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We present a numerical algorithm for computing strong shock
waves in problems involving multiple condensed phases. This
method is based on a conservative high-order Godunov method in
Eulerian form, similar to those that have been used extensively for
gas dynamics computations, with an underlying thermodynamic
model based on the Mie—Griineisen equation of state together with
a linear Hugoniot. This thermodynamic model is appropriate for a
wide variety of nonporous condensed phases. We model multiple
phases by constructing an effective single phase in which the den-
sity, specific energy, and elastic properties are given by self-consis-
tent averages of the individual phase properties, including their
relative abundances. We use a second-order volume-of-fluid inter-
face reconstruction algorithm to decompose the effective single-
phase fluxes back into the appropriate individual component phase
quantities. We have coupled a two-dimensional operator-split ver-
sion of this method to an adaptive mesh refinement algorithm and
used it to model problems that arise in experimental shock wave
geophysics. Computations from this work are presented. © 1996

Academic Press, Inc.

1. INTRODUCTION

We present a numerical method for modeling strong
shock waves in condensed matter in which two or more
material phases are present. The basis of our algorithm is
a second-order Godunov method for approximating solu-
tions of the type originally proposed by Colella [12], Colella
and Glaz [14], and Colella and Woodward [17] for the
compressible Euler equations for a single material. This
methodology is second-order accurate in regions of smooth
flow and captures shocks with a minimum of numerical
overshoot and dissipation. By itself, this second-order Go-
dunov methodology for a single gas phase has been used
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extensively to compute unsteady shock reflections in gases
and has a demonstrated ability to resolve complex wave
interactions in excellent agreement with experiment [20].

Our approach to modeling cells that contain more than
one material species is based on an algorithm for modeling
two or more gases that is due to Colella, Glaz, and Ferguson
(CGF) [15]. In their algorithm the interface between each
fluid is tracked with a volume-of-fluid interface tracking
algorithm and the equations of motion for a single phase
are supplemented with evolution equations for the volume
fraction, total energy, and mass density of each phase in
the multifluid cells. The resulting system of conservation
laws is of hyperbolic type and thus can be solved using a
straightforward extension of the second-order Godunov
method for a single gas phase. The CGF formulation ac-
counts for the thermodynamic properties of each phase
separately, while modeling the pressure and velocity in all
cells, including those that contain more than one phase,
as single-valued quantities. In particular, given a single
uniform pressure acting on a multiphase cell, this algorithm
will correctly account for the different compression or
expansion that each phase undergoes as a result of that
stress. Colella et al. [22, 38] have used this algorithm, in
conjunction with a second-order volume-of-fluid interface
tracking algorithm, to model wave interactions in a me-
dium consisting of two gases. Their results are in excellent
agreement with the shock refraction experiments of
Abd-el-Fattah and Henderson [1-3] and Jahn [24].

In this paper we describe the extension of the CGF
algorithm to materials in condensed phases, i.e., liquids and
solids in the hydrostatic limit. In particular, our algorithm is
designed to model materials that can be well approximated
by the assumption that the Hugoniot is linear in the Up —
Us plane, where Us is the shock speed and Up is the particle
velocity. A surprisingly large number of materials are well
represented by this assumption, including simple metals
and alloys, many woods, polymers, oxides, liquids, and
silicates, provided that they are not porous or near a phase
transition. Our method is capable of modeling strong com-
pressive waves with large material deformations without
ringing (oscillations) and with minimal use of artificial vis-
cosity.
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Our work was initially motivated by the need to examine
certain edge effect signals that occur in shock wave experi-
ments designed to measure the equation of state (EOS)
of geophysical materials [35]. Here we present the results
of several computations designed to answer additional
questions relevant to that work. We have also studied the
accuracy of the method by using it to model high-velocity
impact experiments that lead to jetting (e.g., [46]). This
latter work appears in [39]. We are especially interested
in accurately modeling interpenetration and jetting, partic-
ularly as this phenomena appears in geophysical problems.

Given the excellent experimental agreement obtained
in the gas dynamics computations cited above we chose to
develop a Godunov method to study these problems. Other
Godunov methods have been developed to model the types
of problems that are of interest to us here. These include
CTH [29] and CAVEAT [5] which are based on a solution
of the compressible Euler equations in a “Lagrange plus
remap”’ form, rather than the strict Eulerian form upon
which our method is based. Moreover, most, if not all, high-
order methods that have been developed for modeling
condensed phases are based on a discretization of the un-
derlying equations that uses an edge-centered velocity. A
careful reading of [49] will show that these methods, which
are analogous to the BBC method studied there, have a
tendency to smear important features of the flow field such
as contact discontinuities. Our method is purely Eulerian,
with cell-centered variables, and hence should be less sus-
ceptible to diffusive broadening of shock features than
Lagrangian plus remap methods [49].

Trangenstein and Colella [44] and Wang et al. [47] have
developed Godunov methods for modeling elastic—plastic
solids. Surveys of numerical methods for modeling impact
and penetration problems may be found in Zukas [50]
and McGlaun and Yarrington [30]. A capability of the
algorithm we describe, not found in most other ‘hy-
drocodes,” is the incorporation of an Adaptive Mesh Re-
finement (AMR) algorithm. This feature allows the com-
putational effort to be focused on those areas deemed
interesting or error-prone, without reducing the global
time step.

The remainder of this paper is organized as follows. In
Section 2 we describe the EOS model that we use in our
method. In Section 3 we describe the solution of the Rie-
mann problem for materials that satisfy this EOS. In Sec-
tion 4 we give the details of the second-order Godunov
method that we have written to approximate solutions of
the Euler equations for materials that obey our EOS. Sec-
tion 5 contains a description of how we have extended this
method in order to model more than one phase of such
materials. In Section 6 we give a brief description of those
features of the AMR algorithm that are specific to our
implementation. In Section 7 we present the results of
computations we have made with our method to study
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questions that arise in the use of shock waves to experimen-
tally measure the EOS of geophysical materials. Finally,
in Section 8 we present our conclusions.

2. THE EQUATION OF STATE

A perfectly general thermodynamic description of con-
densed matter (indeed any matter) is limited only by the
conditions of thermodynamic stability that arise from the
requirement that the specific internal energy E be a convex
function of its natural variables: the specific entropy S
and the specific volume V = 1/p. In terms of the partial
derivatives of the energy function, the conditions of stabil-
ity are as follows:

(i) The heat capacities C and Cp must be positive,

_OE
Cr=20] >0, (2.1)
\%4
oH
=— > :
Cp 7| 0, 2.2)

where H is the specific enthalpy, H = E + PV.
(ii)) Theisentropic bulk modulus K must be positive,

_ 9P
“dlnp

(23)

K

N

(iii) The product of the thermal expansion coeffi-
cient,

dlnp
T R (24)
and the thermodynamic Griineisen parameter,
y= vz—g : 2.5)
|4
must be nonnegative,
ay=0. (2.6)

However, these conditions place very weak constraints
on the EOS. A perfectly general thermodynamic model
may therefore require an arbitrary number of parameters
(e.g., [43]), or must be represented in tabular form from
which thermodynamic states may be interpolated (e.g., [4,
23]). A perfectly general equation of state is also capable of
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FIG. 1. Representative data for nonporous solids without phase
changes from Ref. [28] are well-represented by linear Us(Up) Hugoniot
equations of state.

exhibiting pathological behavior that leads to complicated
and non-unique solutions of the Riemann problem [33].

Despite the latitude afforded by stability requirements,
a surprisingly large number of materials have very simple
shock equations of state under conditions of single-phase
stability [28]. In particular, the shock velocity Us and the
particle velocity Up are often related by the simple linear
Hugoniot equation

Us =cy+ sUp (2.7)

(e.g., see Fig. 1). It can be shown that the constant ¢, in
(2.7) is the bulk sound speed at the centering point (i.e.,
the thermodynamic state where Up — 0), and the constant
s in (2.7) is related to the isentropic pressure derivative of
the isentropic bulk modulus,

Ky

0K
R (2.8)
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through

s = (Kg+ 1)/4, (2.9)

also evaluated at the centering point.

