 e )  which emanate from the two shock triple points in figures 8 ( e )  and 9 ( b ) .  
Or compare thc detail with which the reflected shock rand  expansion e are displayed 
in the schlieren photograph in figure 1 4 ( a )  versus the colour contour plots in figure 
14(b).  

4 .3 .  Structure of the weak irregular refraction systems 

4.3.1. The bound precursor refraction system, BPR 
The regular systems RRE and RRR arc well described by the von Neumann 

theory, and in morc detail by our numerical results. When the shock critical angle is 
exceeded, ai > a,, z 34.4885", the RRR system becomes augmcnted with an 
expansion wave e ,  which appears in the receiving gas (CH,), and with its pressure 
contours apparently centred on the refraction point R (figures 3 e ,  4 e ) .  The contours 
a t  first diverge as they move away from R, but then swing around and refract into 
the incident gas (CO,) where they converge into a compression downstream of the 
reflected shock r .  According to the von Neumann theory, there are no physically 
acceptable solutions for ui > a,,, and the impedances of the transmitted and reflected 
waves are unreal. For these reasons the system is irregular. The r and t shocks now 
have sharply increased curvatures near R, and furthermore t is now locally inclined 
forward of R, a, > trt (figure 4 e ) .  By contrast, for the regular systems t is everywhere 
inclined backwards, at < (figure 4a-d). Thus t is a precursor wave for ai > a,,,, and 
because it apparently moves along the gas interface at  the same velocity as i and r ,  
that is (1.9) remains satisfied, t is therefore also a bound precursor. Like Abd-El- 
Fattah & Henderson we shall call this system a 'bound precursor refraction ' (BPR). 
In  summary a BPR differs from an RRR both by the appearance of a fourth wave 
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FIGURE 5(b,c). For caption see facing page. 

HENDERSON, COLELLA & PUCKETT 

Plate 1 

(Facing p. 14) 
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FIGURE 9(6,c). For caption see facing page. 
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Plate 2 
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FIGURE 9. (a) Schlieren photograph and (b ,  c) colour contour plots for a twin Mach reflection 
type refraction, TMR (see figure 2f), with & = 0.18 and a, = 66" at a CO,/CH, gas interface. 

and by the fact that  t leans forward (at > in) a t  the interface, whereas it leans 
backwards (at < in) for a RRR. The detailed structure of the BPR and especially of 
the fourth wave as displayed in figure 4 ( e )  have not been reported previously to our 
knowledge. Indeed some doubt has been expressed as to  whether a BPR is a basic 
system or is merely an experimental artifact (Catherasoo & Sturtevant 1983). Our 
numerical results provide good evidence to support the existence of i t  as a basic 
system. 

4.3.2. The condition for the RRRSBPR transition 
The shock critical angle as, is defined by the double root A, = A, of the von 

Neumann theory (figure 34, and this amounts to a generalization of the well-known 
shock detachment criterion for regular/irregular transition in shock rejection. 
Inspection of the polar diagrams reveals that the flow downstream of the reflected 
shock is always supersonic, M ,  > 1, for the A, solution, and accordingly the sonic 
criterion (or its generalization to refraction) proposed by Hornung & Taylor (1982) 
cannot exist for the reflected shock. However, it can exist for the transmitted shock 
t ,  and in fact it does exist a t  an a, about 1" smaller than asc. This difference is too 
small for experiment to  discriminate, and we have not done the detailed and 
expensive computations necessary to decide the matter. Although the numerical 
data show that the R R R S B P R  transition is close to  the generalized detach- 
ment/sonic point for the t shock, experiment suggests that transition is delayed 
to values of a, somewhat larger than a, = use. I n  the experiments transition is 
somewhat obscured by the wire frame on which the membrane was mounted, and 
also by a thin film of silicone oil which was used t o  seal the wire t o  the shock tube 
windows to reduce gas leakage. In  view of this we conclude that transition occurs 
either a t  the generalized detachment/sonic point, or close to it. 
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It is interesting to note that the condition a, = must also be attained during the 
transition RRR BPR, because as this occurs we have seen that (at < in) + (a, > 
in). Therefore the condition corresponding to the normal critical angle a, defined by 
(1.12) is forced to occur a t  the same condition as the shock critical angle a,,, even 
though as, < a,. 

