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The customary acoustic calculation used to design shocks wave equation of state targets may be 
inapplicable when the sample is enveloped in a container that has a higher shock impedance 
than the sample being studied. In this case the edge effect is compressional, and could travel 
faster than the speed of sound. We present computations of the nonlinear wave interactions that 
occur at the sample-container interface of molybdenum-encased molten silicate shock wave 
targets. In all cases considered here, the edge effect is acoustic despite the higher shock 
impedance of the container. The computational method is an extension of a conservative 
Eulerian finite difference scheme for two materials in two dimensions that is based on a 
second-order Godunov method. This new method includes adaptive mesh refinement, a 
volume-of-fluid interface tracking algorithm, and a Mie-Griineisen equation of state to describe 
liquids and solids in the hydrostatic limit. 

I. INTRODlJCTlON 

Shock waves have been used as an experimental tech- 
nique for determining equations of state at very high pres- 
sure for over 40 years.’ In such experiments, a shock is 
typically created by the impact of an explosively driven 
plate of some reference material against a plate of the sam- 
ple being studied. The impact velocity and the resulting 
shock wave velocity are measured, and transformed into a 
pressure, density, and internal energy determination by ap- 
plication of the one-dimensional Rankine-Hugoniot con- 
servation laws.2-4 By this general methodology, equations 
of state have been determined to pressures as high as sev- 
eral TPa.’ These equations of state are essential for using 
seismic data to constrain the chemical and mineralogical 
structure of the Earth. Such data are also used to calibrate 
secondary pressure standards, such as the ruby fluores- 
cence pressure scale that is widely used in diamond anvil 
cell experiments.6’7 

In actual practice, the one-dimensional Rankine- 
Hugoniot relations will be applicable only over some small 
region of the sample assembly, if at all. This is because edge 
effects, usually in the form of adiabatic release waves, spoil 
the onedimensional geometry. The proper design of a 
shock wave sample must take this into consideration. This 
is normally done by application of an argument given by 
Al’tshuler et al. * (Fig. 1) . An acoustic disturbance is gen- 
erated at the edge or corner of the sample. This disturbance 
travels at the sound speed c in the shocked material, which 
itself flows at velocity U,, the particle velocity. The inter- 
section of this acoustic disturbance with the shock front 
(velocity Us) sweeps out a cone whose angle a with the 
normal to the shock front is given by: 

(1) 

The aspect ratio of a well-designed shock sample is chosen 
to guarantee that the apex of the cone lies outside the 
sample, i.e., the ratio of target ‘radius R to thickness H 
should satisfy R > H tan a (Fig. 1) . If the apex lies within 
the sample, and the shock is detected only at the sample’s 
surface, then the shock will not be planar where measur- 
able, the one-dimensional Rankine-Hugoniot equations 
will not be applicable, and the experiment will be uninter- 
pretable. 

In general, the quantities needed to evaluate (1) are 
not known in advance. The Hugoniot equation of state 
itself, which can be expressed Us = f( UP>, is often what 
is sought in the experiment. The sound speed c is also 
generally unknown. In fact, Al’tshuler et al. used measure- 
ments of the angle a as a method of determining the high 
pressure sound speed in shocked solids. 

More complex sample assemblies than that depicted in 
Fig. 1 are required when the sample is a liquid. Then, it is 
most convenient to encapsulate the sample in a solid con- 
tainer. Disturbances that break the one-dimensional sym- 
metry of the original shock will again be generated at the 
corners of the sample, including the sample-container in- 
terface. If the shock impedance of the container is lower 
than that of the sample, the signal will again be an acoustic 
one, and the Al’tshuler et al. method will be applicable for 
determining the minimum aspect ratio. As a rule, however, 
solids have higher shock impedances than liquids. The sig- 
nal generated at the liquid-solid interface might therefore 
be propagated as an oblique shock at a velocity that is 
greater than the high-pressure sound speed. If this is the 
case the Al’tshuler et al. method of calculating a would 
not be appropriate, and measurement of the angle a would 
not yield the sound speed through ( 1) . 