In what follows we assume the validity of the shock EOS
(2.7). Materials that are well represented by this assump-
tion include simple metals and alloys (e.g., aluminum, cop-
per, tungsten, tantalum, molybdenum, brass), many woods,
polymers (e.g., nylon, Teflon, acrylic, polyethylene), oxides
(e.g., periclase, corundum), liquids including water, and
silicates (e.g., enstatite, olivine, and molten broadly basaltic
compositions) except when they are porous or near phase
transitions. Materials that are not well described include
fused silica and quartz, which transform to the high-pres-
sure stishovite phase of silica, porous materials, and ideal
polytropic gases for which the shock EOS is

Us =T+ 1DUp + VAT + DUp]> + TPV,, (2.10)
where I' = Cp/Cy is the adiabatic exponent and the Hugon-
iot centering point is given by (Vy, Py, Eq = PoVo/(I' — 1)).

These Hugoniot equations of state Us(Up) parametri-
cally define thermodynamic shock states through the Ran-
kine—Hugoniot jump relations that express the conserva-
tion of mass, momentum, and energy:

— S
=g @11)
P:P0+p0UsUP, (212)
1 1 2 UP
S

A single Hugoniot curve, e.g., (2.7) or (2.10), describes only
those thermodynamic states (V, P, E) that are accessible by
a single shock starting from the thermodynamic state given
by the centering point (Vy = 1/py, Py, Ey). A particular
centering point is chosen to define the “principal Hugon-
iot,” i.e., the particular (arbitrary) Hugoniot that serves as
the backbone for a more general equation of state descrip-
tion. For solids that centering point is usually taken as zero
pressure and ideal crystalline density at room temperature
(298 K), since those are the conditions from which solid-
phase Hugoniots are most often measured. To describe
other thermodynamic states, including those accessed by
a rarefaction (i.e., a pressure release at constant entropy)
from a single shock state, the thermodynamic description
offered by the principal Hugoniot EOS must be augmented
by additional information.

A thermodynamically rigorous way of describing states
off of the Hugoniot is to use a Mie—Griineisen formalism,
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FIG. 2. The Mie—Griineisen equation of state is constructed from a
univariant P(V) reference curve, from which neighboring pressures are
determined via (2.15). We use a linear Ug(Up) Hugoniot for the compres-
sion (V < V,) limb of the reference curve and a Murnaghan isentrope
for the expansion limb.

1 (e
PEV) =P, (V) 4], WWV.E)E (2.14)

(see Fig.2). Here we have assumed that the Hugoniot curve
centered at (Vy, Py, Ey) can be uniquely parameterized by
V. In other words, for V > V|, there exist monotonically
increasing functions P, (V) and E, (V) such that (V,
P, (V), E,(V)) is a unique point on the Hugoniot. The
Mie—Griineisen approach is particularly favored because,
at least for states close to the Hugoniot, it is commonly
found that the Griineisen parameter ©y depends only on
the specific volume, y = y(V), and hence,

P(E,V) = P, (V) + L‘Y) [E—E,(V)]. (215)

The dependence of the Griineisen parameter on specific
volume is often represented by

y(V) = <V10)q (2.16)

where ¢ is a constant that is usually in the range (0, 1).
We note that the Griineisen parameter is positive for most
materials and for those materials where it can be negative
it is negative only over a limited P-V range. Therefore,
when we invoke a model such as (2.16) that precludes a
sign change in vy, we will require vy, to be positive. When
v is always positive, as implied by (2.16), the energy E is
a single-valued function of P and V. Note also that this
Griineisen parameter model is inconsistent with Nernst’s
postulate that the entropy of systems with nondegenerate
ground states is zero at absolute zero of temperature. For
consistency with Nernst’s postulate the Griineisen parame-
ter must approach zero at zero temperature [11].
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The constitutive equations (2.7) and (2.16), the thermo-
dynamic identity (2.14), and the Rankine—Hugoniot jump
relations (2.11-2.13) together give a P—V-FE thermody-
namic description of many typical condensed phases that
is internally consistent and thermodynamically stable over
a broad range of P-V-FE space near the principal Hugoniot
curve. Thus, states accessible by a simple shock process
on the principal Hugoniot, and states accessible along a
rarefaction from the shock state, are well defined by the
equation of state model we use.

We now consider the domain of thermodynamic stability
of this equation of state model. We may solve our model
equations (2.7), (2.11)-(2.13), (2.15), and (2.16) for the
isentropic bulk modulus by writing

op| , Pop

(2.17)
pJoE ,

Evaluated at a principal Hugoniot state, (2.17) be-
comes

K =%(P —P)+K, [1 - %/(Vo - V)], (2.18)

where K, = dP,/d In p is the incompressibility taken
along the Hugoniot curve. In general, K,, may be written

Us + UP(dUS/dUP)]
Us — Up(dUs/dUy) |’ 2.19)

U
Ky :VE(US — Up) [
and for a linear material (i.e., obeying (2.7)),

(2.20)

Co

U. co + 2sU,
K, ZVS(US — Up) [u]
0

This incompressibility will always be positive when s > 1;
however, the parameter s may be less than 1 for some
materials at low pressure. For such materials a linear Hu-
goniot cannot be extrapolated beyond Up = co/(1 — s)
since beyond this limit the particle velocity would exceed
the shock velocity, a physical impossibility. Respecting this
limit on Up, the incompressibility (2.20) will be positive
for any positive value of s.

We will exclude from consideration materials for which
s < 0. This limits the shock equation of state to materials
whose principal Hugoniots are monotonic and single-
valued in pressure. This in turn greatly simplifies the solu-
tion of the Riemann problem, discussed in the following
section.

Given the positivity of K, we can see from (2.18) that
for P > P, the isentropic bulk modulus will be negative
only wheny >2V/(V, — V) (when P > P, the monotonicity
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FIG. 3. Pressure—specific volume (P-V) equation of state projections for molybdenum (Mo) and molten midocean ridge basalt (MORB), each
at 1400°C. The equation of state parameters are given in Table 1. The solid curve is the Hugoniot. The P-V domain of stability is bounded from
below by the Kg = 0 boundary (dashed). If a thermal model is included, the 7" = 0 absolute zero isotherm (dotted) limits the field of stability. For
the equations of state shown here, all super-Hugoniot states are thermodynamically stable. This includes all thermodynamic states accessible by an

arbitrary combination of simple shocks and rarefactions.

of the linear Hugoniot requires V, > V). This condition
means that thermodynamic stability is not guaranteed at
all points on the principal Hugoniot for arbitrary choice
of the parameters vy, and g. However, this condition is not
particularly restrictive in practice since vy is typically in the
range (0.5, 2) and for positive ¢ decreases with compres-
sion. Thus this condition of thermodynamic stability is
violated only for large y, and for large compression ratios
VoV = 1).

The isentropic bulk modulus off of the principal Hugon-
iot may be determined by direct application of (2.17) to
the equation of state (2.15), or by application of a Mie—
Griineisen-type correction to (2.18):

9K

Ks| _yd+y—q)
aEp ’

¥ (2.21)

Here the parameter ¢ is 9 In y/d In Vg, which is compatible
with the symbol used in (2.16) but does not necessitate the
assumption made there that vy is independent of energy at
fixed volume. It is most commonly assumed that g < 1,
and further that y > 0, and hence that the isentropic bulk
modulus will increase with increasing energy at constant
volume. When this is true, increasing energy (equivalently,
increasing pressure) will increase the bulk modulus. Thus,
for any volume there is some positive pressure for which
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the bulk modulus will be positive. Conversely, for any
volume there is a pressure (possibly below the Hugoniot)
where the bulk modulus will be zero and thus violate (2.3).
This low-pressure instability may not limit the overall P-V
domain of thermodynamic stability, however, which is also
bounded at low pressures by the zero degree isotherm
(Fig. 3).

The thermodynamic model presented thus far, i.e., (2.7),
(2.11)-(2.13), (2.15), and (2.16), is not complete in that it
does not allow determination of temperature, entropy, or
free energy of the system. The model must be augmented
by additional specification of the heat capacity or thermal
expansivity. The computational model presented in this
paper does not require such a thermal description. How-
ever, for completeness we note that a common assumption
such as Cy = 3k/atom, where k is Boltzmann’s constant,
does not necesssarily satisfy the additional thermodynamic
stability requirements. The condition Cy > 0 is obviously
satisfied by this choice, but the product oy =
v?Cy/(VKs — y*CyT) is not guaranteed nonnegative even
when Cy > 0 and Kg > 0. Thus, from the point of view
of determining thermodynamic stability, the thermal (Cy/)
and mechanical (P-V-E) variables cannot be entirely de-
coupled. Moreover, we note that the stability of a simple
shock wave and the uniqueness of the Riemann problem
are not guaranteed by a material’s thermodynamic stabil-
ity. Fused silica, for example, is a thermodynamically meta-
stable phase that exhibits shock wave instability over a
range of particle velocities.