4.3.3. The free precursor refraction system, FPR 
With steadily increasing ai, the t wave eventually breaks loose from the i and r 

shocks and runs ahead of them along the gas interface (figure 4f-h).  The refraction 
law has now been violated as with expression ( l . l O ) ,  and there is now a free precursor 
refraction (FPR) in which the t wave moves ever further ahead of i and r with time. 

It will be noticed that the pressure contours for the t wave are now spread out at, 
and near, the gas interface (figure 4f-h),  instead of being concentrated as for a shock 
(figure 4 e ) .  Thus t is a locally smeared out or evanescent wave. However, further away 
from the interface the contours do converge to form a coherent shock. The t wave is 
itself refracted from the CH, back into the GO,, which means that its refraction is 
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FIGURE 7. Comparison of the wave speed ratio q/q (see figure 2c) for a COi/CH,.gas interface with 
& = 0.78. 0 ,  Computed data for pure gases ; H I  computed data for 10 % contamination of the CH, 
by the CO,; A, experimental data (from Abd-El-Fattah & Henderson 1978b). 

locally fast-slow, n > 1. The wave transmitted into the CO, is the side wave s (figure 
3f, g), and it  is also an evanescent wave. Since locally n > 1,  then Ia,I > la,l. The 
contour plots show no sign of a reflected wave from the t-s refraction, nor does there 
seem to be one in the experiments (presumably it is too weak to  be resolved). Thus 
the local system appears to  consist only of the t-s pair. The s wave and the incident 
shock i eventually encounter, and mutually modify, each other. The s contours 
converge to  the reflected shock r after passing through i. The modified shock k,  
continues to the disturbed gas interface where it is locally refracted with total 
internal reflection R = - 1 ,  T = 0, 2, = 0. This means that k is reflected as a centred 
expansion wave, e .  This last wave eventually overtakes r and causes almost complete 
mutual cancellation, so that finally a weak reflection is propagated into the 
downstream CO, (figure 4f-h). It is clear from both the experimental and numerical 
results that  5 is an evanescent wave. The numerical results show that t is also 
evanescent but the experiments cannot resolve it. Hence the computation are 
predicting a new result for this wave. 

It is natural to  consider the conditions where a bound precursor system becomes 
a free precursor system or vice versa, BPR$FPR. This is associated with the 
spreading out of the t wave into a distributed compression near the interface and it 
then runs ahead of the i and r shocks along the interface. Therefore the transition 
occurs with the violation of the refraction law (1.9), in other words (1.10) now applies. 
The law is of course immediately re-established for the precursors 

lu,l 141 -- 
sinas sina,' 

4.3.4. The free precursor von Neumann refraction system, FNR 

Transition to  yet another irregular refraction takes place as ai continues to 
increase. It is characterized by a weak Mach reflection appearing in the CO,. Some 
pressure contours of it are presented in figure 4 ( h )  and a schlieren photograph and 
colour graphics in figure 5 (a-c). Abd-El-Fattah & Henderson (1978b) called this a 
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FIQURE 8 (a, b ) .  For caption see facing page. 

‘free precursor von Neumann refraction’ (FNR). See figures 2 ( d ) ,  3(g),  4(h),  and 
5 (a-c) of this paper. The conditions for the FPR + FNR transition are not known 
and our computations are not sufficiently detailed to form a hypothesis with any 
confidence. 

In  summary the sequence of phenomena for the refraction of a weak shock a t  a 
slow-fast gas interface with increasing angle of incidence ai is as follows : 

RRE e RRR e BPR + FPR e FNR. 

This sequence seems to be generally well supported by both the computations and 
by the experiments. 