In this study we are particularly interested in charac- 
terizing the edge effects present in experiments designed to 
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FIG. 1. Edge effect from a corner after Al’tshuler et al. (Ref. 8). 

measure the equation of state of molten silicates.‘-i3 In 
those experiments the target assemblies pig. 2(a)] consist 
of a molybdenum container, which also serves as an induc- 
tion furnace element, surrounding a liquid sample. The 
molybdenum walls were sufficiently thick that their impact 
on the edge effects cannot be dismissed a priori. The shock 
impedance of molybdenum is considerably larger than that 
of the molten sample; thus the first edge signal propagated 
inward is compressive, and could travel faster than the 
speed of sound. 

To characterize the edge effects in those experiments, 
we present models for the problem of an initially planar 
shock hitting a comer between two different materials. 
This corresponds to the earliest time behavior of the ex- 
periment shown in Fig. 2(a), which will suffer additional 
complications when the rarefaction fan generated at the 
outer circumference of the target has penetrated the outer 
wall of the assembly. Although the details of the interac- 
tion of that rarefaction fan with the flow fields generated by 
the sample-wall interaction may also be complicated, the 
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a 

3 
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FIG. 2. (a) Sample design for molten silicate shock experiments. The 
target assembly consists of a molybdenum container surrounding a mol- 
ten silicate sample. The assembly is impacted from the right, and the 
shock arrival times are detected on the left surfaces. Approximate dimen- 
sions are 6 by 45 mm. (b) Simplified geometry modeled here. 
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inward velocity of the leading edge of that rarefaction dis- 
turbance will not exceed the high-pressure sound speed of 
the sample materials. If in the limit of a very thick wall the 
Al’tshuler et al. rule remains valid, then it will also be valid 
for any wall thickness. Therefore, to test the applicability 
of the Al’tshuler et al. rule to the experiment shown in Fig. 
2(a), we may consider the simplified geometry of Fig. 
2 (b) . This is much simpler to model since it allows us to 
neglect the vacuum that surrounds the assembly. Success 
of the Al’tshuler et al. rule for our simplified model implies 
success of that rule for the actual experiments. A failure of 
the Al’tshuler et al. rule, however, does not necessarily 
imply its failure for the actual experiments. Additional 
computations with a more realistic geometry would then 
be required. 

Because of the cylindrical symmetry of the experimen- 
tal assemblies [Fig. 2(a)], the compressional edge effect 
signal will be focused as it travels toward the axis of sym- 
metry. That focusing effect leads to a steepening of the 
compressional waves. Therefore, simple compressional 
wave systems computed in Cartesian coordinates that have 
not steepened into shocks might do so in cylindrical coor- 
dinates because of this focusing effect. Voinovich et al. l4 
obtained a numerical solution to our problem [Fig. 2(b)], 
but for the case of ideal gases, and using Cartesian coordi- 
nates. The shock speed of the gas inside their comer is 
faster than that outside the comer: the opposite of our 
situation. They interpret their results to suggest that the 
leading disturbance in their slow material is propagated as 
an oblique shock even without the focusing effect of the 
experimental cylindrical geometry. Our computations are 
in cylindrical coordinates except where we illustrate the 
self-similarity of our results. 

The simplified problem [Fig. 2(b)] involves the inter- 
action of two wave systems. First, a regular refraction will 
occur at the material interface where it is parallel to the 
incident shock. The solution to this problem is simple. For 
all cases considered here, it will be a planar transmitted 
shock and a planar reflected rarefaction fan.15 Second, an 
“anomalous refraction” will occur at the material interface 
where it is perpendicular to the incident shock. Anomalous 
refraction1i’9 refers to a refraction regime in which the 
angle between the material interface and the incident shock 
is greater than the Al’tshuler et al. angle a. When that 
occurs, the flow regime at the material interface influences 
the surrounding regions with acoustic waves, and the re- 
sulting wave topology can be quite complex. 

In order to study this problem we have adapted a high 
resolution Eulerian finite difference gas dynamics program 
to handle condensed phases. The equation of state compu- 
tation and the multifluid algorithm20*21 required substantial 
revision for our problem. The multifluid algorithm de- 
scribed in Refs. 20 and 21, while presented in general ther- 
modynamic terms, embodies assumptions that are clearly 
best suited to ideal gas equations of state. We modified 
those parts of the algorithm that embodied implicit ideal 
gas behavior, but left the underlying algorithmic structure 
unchanged. A brief summary of the overall program, with 
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FIG. 3. J?lowchart of computational methods. 

emphasis on our modifications, follows. A more detailed 
description of our algorithm will be presented elsewhere. 