States of low pressure and high internal energy are prob-
lematic with the Mie—Griineisen EOS description since
they necessitate the use of an expanded (V > V) reference
state (Fig. 2). This reference state cannot be the Hugoniot
since that would entail negative Up that are not physically
meaningful. For reference volumes greater than V,, we use
a Murnaghan isentropic EOS [37]

K K
( 0 KOS> <p>
0s/ \Po

The corresponding internal energy state is simply com-
puted from this pressure equation,

’
0s _ KOS

Kos

(2.22)

E=E, - : Pdv. (2.23)
0

The isentropic moduli in the Murnaghan EOS are compati-
ble with the values on the Hugoniot evaluated at its center-
ing point, Kos = poc and K s = 4s — 1. Thus the Hugoniot
and Murnaghan curves are continuous to second order
in V.

Finally, for later reference we indicate how the isentropic
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FIG. 4. Schematic pressure—velocity (P-U) wave curve configura-
tions and corresponding time—distance (t—x) characteristics of the five
Riemann problem solutions: (a) two shocks, (b) L shock and R rarefac-
tion, (c) two rarefactions, (d) L rarefaction and R shock, and (e) two
rarefactions that result in a pressure below the yield strength resulting
inspallation. Here ““cd’” denotes the contact discontinuity and “*’” denotes
the Eulerian cell-edge characteristic (zero velocity).

pressure derivative of the isentropic bulk modulus may
be computed:

0K [ P ,0*P AP oP
K.,S =2 =|p— + P -
P d dp>  dp OE
s P b (2.24)
2P PP P [oP\* P?o*P| 1
dpdE  pdE p - \OE p° IE” | Ky

3. THE RIEMANN PROBLEM

The Riemann problem is the determination of the wave
families that will result from the juxtaposition of two con-
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stant states, called here the left and right states and denoted
L and R (Fig. 4). The left state has two possible P—U wave
curves: one that describes shock states centered at L and
one that describes states accessible along a rarefaction
from L. The right state has two similarly defined wave
curves. The rarefaction limbs of the P-U wave curves are
always monotonic, but the shock limbs need not be, and
the L and R wave curves might intersect more than once
(an odd number of times). With one exception, the inter-
section of a L and a R wave curve defines the normal stress
P at the contact discontinuity between the L and R states
and the velocity U of this interface. This exception occurs
when the computed normal stress P is negative and
greater in magnitude than the strength of either material.
Then the solution to the Riemann problem describes a
process of cavitation or spallation. In this case the L and
R wave curves intersect the wave curve of the interceding
vacuum state (P4 = 0), and the L-vacuum and R-vacuum
interface velocities are distinct (Fig. 4e).

Let us describe the initial constant states by their density,
pressure, velocity, and equation of state parameters. We
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cd
Ugl = Uy + f T (pey . (32)
R

The possibilities for the left state are analogous, but the
sign conventions must be changed to reflect the different
directional orientation of that material. The left shock is
given by

Ugt = UL = V(P = PL)(1/pL — 1/pf%),  (3.3)
with P§ and p§¢ lying on the Hugoniot centered at (py,
Py, and Ep), and the left rarefaction is given by

d
P{<P|

U= U =[5 (pe)t ap, (3.4)

Py

We have used two methods to solve the Riemann prob-
lem with our equation of state. First, we can construct an
exact solution to the problem. We accomplish this by
writing

seek new left and right states that satisfy the compatibility
conditions of continuity of stress and of velocity at the
material interface joining the left and right states. That is,
we seek an intersection in the P-U plane of the wave
curves emanating from the initial constant states.

The right state, initially given by pr, Pr, Er, and Ug,
might increase its velocity (away from the left state), de-
scribing a shock with particle velocity

U = Ur + V(PE = Pr)(1/pr — 1/pf),  (3.1)

where Py and p§ satisfy the compatibility conditions and
the Rankine—Hugoniot jump relations for a shock centered
at (pr, Pr, Er). Note that (pr, Pr, Er) may be different
from the centering of the principal Hugoniot (o, Py, Eo).
Alternatively, the right state may decrease its velocity
(move toward the left state), describing a rarefaction wave

UL(P) = Uy, — L (2Ks —¥( L) V( (Ve ) (3.52)
P 1
dpP , if rarefaction.
P V pKs
( — — — — J—
[" ap KS(V;K V) IZ/(PP P@(ZR PV) a V(PV PR i shock:
T (2Ks — y(P — PR)V(P — Pr) (Ve — V) (b)
P 1
dpP , if rarefaction.
JPR V pKs

In these equations V, vy, and K are understood to be
functions derivable from the equation of state that vary
on the path of integration. Their pressure dependence is
different in the Hugoniot and isentropic integrals. The
exact solution is found by integrating the L and R wave
curves as functions of a common upper limit of integration
P until the left-hand sides U (P) and Ug(P) are equal.
Then their common value is U at P°¢ = P, and the thermo-
dynamic variables under these conditions are known from
the evaluation of the respective integrands. Additional de-
tails are given in the Appendix.

The second approach to solving the Riemann problem
is to assume that the shock equation of state, Us(Up),
centered on the L and R states, is linear. Given our as-
sumed linear Hugoniot equation of state model, this as-
sumption of linearity is strictly true only when the states
L and R correspond to the thermodynamic conditions
where the principal Hugoniot is centered. Generally, the
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shock velocity may be expanded as a power series in parti-
cle velocity,

w
Us:Eﬂi iP7

i=0

(3.6)

where the coefficients a; may be interpreted thermodynam-
ically,

apg =V Ks/p =, (373.)

a; = (Ks+1)/4, (3.7b)
8KsKs + (Ks+ 1)(7 + 4y — K

gy = 35 (K5 + 1)( 24 s)’ (3.7¢)

96¢

etc., where K5 is the second isentropic pressure derivative
of the isentropic bulk modulus, and where all quantities
are evaluated at the centering point; i.e., Up — 0. Thus,
evaluation of K and K, the isentropic bulk modulus and
its isentropic pressure derivative, specifies the two leading
coefficients in (3.6) that give a linear approximation to the
actual recentered Hugoniot that is second-order in Up.
Pressure, given by

P:P0+poUsUPzP(]"‘p()(CUP‘i‘%(K_’g‘F1)U12)), (38)
will be accurate to second order in Up.

The rarefaction dUp/dP = *(pc)™! may also be ex-
panded in Up to give

Ks+1
P:P0+p0|:CUP+¥U%
(3.9)
KSKs+ Ks+ 1
(KK H KA1 ] ,
6¢
In the pressure—velocity plane the recentered Hugoniot
and rarefaction wave curves are equal to second order in
Up. So, to this level of accuracy, we may construct either
wave curve as a branch of the same quadratic function
P(Up). With this assumption the solution of the Riemann
problem is determined by a simultaneous solution of two
quadratic equations:

P = Pog + pORaOR(UCd —Ur) + pORalR(UCd - UR)2
(3.10)

P = Py + porao(Ur — UY) + porai (Up — U%)
(3.11)

Here, the right-hand sides are expanded in (U — Ug)
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U

FIG. 5. The Riemann problem approximated with a quadratic P(U)
function. Point a on the R wave curve, at U = Ug — apr/ar, is the
point where the isentropic release branch of that wave curve violates the
thermodynamic constraint pc > 0. Point b on the L wave curve, at U =
Uy + apr/ayL, is the corresponding point on the release branch of the L
curve. The “cd” point indicates the pressure and velocity of the contact
discontinuity. In this example both L and R shock waves are predicted.

and (Up — U*Y), respectively, to take account of the initial
velocities of those states and of their directional orien-
tation.