4.4. Comparison of the numerical results with experiment 

In  the interests of making the comparison as precise as possible we used the same 
values of the parameters (yi, yt,,ur,,ut, ti, ai) for our input data as Abd-El-Fattah & 
Henderson measured in their experiments. This included using the data for the 
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(c)  a, = 46' (c)  a, = 46' 

(e) a, = 66" m 
FIGURE 8. Contour plots of (u-d) log P and (e) log p from computations of a strong shock refraction 
sequence, & = 0.18, at a pure CO,/CH, gas interface. (The straight line running diagonally from 
upper left to lower right represents the initial, undisturbed gas interface. It is not a pressure 
contour.) 

contaminated gas shown in table 1, and the same boundary configuration. Some of 
the computations were repeated for the pure gases in order t o  obtain an estimate of 
the sensitivity of the results to  gas contamination. The numerical data for the pure 
and the contaminated gases are compared with experiment in figures 6 and 7. Figure 
6 shows a variety of wave angles as well as the interface deflection angle 8, (figure 2a) 
and the trajectory path angle x for the intersection of the i, k, s and s' waves (figure 
2 d ) .  For the regular part of the sequence, RRE =$ RRR, the numerical results for the 
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contaminated gas are everywhere in satisfactory agreement with experiment, but the 
corresponding results for the pure gases show a significant discrepancy for the at 
data, but not for the a,,a,, and St data. So only the at data seem to be sensitive to 
contamination, and that sensitivity is greatest near transition ai = a,, X. 34,4885' 
(A,  = A,) where small variations in the contamination can cause significant changes to 
at. Thus, for regular refraction the at data are sensitive to  contamination while the 
data for other angles are not. This is ascribed to the fact that incident and reflected 
waves propagate in the CO, which is little affected by contamination because of the 
large fraction of the volume it occupies in the shock tube, while the t wave propagates 
in the CH, and this is significantly affected (table 1 ) .  

After transition to  irregular refraction the numerical data for the contarninatcd 
gas are again in agreement with experiment so long as, approximately, ai < 50' ; but 
significant discrepancies are evident for at > 50", particularly for the at data. For 
irregular refraction the t wave is everywhere curved, and as ai > 50' increased wc 
found that this curvature became quite sharp near the gas interface. This made the 
choice of where to draw the tangent to t in order to measure at a t  the interface 
increasingly uncertain. The same difficulty occurred for both the schlieren 
photographs and for the contour plots. We therefore looked for more robust data to 
compare with the experiment, which we found in the measurements of the wave 
velocities and q. The numerical data for q/L$ are compared with experiment in 
figure 7 .  These data include the computations for the pure and the contaminated 
gases, and it will be noted that the results bracket the experiment data. 

It should be remarked that the measurements of the gas contamination are only 
average values obtained after the contaminated gases had been drawn from the 
shock tube and individually sent to the thermal conductivity meter. Therefore the 
local contamination near the gas interface could have been significantly different 
from the average value obtained at  the meter. In view of the uncertainties involved 
we conclude that the agreement between the numerical data and experiment is 
satisfactory. 

5. Results and discussion for a strong refraction sequence 
5.1. Wave structures i n  the sequence 

A second series of computations was done for the CO,/CH, interface, except that i 
was now a strong shock, & = 0.18; this work was restricted to the pure gases. 
Selected contours are presented in figure 8, and a schlieren photograph together with 
colour graphics are presented in figure 9 (plate 2) .  A comparison with experiment 
cannot be precise because the effect of gas contamination has not been taken into 
account in the computations. However, note that the computational results in 
figures 9 ( b )  and 9 ( c )  clearly display all of the key features of the refraction found in 
the schlieren photo in figure 9 ( a ) ,  especially the two-shock triple points i-n-r and 
s-n-r' and the two contact discontinuities cd, and cd, emanating from these triple 
points (figure 2f). 

The polar diagrams are presented in figure 10. When ui is small enough to result 
in regular refraction, the von Neumann theory provides three physically acceptable 
solutions, namely two with reflected shocks A,, A, and one with a reflected expansion 
el (figure 10a). It was the E,  (RRE) solution which Abd-El-Fattah & Henderson 
observed. With increasing ad one obtains the coincidence A, = A, = i = A , ,  and then 
the reflected shocks in the A,, A, (RRR) solutions degenerate to Mach lines (figure lob). 
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Although this takes place at the angle of intromission at, x 35.94", it has no physical 
significance in this case because el is not degenerate at this condition. Hence the 
impedances are not equal, 2, 4 Z,, for the solution el that is actually observed. 