II. COMPUTATIONAL METHOD 

The overall structure of our program is shown in Fig. 
3. At the heart of the algorithm is a routine for solving the 
so-called Riemann problem in one dimension (e.g., Ref. 
22). It is assumed that two uniform regions called the left 
and right states, each possibly having a different pressure 
P, internal energy E, density p, velocity U, and equation of 
state, begin in contact with each other at the origin x0 at 
time to. The essential feature of each of the five possible 
outcomes of this simple scenario is that they can be de- 
scribed as piecewise continuous regions separated by waves 
of constant velocity. The Riemann solver determines which 
of the five combinations of shock waves and/or rarefaction 
waves describe the solution, determines the velocities of the 
characteristic waves that bound each region of the solu- 
tion, and finds the pressure, density, internal energy, and 
velocity of that region of the solution that exists at a spec- 
ified point x for t > to. 

Because our equation of state model is of the Mie- 
Griineisen form,= 

P(p,E) =PH(P) +py(p) [E--E,(p) I, (2) * 
and uses a Hugoniot reference state [PH(p),EH(p)], it is 
convenient to approximate the equation of state in the Rie- 
mann problem as having a linear Hugoniot form. That is, 
we assume shock velocity Us and particle velocity UP, 
centered at an arbitrary state (p,E, U=O), are related 
through: 

u,=c+sup. 

Here, c is the bulk sound speed 
(3) 

(4) 

and s is related to the pressure derivative of the adiabatic 
bulk modulus KS through 

each evaluated at the reference state (p,E) . The adiabatic 
bulk modulus KS and its adiabatic pressure derivative Ki 
are obtained by differentiation of (2): 

&Wb=p$~ =pg+;$, 
s 

(6) 

a& K&S) =T s I 

1 ap ,a2p ap ap a2p pap 
= pap+/J yf--+2P---- ap apaE apace pan 

Pap2 i 
+7 aE ( )I Es' (7) 

The Griineisen parameter y= p-l (aP/aE) P is taken to 
be a function of density alone of the form 

ypq=yopg=constant. (8) 

The quantities c, s, p, and U for the left and right states 
are given as input to the Riemann solver, which uses (3) 
and the one-dimensional Rankine-Hugoniot conservation 
laws to extrapolate the pressure, density, energy, and ve- 
locity of the solution without re-evaluating the equation of 
state. Given the simple linear form (3)‘, pressure is qua- 
dratic in velocity: 

P=Po+pcu,+&. (9) 

Equating pressure and velocity for the left and right ma- 
terials amounts to simply solving a quadratic equation 
[e.g., see Ref. 24 ($2. l)]. This method takes advantage of 
the well-known result that release adiabats are nearly in- 
distinguishable from reflected Hugoniots in the pressure- 
velocity plane. 1*24 

If the principal Hugoniot that acts as the reference 
curve of our Mie-Griineisen equation of state has the form 
(3) and (9), if the left and right thermodynamic states 
( pL,PL,EL) and (pR ,PR ,ER) are equal to the centering 
point of that principal Hugoniot (po,Po,Eo), and if the 
Riemann problem results in the formation of two shocks 
(i.e., UL > U,), then our approximate Riemann solver 
gives the exact solution. Our approximate method is also 
asymptotically correct in the limit of weak disturbances. In 
that asymptotic limit shocks are isentropic; thus, the use of 
a single quadratic P(U) function to describe both shocks 
and rarefactions is appropriate (cf. Ref. 25). 

In the case of strong shocks, the finite difference 
method will spread the shock onto several grids regardless 
of the precision of the Riemann solver.26 We can therefore 
obtain the correct upwind and downwind quantities with- 
out accurately resolving the steep gradients between them. 
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A similar situation occurs when a strong rarefaction is 
formed. However, in that case the wave’s intrinsic disper- 
sion additionally acts to smooth the flow and improve the 
accuracy of our approximate method. Since the discretiza- 
tion of our grid automatically results in first-order errors 
near strong disturbances,26 and since our approximate Rie- 
mann solver works well otherwise, an exact Riemann 
solver will not appreciably improve the resolution of our 
fmite difference computation. 