If we consider recentered Hugoniots whose approximate
linear Us(Up) relations have positive slope (a; > 0), then
the physical solution to this quadratic equation, if it exists,
is always given by

U =[—b; — Vb} — 4byb,]/(2b,), (3.12)
where
bo= P — Pr + pLU(ao. + a;LUy)
3.13
+ pr UR(aOL - alRUR)a ( a)
by = —pr(aor + 2a,.Ur) — pr(aor — 2a1rUr), (3.13b)
b, = pLaiL — prair- (3.13¢)

The other quadratic root is excluded because it is unphysi-
cal. It may be shown that the excluded root will be less
than Ur — agr/2a;r or greater than Uy + ag /2a,. . These
are the minima of the respective wave curves, and they
demark the point on the rarefaction branch of the wave
curve where it ceases to be monotonic (Fig. 5). Thus the
excluded root lies on a part of the wave curve of either the
L or R state where the wave curve is thermodynamically
inconsistent with an isentropic rarefaction (thermody-
namic consistency requires dP/dU|g;. = *pc; pc > 0).
The method described here is similar to that of Dukowicz
[19] who also employed a quadratic P(U) function. How-
ever, we evaluate the coefficients ay and a; with formulas
(3.7a), (3.7b) using the EOS evaluated at the L and R
states, which may be significantly different from the Hu-
goniot centering state, whereas Dukowicz takes the coeffi-
cient a, to be globally constant. This difference gives our
method second-order accuracy in regions of smooth flow
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FIG. 6. A failure of the quadratic release branch wave curves to
intersect in their domain of thermodynamic stability. To circumvent prob-
lems of this sort, which arise at strong rarefactions, the quadratic P(U)
wave curve on the rarefaction branch is replaced by a (dashed) line
of slope prapr or —prag. for the R and L wave curves, respectively,
when necessary.

even when far from the Hugoniot centering point, where
our method is equivalent to Dukowicz’s.

We have found that the above quadratic formulation,
while robust in the case of smooth flow and arbitrarily
strong shocks, fails for strong rarefactions. These occur,
for example, when a shock wave collides with a free surface.
What happens in this case is that the recentered P-U
quadratic may not intersect the P = 0 axis (which describes
the vacuum state wave curve). In this case there will be
no real solutions to the above quadratic equation. To rem-
edy this problem, we make a further simplification: when
the solution calls for a rarefaction we replace the constant
a; with zero (Fig. 6) if this is necessary to make the wave
curves intersect. Since thermodynamic stability requires
that the coefficient a4 be positive, the resulting linear P-U
wave curve will always intersect the P = 0 axis. Of course
in making this approximation we have compromised the
accuracy of the solver for strong rarefactions. However,
this has not proven to be a serious problem as judged
by comparison of approximate results with computations
conducted with an exact Riemann solver or by comparison
to exact solutions in one dimension. The reason our ap-
proximate solver works is that rarefactions are intrinsically
dispersive. As the wave system expands, the strength of
the rarefactions computed by the Riemann solver becomes
progressively weaker, the need to linearize the P-U curve
lessens, and when required the linear P-U wave curve is
more accurate.

We determine whether or not a rarefaction will occur
on a given P-U wave curve by taking advantage of the
assumed P-U concavity of the quadratic. Define

L =
P]_ + pL(UL - UR) (a()L + (l]L(UL - UR))
PL + pLaOL(UL - UR)

if UL > UR,
otherwise,

(3.14a)
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A

R =
PR + pR(UL - UR) ((lOR + am(UL - UR)) if UL > UR,
Pgr + pragr(U — Ug) otherwise.
(3.14b)

Here, P; is the pressure material L would have, given a
quadratic P-U wave curve, if its velocity were changed
from U; to Ug: Py is similarly defined. Material L will
experience a shock when Py > Pg, etc. Thus, when re-
quired by a failure of (3.12), the linearization of the P-U
wave curve for rarefactions is accomplished by

{alL when P; > Pg;
ap, <
0 otherwise. (3.15a)
{alR when Pr > P ;
AR <
0 otherwise. (3.15b)

In our Godunov method, the Riemann solver must de-
termine not the complete family of waves and characteris-
tics, but the thermodynamic state on the characteristic
whose speed is zero. This is the state whose Eulerian coor-
dinate is at the same location as the initial discontinuity
between the initial L and R states. We denote this state
with the superscript “*”’. In what follows we shall assume
that spallation does not occur.

If the contact discontinuity velocity is greater than zero,
U >0, then the *“*” state lies on a characteristic belonging
to the L material. If in addition P > P, then the L
solution to the Riemann problem consists of a single recen-
tered shock wave with velocity (according to our equation
of state assumptions) Us = Uy — ag. + a; (U — Up). If
this velocity is positive then the “*” state lies to the left
of the shock (* = L). When this velocity is negative the
“*” state lies to the right of the shock where the material
parameters are determined by the recentered Rankine—
Hugoniot jump relations,

—daopL, + alL(UCd - UL)

% — : L shock
p pLUL_a0L+alL(UCd_ Up) — U Thoe
(3.16)
E*=F; + 1 (PL + PCd) <l — L) ; L shock.
2 pL  pf
(3.17)

Cexpd

Conversely, when the contact velocity is negative the
state samples R material. If a shock occurs, the shock wave
velocity Us = Ug + apr + a;g(U® — Ug) determines
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whether the “*” state samples unshocked R material or
the shocked state. When Ug > 0 the ““*”’ state is shocked
and the Rankine—Hugoniot jump relations give

apr + alR(UCd - UR)

* = .
P pR00R+a1R(UCd_ UR)+ UR_ UCd’ RShOCk
(3.18)
1 a1 1
E¥=Fx+=(Pr+PY|———1; R shock.
2 PR P
(3.19)

A more difficult circumstance than those described
above is when P < P;, in which case a rarefaction fan
will form. The leading edge of the fan travels with speed
UL — agr. The trailing edge of the fan travels with speed
Ued — cf4, where c§ is the speed of sound in the L material
under the thermodynamic conditions corresponding to the
contact discontinuity. An infinite number of characteristics
lie between these leading and trailing characteristics.

We compute the sound speed at the contact discontinuity
by noting that when the rarefaction wave curve is linear,
as assumed above when there is no real solution to the
quadratic (3.12), we have

P
g—U =V pKs = pc, a constant.

(3.20)
Thus a linear P-U characteristic implies a bulk modulus
that varies inversely with density. Integrating this result
gives the density of the L state at the contact discontinuity.

P P7) PCd)>1. (3.21)

¢d = 1+
S < Ks1
In addition, (3.20) gives the speed of sound at the contact
discontinuity referenced to the material velocity,

cd
Ci, = ao’Lﬁ .
L

(3.22)

the isentropic dE = —PdV energy integral may also be
calculated to give the specific internal energy at the contact
discontinuity of the rarefacting material:

(Pcd)Z _ P%

1
cd — + =
EE=h 2 pKsy

(3.23)

This analysis may also be carried out for a quadratic
P-U wave curve. However, as the minimum of the P-U
quadratic is approached, the implied thermodynamic prop-

143

erties become unrealistic (the thermodynamic stability
condition (2.3) is violated at the minimum). We use the
quadratic wave curve to compute U when possible, but
use the thermodynamic analysis above, which is always
based on a linear P-U wave curve. This choice makes
our method robust, has little effect on its accuracy, but is
otherwise without justification.

The leading and trailing characteristics of the rarefaction
fan may be computed with the model given above, as may
any characteristic within the fan. However, for computa-
tional convenience we interpolate linearly in characteristic
velocity to obtain the “*”” properties.