For a, > a,,, the A,,A,,  solutions are unreal and at the same time we obtain a 
second solution E, of the RRE type (figure 1Oc). However, once more it was the el 
solution that Abd-El-Fattah &, Henderson observed. Clearly, at a, = a,, the 
coincidence can be extended to E,; thus, A, = A, = E, = i = A, .  Notice, however, that 
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FIQURE 10. Polar diagrams for a strong shock refraction sequence with ti = 0.18 at  a pure CO,/CH, 
gas interface. ( a )  RRE, el solution at ai = 30'; ( b )  RRE, el solution at  a, = a,, = 35.95'. Note that 

is not a continuation of either the A,, or A, solutions, therefore the shock critical angle for A, = 
Az is irrelevant for transition to irregular refraction in this case; (c) RRE, at  a( = 37"; note there 
are now two RRE solutions, el and e, ; the el solution is observed in experiments ; ( d )  RRE, at the 
relevant shock critical angle, el E e2, a1 = asc = 46.294'; this is the transition condition for 
RRE$TMR; ( e )  twin Mach reflection-refraction TMR at ai = 66' > asc. 

the E ,  solution nowhere forms a coincidence with either the A,, A, solutions as it did 
a t  the A ,  point in the weak sequence. Consequently, by continuity no refraction of 
the RRR type can appear in this strong sequence. 

As a, continues to  increase one eventually obtains el = c, (figure 10d),  where the 
isentropic c is tangent to the t polar. This again occurs a t  the shock critical angle 
a,, x 37.79", but it differs from the weak series in that the coincidence is an RRE type 
E ,  = E ~ ,  instead of the RRR type, A ,  = A,. 

For a, > a,,, the refraction is irregular and both the experiments and the 
computations agree that it is again a free precursor system. However, the numerical 
results show that both the t and the s waves are shocks and not evanescent 
compressions as they were in the weak sequence. Structurally the system consists of 
the precursor transmitted-side shock pair t-s, interacting with a single Mach 
reflection triplet of shocks i r - n  (figure 1 0 e ) .  The side shock s now interacts with the 
Mach shock n,  modifies it and produces the second reflected shock r'. Consequently, 
there are two Mach reflections in the incident gas, i - n r ,  and s-n-r', the refraction 
will be called a 'twinMach rejlection-refraction' (TMR). The r' shock undergoes total 
internal reflection a t  the disturbed gas interface and gives rise to the reflected 
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FIGURE 11.  Comparison of the wave speed ratio Q / q  (see figure 2c) for a CO,/CH, gas interface 
with 6, = 0.18. 0, Computed data for pure gases; A, experimental data (from Abd-El-Fattah & 
Henderson 19783). 
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FIGURE 12. Experimental and computational wave angle data for a CO,/CH, refraction with 5, = 
0.18. Circular symbols represent data from computations with pure gases. All other symbols 
represent experimental data. 0,  A, Transmitted shock angle a,; 0 ,  X ,  reflected wave angle a, or 
a,; 0 ,  +, side shock angle a,; 0,  a, interface deflection angle 8, ;  0,  +, trajectory path angle xl ;  
0, 0,  trajectory path angle x,. (Experimental data from Abd-El-Fattah & Henderson 19783.) 
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FIGURE 13. (a)  Schlieren photograph and (b ,  c )  colour contour plots for a twin regular reflection type 
refraction, TRR (see figure 2 e )  6, = 0.53, a, = 50.5", a t  a CO,/CH, gas interface. See also the 
caption to  figure 5. 

expansion e ,  which in turn overtakes and attenuates r .  Contact discontinuities cd, 
and cd, appear a t  the MR triple points (figures 2 f, 8e, 9a ,  b and 10e); of course they 
are not visible in figures 8 (d )  and 9(c )  since these are contours of log p .  There are now 
three shear layers in the downstream flow, namely cd, and cd,, and the disturbed gas 
interface. 