We use second-order operator splitting27 to advance 
our two dimensional computational grid by a time step 2At 
by sequentially advancing one-dimensional strips of the 
grid by time steps At, alternating x and y sweeps at each 
time step. The one-dimensional grids are integrated with a 
second-order Godunov method.28”’ Slope-limited interpo- 
lation is used to represent density, pressure, energy, and 
velocity as piecewise continuous functions in one 
dimension.28131 Characteristic tracing is then used to esti- 
mate the pressure, density, and velocity at the left and right 
boundaries of each cell at one half the one-dimensional 
time step (t + At/2) .28 The Riemann problem is then 
solved at each cell edge in the one-dimensional strip using 
these time-centered, slope-limited, interpolated estimates 
of the left and right states. The solution of the Riemann 
problem determines the time-centered flux of the conserved 
quantities: mass, momentum, and energy. The new cell- 
centered quantities at t+ At are calculated in conservation 
form from those time-centered’ fluxes. The new two- 
dimensional solution, obtained in the sequence x-y-y-x, is a 
second-order accurate solution to the two-dimensional 
problem in regions of smooth flow. 

The material interface boundary condition is neither 
strictly “slip” nor “stick” in our computation. On a length 
scale smaller than a single grid cell the material interface 
may be considered “stick” since, prior to the slope-limited 
interpolation step, a single velocity vector is used to char- 
acterize all material velocities within a given cell. However, 
adjacent cells may ha& different velocities and there is no 
restriction on the component of velocity tangential to the 
boundary between adjacent cells. Therefore, at length 
scales larger than a single cell the material interface bound- 
ary condition is “slip.” 

We explicitly track the interface between different ma- 
terials with a volume-of-fluid interface tracking algorithm. 
However, for the purpose of finding a solution to the Rie- 
mann problem, the thermodynamic properties of those 
cells that contain more than one material are treated as an 
effective single fluid with isentropically averaged 
properties.20~21 The effective single-&rid properties are used 
to set up and solve the Riemann problem as described 
above. However, at those cell edges separating two fluids or 
adjoining a multifluid cell the fluxes determined by the 
Riemann problem solution are modified before updating 
the cell-centered properties. The approximate location of 
the interface separating different materials is estimated us- 
ing the first-order SLIC algorithm.32 We note that second- 
order volume-of-fluid interface tracking algorithms are 
available,33*34 but we use SLIC here since we have not yet 
programmed those second-order algorithms for cylindrical 

geometry. The time-centered velocity determined at the 
cell edge by the Riemann solver, together with the approx- 
imate location of the material interface, determines the 
mass flux of each individual material component through 
the cell edge. We then update the individual material prop- 
erties in each cell using fluxes obtained from effective single 
fluid mixtures. At the end of each one-dimensional sweep, 
energy and volume are repartitioned adiabatically between 
each component in the multifluid cells. The objective of 
this step is to modify the volumes occupied by each phase, 
and modify their internal energies, such that energy and 
volume are conserved and each phase has the same final 
pressure. This is most accurately done by iteratively eval- 
uating the equation of state, but that can be computation- 
ally very expensive. When the equation of state is not re- 
evaluated in this relaxation step, some residual pressure 
mismatch exists at the material interface. This can be seen 
as spurious closed contours in some plots of pressure 
shown below. If correctly done, no pressure discontinuity 
will exist in general at the material interfaces. 