In summary, if U > 0, then the “*” state lies in L
material. If a shock occurs and the characteristic associated
with the shock is positive, then the “** state is the original
L state: U* = U, P* = P, p* = p., E* = E. If ashock
occurs and the characteristic associated with the shock is
negative, then the “*” state is the shocked L material state
and the Rankine—Hugoniot jump relations apply: U* =
U, P* = P, p* given by (3.16), and E* given by (3.17).
When the “*” state lies in L material but a rarefaction
wave exists there, then we interpolate between the leading
and trailing characteristics,

U* UL
P* L
= (1 - O'L)
P L
E* E.
cd
4 (3.24)
Pcd
P, — Pcd) -1
+ O-L <1 + (L—) .
i K1
Pcd 2 _ P2
JoRL il it
2 pKsp
where
o = min(1, max(0, &.)), (3.25a)
- U,
& dor — “L (3.25b)

aOL—UL-i— UCd_C(};(d )

Similarly, if U < 0, then the ““*” state lies in R material.
If a shock occurs, and its characteristic speed is negative,
then the “*”’ state is the original R state: U* = Uy, P* =
PR, p* = pr, E* = Er.If ashock occurs and its characteris-
tic speed is positive, then the “*” state is given by the
Rankine-Hugoniot jump conditions: U* = U, P* = P,
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p* given by (3.18), and E* given by (3.19). If the “*” state
lies in R material but a rarefaction occurs, then

U* Ur
P* P
" = (1 - U'R) R
P Pr
E* Ex
U« (3.26)
Pcd
Po — Pcd) -1
+ox (1 N (R—> ,
P Ksr
Pcd 2 _ P2
Er + L)~ Px
2 prKsr
where
or = min(1, max(0, o)), (3.27a)
+ U
5 dor T 2R (3.27b)

UR:aOR-i- UR_ UCd_C(]:(d'
4. THE SECOND-ORDER GODUNOV METHOD

Our high-order Godunov method for multiple phases is
based on some conceptually straightforward modifications
of the ‘‘standard” single-phase high-order Godunov
method (Fig. 7) that has been used extensively to compute
problems in gas dynamics. As background to a discussion
of these modifications we present a brief summary of the
single-phase high-order Godunov method upon which our
multiphase algorithm is based.

We begin with the two-dimensional compressible Euler
equations written in conservation form,

AU OF (W) G _

ot ax dy ’ (4.1)
where
p
pu
(%)= (4.2)
pU
p&

is the vector of conserved quantities. The corresponding
flux vectors in the x and y directions are
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U,EP,p, ..

i+5/2

i43/2

i-3/2 i-12 i+12

FIG. 7. Schematic representation of a high-order Godunov method.
(a) Cell-centered variables (filled dots) are used to construct a central
difference approximation to the slope. The resultant distributions (dashed
volumes) may be limited to satisfy certain monotonicity constraints
(shaded volumes). (b) Upwind characteristic tracing is used to deduce
the time-centered cell-edge L and R states that provide the initial data
for the Riemann problem. (c) The “*” state of the Riemann problem
determines the time-centered fluxes used in the conservative Euler equa-
tions.

pu

Fany=| T 4.3)

puv

pué + uP

and

pU
puv

G(%) = ,

4.4
pv> + P 44

pvé+ vP

where & = E + 3(u? + v?) is the total (internal plus kinetic)
specific energy. For simplicity we present the algorithm
for a Cartesian coordinate system.
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We will solve these two-dimensional equations by using
a second-order operator splitting technique [42], in which
we solve the one-dimensional equations

au, IF (%)

- P =0 (4.521)
o 9G) _ (4.5b)
ot ay

in the sequence (4.5a), (4.5b), (4.5b), (4.5a). The time step
for each one-dimensional integration is half the time step
for the two-dimensional problem.

The essence of a first-order Godunov method [21] is
a discretization of (4.5), with the fluxes computed from
solutions to the Riemann problem at the cell edges. In
other words,

///nﬂ J//n T AL (F(J//M/z) - F(W;k—’?/z))» (4.6)

where 7/, is the solution to the Riemann problem at
coordinate x;.{,, with initial data 74 and 74 given by %/}
and 7/%,,, respectively.

This method can be made second-order, in both space
and time, by computing L and R states from second-order
estimates of the value of 7/ at the cell edge at the half
time step "2 = " + At/2,

> = J//"—ﬁ_;(F (V5" = F(UE™). (47)

The time- and edge-centered L and R states are con-
structed using an upwind characteristic tracing method [14]
based on the quasilinear form of (4.1),

92
+

where
p
@)=| v (4.9)
P
pE

are the variables we choose to trace. The matrix A,
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u p 0 0 O
0 0 1/p 0

A=[o 0o u 0o of, (4.10)
0 Ks 0 u 0
0 pH 0 0 u

is evaluated at time n from the cell-centered quantities.
The eigenvalue decomposition of A, A = SAS™', where §
is the matrix of right eigenvectors and A is the diagonal
matrix of eigenvalues, is

100 p op u 00 0 0
00 0 —c ¢ 0 u O 0 0
A=|l0 10 0 0 00 u 0 0
0 00 Kg Kg 000 u—c 0
0 01 pH pH/ \0 0 0 0 wu+c
1 0 0 -1/ 0 (4.11)
0 0 1 0 0
0 0 0 -Hic® 1
0 —1/(2¢) 0 1/2Kg) 0
0 1/2c) 0 1/2Ks) 0

The exact solution to the linearized equations (4.8) is

—_

DR = 98+~ (£Ax] — A1A) 27, (4.12)

[\)

where 2% denotes 0.2/dx evaluated at time n, but this result
includes both upwind and downwind characteristics. To
make the solution fully upwind we filter the downwind
characteristics from the matrix A, obtaining

R = oy % (=Ax] — AISA*S) 22, (4.13)

A; = fmax(=A;, 0). (4.14)
In other words, in the course of tracing to the right edge
of a cell (to x;41» = x; = Ax/2), only those eigenvalues of
A (which is evaluated at x;) that are positive are retained
(Fig. 7b); the negative eigenvalues are set to zero. Con-
versely, in the course of tracing to the left edge of a cell
(to x;—12 = x; — Ax/2) the positive eigenvalues of A are
set to zero.
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Upwind characteristic tracing requires an estimate of
the slopes 2, of the cell-centered quantities 2. The slope
must be computed with some care to preserve monoton-
icity and prevent the introduction of spurious oscillations.
Van Leer [45] introduced a second-order slope-limiting
scheme that is based on a central difference approximation
to the cell-centered slope. For each g € 2,

,2 ,2

min(%"]iﬂ — 4i-1l> 2|9 — qi-1], £|qi+1 — le|)

vL| —

Ax|qys ifg;-1, qi, gi+1 is monotonic;  (4.15)

0 otherwise.

When the sequence ¢;-1, g;, g;+1 is monotonic (4.15) gives
the central difference approximation to the slope, (g;+1 —
qi-1)/2Ax, possibly reduced so that the extrapolated cell-
edge values are guaranteed to lie between the appropriate
cell-centered values. Limiting ensures that g, = ¢q; —
Axq./2 will fall between ¢;-; and ¢; and that g;1» = q; +
Axq,/2 will fall between ¢; and ¢, .

Colella [12] modified this slope limiter in two ways. First,
the interpolator may be made fourth-order in space by
writing

2 Ax Ax
W= 3Ax <Qi+1 - TCIL%H - Tq)vc,%—l - C]il) . (4.16)

When the van Leer slopes ¢ are not limited this gives a
fourth-order estimate of the slope.

Second, Colella introduced a “‘flattening” parameter y
to increase dissipation (entropy production) in regions of
strong shock waves. In such cases, where abrupt jumps in
material properties are expected, a central-difference
based slope approximation is not appropriate. Instead, the
“flat” first-order Godunov scheme strategy is appropriate.
To implement this idea, following Colella and Woodward
[17] and Colella [13], we introduce a measure of shock
strength

|P[+1 — Pi—l|
o LI AR S 4.17
z K, (4.17)
and obtain a parameter
0 if 7 > zy;
~ i1 — .
= if z1 >z > zp; 4.18
X 21— 2o 1 0 ( )
1 ifZ<Zoorui,1<Ui,

where zyand z; are adjustable parameters. In our computa-
tions we have used zo = 0.2 and z; = 0.5. The parameter
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& will fall in the range [0, 1], and will be less than one
only if the pressure jump scaled by the bulk modulus is
sufficiently large and the velocity is convergent (i.e.,
u, < 0). The flattening parameter y is then given by

min(Xi-1, ¥:) if Py < Py
Xi= (4.19)

min( g, %i+1) otherwise.
In summary, the limited slope we use for the purpose
of characteristic tracing is the Colella slope,

g% = xmin(|g ], [g¥%]) sign(gic1 — qi-1).-

(4.20)

Finally, as is well known (e.g., see Godunov’s theorem
in [27]), one cannot construct a high-order finite difference
solution of equations of the form (4.8) that preserves the
monotonicity of the solution. Colella and Woodward [17]
found that in Eulerian methods there are circumstances
for which no amount of flattening will give sufficient dissi-
pation. A remedy for that problem is that introduction of a
small amount of artificial viscosity in regions of convergent
flow (i.e., div u < 0). Following Colella and Woodward
[17] after Lapidus [26], we modify the fluxes (4.3) in regions
of convergent flow by