5.2.  Comparison of the numerical results with experiment 

The numerical results are compared with the experiments data in figures 11 and 12. 
As expected the discrepancy for the a, data is comparatively large because we did not 
take into account the gas contamination. Qualitatively it is similar to  the discrepancy 
for the weak series in figure 6. The increasing size of the discrepancy for the irregular 
refraction is again attributed to the uncertainty of measuring a, with increasing 
curvature of the t shock near the interface. The angle data for xl,xz, and S,, are 
generally in satisfactory agreement, granted the numerical and experimental 
uncertainties. These last measurements were made either for the CO, flow field, or 
along its boundary (8,) and, as we have seen, such measurements are insensitive to  
gas contamination. The curvature of the reflected shock r prevented us from making 
reliable measurements of a,, while the short length of the side shock s similarly 
prevented reliable measurements of a,. The discrepancies for a,. and a, are significant 
and are attributed to these uncertainties. 

In figure 11 the numerical data for lJ/lJ display a small systematic discrepancy 
from the experimental data. This is qualitatively similar to the pure gas results 
shown in figure 7, and is ascribed to the same cause, namely gas contamination. 
Nevertheless, the agreement with experiment is quite reasonable. 
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FIGURE 13(b,c). For caption see facing page. 
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FIGURE 14(b,c). For caption see facing page. 
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FIGURE 14. (a) Schlieren photograph and (b , e )  colour contour plots for a twin von Neumann 
irregular refraction, TNR (Abd-El-Fattah & Henderson 1978b) at a CO,/CH, gas interface with 
ti = 0.53 and a, = 62'. 

6. The boundary between the strong and the weak systems 
We consider how a weak irregular refraction may be changed into a strong one, or 

vice versa, FNR TMR. This will be done by continuously reducing 6, from 6, = 
0.78 where the system is weak, to 6, = 0.18, where it is strong. In the following 
discussion the parameters (y,, yt,,u,, p t )  will be held constant and at will be allowed 
to vary only slightly while & is decreased. We begin by considering the weak, 
irregular refraction that we call FNR at Ec = 0.78 (figures 4h and 5a-c). As ti 
decreases the shock triple points Fl. F, (figures 2 f and 39) continuously approach the 
quadruple point G (figure 2e) and then for some 6, they coincide with it, Fl E F, = 
G .  The weak Mach reflection has now vanished and the number of shocks in the 
incident gas are reduced to four, i - sr -k  (figure 2 e ) .  If we imagine that the CH, is 
replaced by a rigid medium with the same boundaries, then the four-shock 
interaction would amount to the twin regular reflection studied by Smith (1959). 
Since the i and s shocks are generally of unequal strength, their interaction is 
asymmetrical and a contact discontinuity arises in the downstream flow. A schlieren 
photograph of this refraction, obtained by Abd-El-Fattah & Henderson with Ei = 
0.53 and a, = 50.5' is presented in figure 13(a), together with colour contour plots 
from the computations in figure (13b, c )  (plate 3). We shall call it a twin regular 
reflection-refraction (TRR). Actually the cited authors found that this system 
existed for a range of 6, and not just for a particular value on the boundary between 
the strong and the weak systems. If 6, = 0.53 is held constant and a, is now increased 
to a, = 62', then the four-shock system changes into the twin von Neumann system 
(TNR) (Abd-El-Fattah & Henderson 19783) shown in figure 14 (plate 4 ) .  Eventually, 
however, as & becomes small enough the four-shock system in the TRR changes to 
the twin Mach reflection characteristics of a TMR a t  & = 0.18, and ai = 66' (figures 
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2.f, 8 d ,  e,  9, and 10e). The condition for the T R R S T M R  transition have been 
discussed by Smith for reflection, and Abd-El-Fattah & Henderson for refraction. 