The two-dimensional conservative integrator just de- 
scribed is driven by an adaptive mesh refinement program 
( AMR) .35P36 This program employs a test to determine 
which regions of the problem domain would benefit from 
being solved on a finer grid. In the work presented here we 
used two criteria for deciding when to refme a grid cell. 
The first is that we refine to the maximum extent all cells 
that contain a material interface. (The maximum extent is 
a parameter supplied by the user at run time. In the com- 
putations shown here we allowed a maximum of 1 level of 
refinement with a refinement factor of 4 between the coarse 
and fine grids. ) The second criterion is based on the use of 
Richardson extrapolation to estimate the local truncation 
error in the computed solution. This is accomplished by 
periodically comparing the solution on a grid advanced 
twice with time step At and then coarsened by a factor of 
two in each direction, with a coarsened grid advanced once 
with time step 2At. In regions of smooth flow the difference 
between the solutions obtained on the two grids at each 
point is proportional to the local truncation error at that 
point. In addition, this procedure will generally predict a 
large error near discontinuities (e.g., shocks) in the flow. 
In the work presented here we found that we were able to 
obtain good results by only examining the difference in the 
values of density obtained on the two grids. Thus, if the 
material density in these two coarse test grids differed by 
some predetermined amount when normalized by the ref- 
erence cell density, then the patch in space surrounding 
that reference cell was marked for computation on a finer 
grid. This test primarily identitled shocks and steep rar- 
efaction fans as regions requiring extra refinement. For the 
computations shown below we implemented this test every 
two time steps, and mark a cell for refinement if the nor- 
malized density ditIerence exceeded 10m4. 

For simplicity, both fluid and solid phases are modeled 
in the hydrostatic limit. Strength effects are ignored. Con- 
sequently, phenomena such as elastic precursors will not 
occur in our computations. This non-hydrostatic behavior 
frustrated the original experimental efforts of Al’tshuler 
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PIG. 4. A 90 GPa shock in molybdenum strikes a komatiite sample. (a)-(c) Density contours at 0.2 g/cc intervals at times - 342 ns, 264 ns, and 560 
ns after the shock first entered the liquid sample. (d)-(f) Pressure contours at 2 GPa intervals at times -342,264, and 560 ns. (g)-(i) Regions selected 
by the AMR teat for computation on a tine grid at times -342, 264, and 560 ns. The original material interface is shown as the box in the lower left 
hand corner of parts (a)-(f). Parts (d)-(f) also show the Al’tshuler et al. ray emanating from the corner of that box. 
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FIG. 4. (cbntinued.) 

et al.* to obtain sound speed from measurements of a. 
However, under the conditions of the experiments we 
model below, the shear strength of the solid phase is much 
smaller than the hydrostatic pressure. Moreover, it is com- 
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mon to consider nonhydrostatic behavior as an additive 
perturbation to a nominally hydrostatic material 
response. 37 

III. RESULTS AND DISCUSSION 

Figure 4 contains a series of density and pressure con- 
tours corresponding to a simulation of the most energetic 
experiment in Ref. 9 on a molten komatiite composition. 
The simulation begins with a 90 GPa left-traveling shock 
in molybdenum, and progresses until the shock transmitted 
in the komatiite has traveled about 3.55 mm: the thickness 
of the molten sample in the assembly illustrated in Fig. 
2(a). Time t=O corresponds to the arrival of the 90 GPa 
shock at the material interface. This computation was done 
in cylindrical coordinates: the bottom edge of the problem 
domain is the axis of symmetry. 

When the incident shock first strikes the material in- 
terface, a planar 36 GPa shock is transmitted to the left 
into the komatiite, and a dispersive release fan is reflected 
to the right into the shocked molybdenum. At the corner, 
the incident shock is diffracted. 

The original rectangular material interface is shown on 
these density and pressure contour plots. After refraction 
of the shock, the material interface is deformed by the 
expansion of the surrounding shocked molybdenum. That 
expansion is driven by the 54 GPa pressure difference be- 
tween the 90 GPa shocked molybdenum and the 36 GPa 
shocked sample. That expansion is seen as the “circular” 
rarefaction front (clockwise from 9 o’clock to 3 o’clock), 
and drives a corresponding “circular” compressional wave 
into the released molybdenum (from 3 o’clock to 6 
o’clock), and into the shocked molten komatiite (from 6 
o’clock to 9 o’clock). These “circular” waves are actually 
toroidal in 3 dimensions. 