Pi — Pi+1
. P Pill; — Piv1lliv1
F(W)M/z <—F(“//)i+1/2 + &an s
piVi — Pi+1Vi+1
piéi— pin1 €in
(4.21)

Ui —

&> = max (O, —Ax{ [Tul + (Vyv)i+1/2]> . (422)

where

(Ui+1,/'+1 - Ui+1,j—1) + (Ui,i+1 - Ui,/'—l)
(Vyv)i+1/2 = 27y

(4.23)

is a central difference approximation to the transverse ve-
locity divergence centered at the i + 1/2 cell edge. In (4.22)
{ is a dimensionless adjustable parameter such that when
{ = 0 the artificial viscosity is turned off. In our computa-
tions we have used ¢ = 0.1. This adds diffusive dissipation
when there is a shock, regardless of the orientation of the
shock with respect to the direction of integration. However,
the inclusion of a transverse velocity gradient in ¢ means
that artificial viscosity will not be employed at slip lines
oblique to the computational grid. Such features can be
mistaken for shocks when only the one-dimensional diver-
gence is considered.
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In summary, the single-phase high-order Godunov algo-
rithm consists of the following steps: (1) Evaluate the equa-
tion of state in each cell using the cell-centered quantities.
(2) Compute the flattening parameter y, and the limited
slopes 2% of the quantities 2”. (3) At each cell edge, find

the time-centered left and right states: 2712, by character-

istic tracing from cell i and 2%7}/%, by characteristic tracing
from cell i + 1. (4) Using these L and R states at each cell
edge, solve the Riemann problem to determine the time-
centered fluxes, F (7/*"*1/2), possibly modified by the addi-
tion of an artificial viscosity. (5) Compute the cell centered
values of the conserved quantities at the next time step
using a conservative update (4.7) with the time-centered
fluxes.

5. MULTIPLE PHASES

We are interested in shock wave problems that involve
multiple materials, each of which is well approximated by
the EOS described in Section 2 above. Our approach to
this problem is based on a model developed by Colella et
al. [15] which has been used extensively to model problems
involving multiple phases of polytropic ideal gases (e.g.,
[22, 38]). The basic idea is to represent the state in each
multiphase cell (i.e., a cell that contain more than one
phase) as a single phase with internal energy, density, and
elastic moduli appropriate to the multiphase composite.
The resulting single-phase system is advanced in time by
solving for the fluxes of conserved quantities (mass, mo-
mentum, and energy), with a high-order accurate Godunov
method as summarized above. Those cells that only contain
a single phase, say phase 1, and that are neighbored on
both sides by cells that also only contain phase 1, are
advanced in time using these fluxes. Cells that contain
more than one phase before or after the time step are
updated with an algorithm that approximates the appro-
priate fluxes of the single-phase conserved properties (mass
and energy of phase 1, mass and energy of phase 2, etc.)
from the conserved fluxes of the effective single phase and
the volume fractions of each phase in nearby cells. We
now describe this algorithm in detail.

5.1. The Effective Single Phase

For each cell we specify the following conserved quanti-
ties: the mass of each phase, the total energy of each phase,
the total normal and transverse momentum of the cell. We
additionally specify the volume fractions of each phase
(not a conserved quantity), from which the density of each
phase may be computed. From this information the amount
and thermodynamic state of each phase may be uniquely
determined. Specifically, we may compute the pressure P,
isentropic bulk modulus K, and the isentropic pressure
derivative of the isentropic bulk modulus K g for each phase
from its equation of state.
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Let f* denote the volume fraction of component « and
note that

> fe=1

We define the mass fraction m® of component « by
me = fept/p, (5.1)

where p“is the density of component «, and p, as defined by

p=2fp" (52)
is the density of the composite. Similarly we let
E=> mE" (5.3)

denote the specific internal energy of the composite, where
E“is the specific internal energy of component «. Holding
constant the mass of each component, we can write an
equation relating the specific volumes V* = 1/p* to the
specific volume V of the composite,

V=> m/pe (5.4)

Differentiating this result with respect to pressure, holding
the entropies of each phase individually constant,

av

vl _ o m*dlnp®
aP

« p* 0P

, (5.5)

N

s
and rearranging gives an expression for the isentropic bulk
modulus of the composite:

(5.6)

K = (2 f“/K§>_l.

Differentiation of this result, again separately holding the
masses and entropies of each phase constant, gives the
isentropic pressure derivative of the isentropic bulk modu-
lus of the composite:

K= —1+E§2£—§2(Kga+1). (5.7)

The justification for holding each phase’s entropy indi-
vidually constant is that thermal equilibrium cannot be
maintained on the relevant scales of length and time. The
absence of thermal equilibrium can be demonstrated as
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follows. The time scale for thermal diffusion is Tiperma =
L?/k, where L is the length scale and « is the thermal
diffusivity. The time scale for acoustic wave propagation,
i.e., pressure equalization, iS T,cousic =~ L/c, Where c is the
speed of sound. In solids the thermal diffusivity is typically
of order 10°°® m?/s, and the sound speed is typically of
order 10° m/s, and thus the time scales are comparable
for length scales on the order of 107 m, a few orders of
magnitude smaller than the smallest cell dimension we
have considered.

The effective single-phase quantities p, E, Kg, and K}
define the linear approximation to the recentered compos-
ite phase Hugoniot (2.7)

— 1 —
US=VKS/,3+Z(K§+1)UP, (5.8)

from which the approximate Riemann problem may be
solved.

A complication arises in the case in which the material is
a mixture of one or more condensed phases with a vacuum.
Such mixtures occur at the free surface of a body and may
be formed by spallation. A homogeneous mixture of matter
with vacuum, i.e., a porous material, is perfectly compress-
ible, Kg = 0. On rarefaction K5 remains zero, and hence
K= —1, implying that for a rarefaction the leading coef-
ficients a in (3.6) are ag = a; = 0. If we ignore material
strength, then P = 0 during compression until the volume
fraction f, of the vacuum is zero. At this point, where
pressure first changes on compression, we have Us =
Up = 0 and the density of the composite differs from the
initial density of the porous material only by removal of
the vacuum volume. The first two terms of the power series
expansion (3.6) are thus a, = 0 and a; = 1/f, on compres-
sion. This linear approximation to the power series expan-
sion (3.6) can give a very bad fit to the correct EOS, particu-
larly when f, is small. To overcome this problem we take
ap = 0 and a; = min(1/f,, at) for porous multiphase cells,
where a; is computed by (3.7b) on a vacuum-free basis.

5.2. Reconstruction of the Individual Phase Fluxes

We define a multiphase cell to be a cell that contains a
nonzero volume fraction of more than one phase, and we
define a multiphase edge to be a cell edge that either:

(a) separates single-phase cells that contain differ-
ent phases,

(b) bounds a multiphase cell, or

(c) neighbors a cell edge that satisfies criterion (a)
or (b).

This definition ensures that cells that can experience a
multiphase flux, or that may become multiphase by intro-
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FIG.8. Schematicrepresentation of the second-order volume-of-fluid
interface reconstruction routine.

duction of a different phase flux, are bounded on each side
by a multiphase edge.

At each multiphase edge we use a second-order volume-
of-fluid interface reconstruction algorithm [25] to deter-
mine signed edge-centered individual phase volumes
Veadvected that will be advected across the edge in time step
At. Let us consider a cell edge, say (i + 1/2, j), for which the
Riemann solver has determined a time-centered interface
velocity U}, ;, and let us assume that this velocity is
positive (Fig. 8). In time At, a volume AtU, ) (A1, Will
be advected across the cell edge, where A,y ; is the area
of the (i + 1/2,j) edge. That volume, which originates in
cell (i, j), may contain more than one phase. The second-
order volume-of-fluid strategy we employ seeks a best-fit
linear approximation to the interphase boundary and uses
that boundary estimate to compute the volume fractions
for each phase in the advected volume in the cell upstream
of the multiphase edge.