A variety of special conditions may be used to define precisely the strong/weak 
boundary. Some of them have been discussed by the above authors. Here we notice 
that for weak systems the regular/irregular transition RRR + BPR takes place a t  
the von Neumann tangency point A, = A,, that is a t  as,, but for strong systems the 
tangency condition has a different character el = E, ,  so R R E  + TMR, but again a t  
as,. It seems plausible therefore to define the strong/weak boundary at the point 
where both conditions are in coincidence, A, = A, = E ,  = c, = i = A,.  For the pure gas 
interface CO,/CH, this is approximately a t  tb = 5, = 0.471 and ai = 34.05'. So 
an incident shock i has a weak refraction whenever 5, > gb and a strong one when 

Abd-El-Fattah &, Henderson used a different condition for the boundary, based 
upon a generalization of the von Neumann classification for shock reflection, but the 
definition of the boundary is somewhat arbitrary. 

There is some hint that in our results for the strong sequence 5 = 0.18, the four- 
shock TRR system appears imrnediatcly after transition to an irrcgular refraction. 
However, i t  is not resolved unequivocally, and in any event a TMR is certainly 
present when a, increases by only a small further amount. 

Each regular or irregular wave systcm occurs for definite ranges of values of the 
system parameters (y i ,  yt,,ui,,ut, ti, a,), and it is possible to produce a topological plot 
of 5, versus a, for a given combination of gases ( y i ,  y t ,p i , ,uut ) .  Abd-El-Fattah & 
Henderson (19786) did this for the COJCH, interface and we refer the interested 
reader there for further details. 

ti < X b .  

7. Concluding remarks 
In our computations of the weak refraction sequenre we used the same input data 

as Abd-El-Fattah & Henderson had measured in their experiments. This included 
the effects of gas contamination due to leakage and diffusion across the membrane, 
and also the inertia of the membrane. The object was to test the validity of the 
computations by obtaining as precise a comparison with experiment as possible. We 
found that the membrane inertia made very little difference and we ignored it in our 
later computations. However, our data for the wave angle at of the transmitted 
shock was sensitive to gas contamination, and to a lesser extent so was the wave 
velocity Q data of this shock. None of the other data displayed such sensitivity, and 
this was ascribed to the fact that at and Q were measured for the CH, component 
which was significantly affected by Contamination (table 1) whereas the other data, 
x,a,,a,, and so on, were measured for the CO, component which was very little 
affected by the contamination. 

Our computations were everywhere in reasonable agreement with experiment 
when gas contamination was taken into account, except for the at data when, 
approximately. a, > 50". That discrepancy was ascribed to the uncertainty of 
making accurate measurements of at owing to the increasingly large curvature of the 
transmitted wave with increasing a,, This uncertainty applied to both the 
experimental data and to measurements made from the contour plots. 

The computations were done for inviscid gases and since the results were generally 
in good agreement with experiment it is concluded that viscosity had no significant 
effect on the measurements. Presumably viscosity would be of most importance in 
the boundary layers a t  the system walls and in the region of mixing between the two 
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gases. The computations allowed vorticity production and transport but not viscous 
diffusion. 

The computations resolved the struct,ure of the bound precursor refraction (BPR), 
and revealed the presence of a fourth wave, which was an expansion and apparently 
centred on the refraction point. After transition to a free precursor system, BPR =$ 

FPR, the transmitted/side shock pair were found to be smeared out in the region of 
the gas interface, which we called evanescent waves. 

Similar effects were found in our computations for stronger refraction and were 
ascribed to  the same causes. Our computations displayed all the principle features 
found in experiment, such as local singlc Mach reflection-refractions, twin Mach 
reflection-refractions, free precursor shocks, contact discontinuities, reflected 
expansion waves, and so on. In particular our computations were able to accurately 
and sharply resolve contact discontinuities, for example those emanating from shock 
triple points (figures 10, 13, and 14). This has historically been a difficult task for 
numerical methods primarily designed to capture shocks. We conclude that the code 
does provide a satisfactory representation of the refraction phenomena even though 
it ignores the effects of viscosity and three-dimensionality. 

This work was performed under the auspices of the US Department of Energy a t  
the Lawrence Livermore National Laboratory under contract number W-7405- 
ENG-48 and partially supported by the Applied Mathematical Sciences subprogram 
of the Office of Energy Research under contract number W-7405-Eng-48 and the 
Defense Nuclear Agency under IACRO 88-873. 
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