The curved compressional wave front traveling into 
the released molybdenum does appear to have steepened 
into a shock, judging from the stacking up of pressure 
contours on the leading edge of that wave system. How- 
ever, the curved compressional wave front does not steepen 
into a shock in the komatiite sample. Its leading edge 
therefore travels at the 36 GPa bulk sound speed of that 
material, and the intersection of the expanding wave front 
with the otherwise planar transmitted shock lies on the 
Al’tshuler et al. ray. That ray, which emanates from the 
initial position of the material interface corner, is shown on 
the pressure contour plots. Below that ray, the transmitted 
shock is planar. Above it, the shock is curved by interac- 
tion with the curved compressional wave front. 

Those regions of the computational grid that were se- 
lected by the AMR error estimation routine for additional 
refinement are shown in Figs. 4(g)-4(i). These are not 
grid cells, but regions where the original coarse grid com- 
putation was done on a 4-times finer grid. The original 
coarse grid for this problem was 174 by 216. 

Figure 5 illustrates the material velocity structure of 
the simulation. The location of the deformed material in- 
terface is immediately obvious in contours of Z and R 
velocity. That is because, although there is no jump in 
velocity normal to the interface; there is no restriction on 
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FIG. 5. Material velocity for same problem as Fig. 4. 2 velocity, which ranges from -3.23 km/s to 0, is contoured at 0.1 km/s intervals. R velocity 
ranges from - 1.41 to 0.31 and is contoured at 0.1 km/s intervals (from - 1.4 to -0.1 and from 0.1 to 0.3). (c) illustrates the velocity vectors in relation 
to the material interface. (d) is the vorticity VXv, which ranges from -58 to 87 s-l. 

the velocity jump in the tangential direction. Apparently, refraction at a sloped material interface.38 It occurs when 
within the region bounded by the “circular” wave front the the shock impedance of the the oblique transmitted wave is 
molybdenum and komatiite are sliding against one another larger than that of the planar incident wave.19 Here, wave 
at their interface. This is most obvious in Fig. 5 (c) where impedance is deiined as Zi=piUi/C@?i: the mass flux con- 
the Z velocity can be seen to jump dramatically across the vected through the wave divided by the cosine of the angle 
horizontal part of the material interface. An R-velocity the shock makes with the deflected material interface. This 
discontinuity across the vertical part of the interface is is the natural generalization of impedance to oblique shock 
more easily seen in Fig. 5(b). This sliding material inter- waves.t5 It is analogous to the generalization of the acous- 
face can also be seen in a plot of vorticity [Fig. 5 (d)]. The tic impedance to effective acoustic impedance. However, in 
deformed material interface is drawn on Fig. 5 (c) , where it this particular case the condition (pm komatiite 
can be seen to have torn near the corner. ’ (P u) molybdenum is not satisfied when evaluated in the 

An unexpected feature of the komatiite computation is steady regions away from the material interface since both 
that at the material interface, the leading edge of the ko- the shock velocity and density of komatiite are smaller 
matiite shock leads the leading edge of the molybdenum than the corresponding quantities in molybdenum. 
shock: the shock front has a “Z”-shaped profile. This has For comparison, a simulation of molybdenum-encased 
been seen before in gas dynamics studies of anomalous Mid-Ocean Ridge Basalt (MORB), corresponding to the 
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FIG. 6. MORB in molybdenum at 745 ns. T’he domain is 9.78 by 10.86 
mm, and the initial shock in molybdenum is 60.8 GPa. Pressure contours 
are shown from 2 to 58 GPa in steps of 2. 

most energetic experiment of Ref. 39, is shown in Fig. 6. 
The contour plot of pressure clearly shows a complicated 
shock structure where the MORB shock, deflected by the 
comer signal, is bent forward (to the left) and continues 
smoothly as a shock in the molybdenum that lies to the 
right of the leading shock in that material. The two shocks 
are joined by a collection of waves in the molybdenum. 

The MORB shock never leads the molybdenum shock, 
in contrast to the komatiite computation. Also, unlike the 
komatiite computation the curved compressional wave in 
the molybdenum does not appear to have steepened into a 
shock. However, as with the komatiite computation, the 
leading disturbance in the liquid sample travels with the 
sound speed and obeys the Al’tshuler et al, rule. In fact, 
computations for molten diopside and anorthite composi- 
tions, and a diopside-anorthite composition mixture are all 
consistent with the disturbance being acoustic. 