A linear approximation (Fig. 8, dashed line) to the true
material interface (Fig. 8, boundary of shaded volume) is
found as the solution to a constrained least-squares prob-
lem: the function minimized is

i+l j+1

E 2 (f}{inlear _ fzcltual)Z
o 5 b

k=i-1 I=j-1

where 34! are the given volume fractions, fi7° are the
volume fractions due to the linear interface with unit nor-
mal n, and the (i, j)th cell is the cell upwind of the edge
in question. The solution is constrained so that the volume
fraction in the center cell due to the line is identical to the
actual volume fraction in the center cell
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1 ) = i, (59)
for any n. The intersection of the linear approximation
with the advected volume (Fig. 8, bold lines) gives the
individual phase fluxes V%3%°*! whose sum is U* At. This
diagram illustrates a two-phase situation. Multiple-phase
volumes are solved by applying this method N — 1 times
for N phases. Each application represents the system as
two phases: the phase of interest and everything else.

5.3. Self-Consistent Multiphase Dynamics

The equations that express conservation of mass, mo-
mentum, and energy are

o) | ) _

g i (5.10)
opu) , ap2 +P) (5.11)
at oax , |
9(pv) , 9pvte) _ (5.12)
ot dx
a(p(g)_’_a(p(«@u-i—Pu):O (5.13)
ot ax ‘ ‘

Equations for the evolution of volume fractions f* and
the individual phase specific energies ¢* must take into
account the constraints 2, f* = 1 and 2, f*p*¢* = pé. To
derive these evolution equations, we begin by expanding
the continuity equation (5.10),

14
p* ot p* ox (5:14)

Jat ax

Next, we assume that isotropic stress is maintained during
the advection process. Moreover, we assume that any com-
pression that takes place is isentropic and that the entropies
of the individual components remain constant. According
to these assumptions the pressure change (9P) associated
with compression of the bulk will be equal to the pressure
change (9P*) associated with compression of each compo-
nent phase,

(5.15)

Substituting this result we may rewrite (5.14) to give

ot afw _ _fKsop [ Ksuap
ot dx pK¢ ot pKg% ox

(5.16)

Finally, (5.16) may be simplified by substitution of the
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equation of continuity of the bulk, which may be obtained
by summing (5.10) over «,

i, i) _

o P , (5.17)

to give the thermodynamically self-consistent advection
equation for volume fractions:

af*  a(fw) _ K ou

ot ax K¢ ox (5.18)

The right-hand side of (5.18) is the self-consistent volume
fraction change required to maintain isotropic stress while
obeying the constraint X, f* = 1. Summation of (5.18)
gives 2, 9f*/at = 0 as required. The volume fractions of
the compressible phases (small K%) change most in re-
sponse to the total divergence.

An internally consistent internal energy equation may
be written by adding a — PdV work term to the conservative
advection equation. The volume change dV used is that
implied by the right-hand side of (5.18):

AFpren) | afpren) | foor oP _ Ry ou
ot ox P 0x K§ ox’
(5.19)

Since X, df* = 0, the summation of (5.19) over « gives
the conservative advection equation for total energy, as re-
quired.

5.4. Discretization of Multiphase Equations

We now present a discretization of (5.10)—(5.12) and
(5.18)—(5.19). The volume fraction of phase « in cell i,
following advection but prior to any readjustment (i.e.,
with the right-hand side of (5.18) neglected), is given by
a discretization of (5.18),

,advected __ ,advected
Vit Vi

cell 4
Vi

fir=fi+ (5:20)

where V§!! denotes the volume of the ith cell. To effect
the volume fraction adjustment corresponding to the right-
hand side of (5.18) we must next compute an average bulk
modulus K¢; for each phase. This is a volume-weighted
average that takes account of the cell of origin of the
advected fluids and is defined by
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cell advected advected
ff?Vi N VD), N V),

9
Si K% 4 K

lf U,-*_1/2>Oand U?i]/2<0;

f;;zvlgell + V;;zﬁald/\éected V?Jrald/\iected
Si K$iq
fqrv(;ell if U;‘l/z_Oand U,+1/2<0
1 12
% = cell advected advected (521)
K3 JiVieh = Vs Vi
Ks; K%y
if U;El/z > (0and U,‘*+1/2 = 0,
f?V?Cll + quiald/\écctcd _ V?Jrald/\écctcd
K$; ’
\ if Uiy, =0and Uy, = 0.
The adjusted volume fractions are
fe'Ks
prrt= g+ (1= ) IR (5
E K%

where the phase average bulk modulus K is computed
from the single-phase quantities K¢ using (5.6).

The advected fluxes in a single-phase Godunov method
are computed from the solution to the Riemann problem.
Here, in our multiphase method where the Riemann prob-
lem is solved for an effective single phase, we have a valid
estimate of u*, v*, and P*, but not of the single-phase
quantities p** and £**. In their place we use the appro-
priate upwind quantities:

( Pt N
if ux > 0;
pifis Ef + 3(u*? + v*?)
< ) — (5.23)
Pax

©i+1/2 Pi+1 .
if ux = 0.
(\E& + 3(u*? + v*?)

We have validated the approximation given in (5.23) by
comparing computations obtained with this approximation
to computations obtained with an “‘exact” multiphase Rie-
mann solver in which the individual phase properties are
directly available. Our comparisons indicate that the over-
all solution is insensitive to this approximation. A detailed
description of the “‘exact” multiphase Riemann solver we
used is presented in the Appendix.

With these approximate quantities, the mass, momen-
tum, and energy updates are
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Vq advected Ve advected
a,n+1 an+l a i-1/2 ~o* _ it1/2 ~o
fi = fipt Tyl Pi-112 el Pi+1/2
1 L
(5.24)
n+l n+l _ + ﬁ A% %2 + P
pi U; pild; Ax [(PF1pui, #112)
2
—(pF1puFin + PEip)] (5.25)
At
1,041 — :
p! vl = pu; + Ax [(AF12uF120E112)
*
—(pPFapuiinviing)] (5.26)
aadvected
an+l an+l ran+1 o oz(a_;’_ ~ot Zak
feipy i = fepsé V°°“ Pi12¢ 2
advected
VR P
Vlgcll L ol
At fa,n+1 a,n+1
+ A_XT (P — Pfan)
—
pl; " f¥'Ks;
-r(r-sor )
g K (5.27)
where
2 Vafd/‘éecwd ﬁ;x*l n
Pi=12 = (5-28)

advected
EB V?+l/ 2

5.5. Pressure Relaxation

Following the multiphase conservative updated de-
scribed in (5.24)—(5.27) above, the multiple phases in any
single cell may not be in mechanical equilibrium (P* #
P#). A procedure for reaching mechanical equilibrium is
described here. We seek a new pressure, common to all
phases, P, such that mechanical equilibrium will be
achieved while the constraint X, f* = 1 is observed. This
may be accomplished by solving the following set of equa-
tions for the changes in volume fraction f*:

— K¢
P =P+ AP*= P — f—aSAf”‘ (5.29)
D Afe=0 (5.30)
The resulting volume fraction update is
P / s L (5.31)
Afe= (PC‘ - (5.32)
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fe—fe+ Afe (5.33)
Conservation of mass dictates a density update
. fapa
P (_f—“ AR (5.34)

and the self-consistent isentropic —PdV internal energy
update is
fep E® «— fep*E* — PAf©. (5.35)

These equations are implemented, possibly iteratively,
in conjunction with equation of state evaluations that de-
termine the pressures P* and isentropic bulk moduli K%
of each phase.

In some experiments we have found that the relative
volume change Af®/f* called for in the pressure equilibra-
tion step is too large to be compatible with the linearization
implicit in (5.29). In some cases this leads to extrapolation
into regions of thermodynamic space where the equation
of state model we used was unstable. To prevent this patho-
logical behavior the procedure outlined above is modified
by enforcing a limit on the maximum allowed change in
Aflf. We define two constants: §_ is the largest |Af/f| al-
lowed for compression, and §. is the largest value allowed
for expansion. We used the numerical values - = 0.1 and
6, = 0.05. The limited fraction change in a binary system
is then given by

min(AfL 8, 1, 82,1 — f1) it Af1 > 0;
Af!
max(Af1, =8 f1, =68, 22— 1) otherwise.
(5.36)

It is in this pressure relaxation step of our multiphase
algorithm that we implement spallation. If the pressure
within a vacuum-free (possibly single phase) cell is negative
and larger in magnitude than the yield strength (which we
currently treat as a constant adjustable parameter) then
vacuum is introduced and the condensed phases are re-
laxed to zero pressure with the procedure outlined above.
As indicated in Fig. 4e, spallation ought to be a feature of
the Riemann solver. Our choice was based on a desire to
separate all multiphase considerations from the effec-
tive single-phase integrator, which includes the Riemann
solver.