The position of the material interface can be seen in 
pressure contours plots because of the numerous closed 
contours that occur there. This artifact of the multifluid 
algorithm scales with the grid size: these spurious closed 
contours can be made arbitrarily small if a sufficiently fine 
grid is used. 

An indication of the precision of our computations is 
the self-similarity that can be seen in Cartesian coordi- 
nates. In cylindrical coordinates there is a length scale to 
the problem (rc, the radial coordinate of the undeformed 
corner), and so the problem is not self-similar. In Carte- 
sian coordinates, however, there is no length scale. The 
solution at (x/t, u/t> should be independent of t for all 
t> to, where to is the moment when the shock first reaches 
the corner (0,O). Figure 7 shows a Cartesian computation 
for molten anorthite (corresponding to the most energetic 
experiment in Ref. 12) at times 250 ns and 500 ns after the 
incident shock has collided with the material interface. 
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FIG. 7. Self-similarity of Cartesian system illustrated by pressure con- 
tours (at 2, 4, 6, . . . . 98 GPa) at times 250 ns (a) and 500 ns (b). The 
mat&ials are anorthite and molybdenum. The post-shock anorthite pres- 
sure is 38.8 GPa. 

These two pressure contour plots are scaled by l/t. So 
scaled, the two plots are nearly identical. Note that in this 
anorthite computation the shock front exhibits the anom- 
alous “Z’‘-shape seen for the molten komatiite (Fig. 4). 
However; in this case the perturbed anorthite shock does 
not lead the undisturbed incident shock in the molybde- 
num. 

Our computations support the use of the Al’tshuler 
et al. design rule CEq. (i)] for those molten silicate com- 
positions studied in Refs. 9-13. If we assume that this rule 
is also valid for molten silicate compositions that may be 
studied in the future, then we can extend the Al’tshuler 
et al. model (Fig. 1) to include the acoustic propagation of 
edge effects in the cap of the molybdenum sample con- 
tainer. In order to account for the container’s nonhydro- 
static behavior, we use an Al’tshuler et al. type calculation 
for the propagation of edge signals in the cap, but use the 
longitudinal wave speed up instead of the slower bulk sound 
speed c.~ This calculation, schematically illustrated in Fig. 
8, requires knowledge of the bulk sound speed in the 
shocked liquid, and of the longitudinal sound speed in the 
metal cap after being shocked by the liquid.41 

IV. CONChUSlONS 

We have extended a high-order multifluid Godunov 
algorithm for gas dynamics to include the hydrostatic Mie- 
Griineisen equation of state. We have used this new algo- 
rithm to model experiments in which molybdenum- 
encased molten silicates are shocked to determine their 
equations of state. The results of our computations suggest 
that the degradation of the initially planar silicate shock by 
edge effects may be successfully modeled by the Al’tshuler 
et ui. formula. Therefore, the aspect ratios of the samples 
used in Refs. 9-13 are adequate, and the application of the 
one-dimensional Rankine-Hugoniot relations to those ex- 
periments is appropriate. The equations of state presented 
by those authors are therefore internally consistent with 
the assumptions required by their analysis. 
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FIG. 8. Estimation of aspect ratio for composite sample assembly illus- 
trated in Fig. 2 and used in experiments (Refs. 9-13) . aLb is calculated 
from Eq. ( 1) using the bulk sound speed of the liquid. aM,4,, and aM,, are 
calculated with the bulk and longitudinal sound speeds, respectively, of 
the metal. The metal thickness has been exaggerated for clarity. 

Although in theory the measurement of the edge effect 
may be used to deduce the high pressure sound speed, the 
strength of the shock front disturbance asymptotically ap- 
proaches zero at the leading acoustic wave. Therefore, the 
Al’tshuler et al. angle a is very difficult to detect experi- 
mentally. Any measured shock front disturbance will likely 
give only a lower bound on a and thus a lower bound on 
the high pressure sound speed. Forward modeling of the 
entire shock arrival profile, using high-resolution numeri- 
cal computations of the type shown here, might be success- 
fully applied to deduce a sound speed. However, any such 
model sound speed will be sensitive to the specific equation 
of state approximations used by the computation. 
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