5.6. Summary of the 1D Multiple-Phase High-Order
Godunov Method

In detail, the multiphase algorithm consists of the follow-
ing steps:
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(i) Evaluate the equation of state for each phase in
each cell to determine the quantities P, K, and K5.

(ii) Construct an effective single phase by averaging
density p (5.2), internal energy E (5.3), isentropic bulk
modulus K (5.6), and the isentropic pressure derivative
of K, K% (5.7).

(iii) Construct the flattening parameter y (4.17)-
(4.19). In multiphase applications we set the parameter y
(4.18) to zero in multiphase cells.

(iv) Compute limited slopes for the quantities p, u,
v, P, and E (4.15)-(4.20).

(v) Use upwind characteristic tracing to construct L
and R states centered at the half time step at each cell
edge (4.11)—(4.14).

(vi) Solve the Riemann problem at each edge. Com-
pute the pressure P*, the velocities u* and v*, and the
internal energy E* of the state that lies on the zero-velocity
characteristic.

(vii)) Compute the conserved fluxes (4.3), and update
the conserved quantities for those cells that contain only
a single phase (4.7). The fluxes at single-phase edges in-
clude an artificial viscosity term (4.21)—(4.23).

(viii) For each multiphase edge, implement a sec-
ond-order volume-of-fluid interface reconstruction routine
to determine the signed volumes V#adseted of each phase
advected across the edge with velocity u*.

(ix) Update the volume fractions (5.20)—(5.22), den-
sities (5.24), momenta (5.25), (5.26), and energies (5.27).

(x) Relax multiphase cells to mechanical equilib-
rium. For each phase in each multiphase cell evaluate the
equation of state to determine the pressure P* and isen-
tropic bulk modulus K§. Adjust volume fractions (5.31)-
(5.33), densities (5.34), and internal energies (5.35). This
step may be iterated depending on the problem and the
accuracy required.

5.7. One-Dimensional Test Problems

We now present the results of three one-dimensional
test problems designed to highlight various features of
our method.

A “‘smooth” rarefaction fan. First we present the re-
sults from a computation of the inside of a centered rarefac-
tion in aluminum (Al). This is an example of “smooth
flow” where we expect second-order convergence of our
method. The material properties of Al we used are those
reported in Marsh [28] and shown in Table I. We computed
the “exact” rarefaction solution in aluminum by using a
fourth-order Runge—Kutta method to integrate the ODEs

(5.37)
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TABLE I

Equation of State Parameters

Property Value Dimensions
Aluminum*
Po 2.785 Mg/m?
Co 5.328 km/s
s 1.338
Yo 2.0
a 1
P() 0 GPa
Ty 298 K
MORB®
p0 2.66 Mg/m?
Co 2.10 km/s
s 1.68
Yo 0.18
q 1
Py 0 GPa
To 1673 K
% 0.0012 MJ/kg - K
Molybdenum¢
o 9.961 Mg/m?
Co 4.77 km/s
s 1.43
Yo 1.56
q 1
P[) 0 GPa
Ty 1673 K
ct 0.00026 MJ/kg - K
“ Ref. [28].
b Ref. [41, 40]
¢ Cy is based on 3k/atom approximation.
4 Ref. [34].
d
i~ K (5.38)

starting from the right state Vg = 1/py, P = 0, u = ug
until we reached the left state Vi = 0.3416, P = 4.390,
u = u(Vy). The velocity ug = —6.0457 was chosen so that
the u — ¢ characteristic state halfway through the fan (at
V = (Vg + VL)/2) was stationary. The quantities (p, E,
u, and u — c) at each step of the numerical integration
were tabulated.

The initial conditions were generated by picking a start-
ing time f, = 1 ws and associating each coordinate x in the
problem domain [—0.5 mm, 0.5 mm) with a characteristic;
x/ty = u — c. The values of (p, E, and u) corresponding
to the characteristic u — ¢ were obtained by interpolation
of the tabulated results. Boundary data at each time step
of the computation was derived similarly by interpolating
with the appropriate characteristic x/t = u — c.

We compared the computed solution with the “exact”
one at time ¢t = 2.5 us. We computed the L;, L,, and max
norms of the error in the density, momentum, and total
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energy at this time. The results are shown in Table II. This
test problem yielded a convergence rate of between 1.9
and 2.6—depending on the quantity and the norm—
verifying that our method achieves second-order accuracy
in regions of smooth flow. The initial and final profiles are
shown in Fig. 9.

Wilkins’ test problem. Next we present a 1D test prob-
lem from Wilkins [48] in which a 4-mm piece of aluminum,
traveling at 2 km/s, impacts an aluminum half space (Fig.
10). In our computation of this problem we used a problem
domain 25 mm wide, from say 0 to 25, in which the 4-mm
projectile initially occupies coordinates 1-5, the Al half-
space occupies coordinates 6-25, and the rest of the do-
main is vacuum. The computation shown in Figs. 10a—-10f
was done on a 500-cell domain with CFL 0.3 and artificial
viscosity parameter { = 0.02. Figure 10g shows the L,
density errors at time 5 us derived by comparing the com-
putation shown above with similar computations on 250-
cell and 125-cell domains. Peaks in the error spectrum
occur at the free surface, the projectile-target interface (a
double peak, exaggerated by “‘startup errors” [16]), both
ends of the rarefaction fan (first order in smoothness), and
the shock (zero order smoothness). Figure 10h is the order
of accuracy derived from Fig. 10g. The average order of
accuracy shown here is 1.75.

A test problem that includes spallation. This computa-
tion (Fig. 11) demonstrates how our method currently han-
dles spall. Shown is a 30-mm-thick bar of aluminum in a
vacuum. Initially the Al has zero velocity and pressure,
density, and internal energy given by (P, p, E) = (3.277,
21.841,0.588). (This corresponds to a state on the principal
Hugoniot for which Up = 1.0.) Left and right rarefactions
pass through the material, creating tension when they col-
lide. Vacuum is introduced when the pressure drops below
—2.0 GPa. The abrupt change from —2.0 GPa to 0 caused
by the spallation process drives large amplitude acoustic

TABLE 11

The Error and Convergence Rate in Computing the Interior
of a Rarefaction Fan in Aluminum

Cells 1-Norm  Rate 2-Norm Rate Max norm Rate

Density

16 1.4322D-06 3.6511D-07 1.9057D-06

32 3.6165D-07 2.0 6.4392D-08 2.5 4.6810D-07 2.0
Momentum

16 1.7623D-07 5.1802D-08 4.2595D-07

32 4.2375D-08 2.0 8.7082D-09 2.6 1.1160D-07 1.9
Energy

16 2.2395D-05 5.7097D-06 2.9053D-05

32 5.6538D-06 1.9 1.0080D-06 2.5 7.1863D-06 2.0
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FIG. 9. A rarefaction fan in aluminum centered on the grid: (a)
pressure before (solid) and after (dashed) 1117 iterations on a 32-cell
grid with CFL 0.5; (b) velocity before (solid) and after (dashed) 1117
iterations. Initial and boundary conditions are supplied by “exact’ calcu-
lation. This computation was repeated with 16 cells, requiring 560 itera-
tions to reach the same time. A comparison of the L; norm density errors,
based on comparison to exact results, reveals second-order convergence.

waves that are evident in both the pressure and velocity
profiles. This spallation procedure initially creates a large
number of cells that contain a mixture of aluminum and
vacuum: a distinct material interface is not initially present.
With time the material coalesces, and distinct regions of
material separated by distinct regions of vacuum emerge.
This computation was done on a 400-cell domain with
CFL 0.8.

6. ADAPTIVE MESH REFINEMENT

To model two-dimensional problems, the one-dimen-
sional multiphase method for integrating Eqgs. (4.1) pre-
sented above is driven by an adaptive mesh refinement
(AMR) application shell that (1) breaks the physical do-
main into a number of two-dimensional rectangular grids,
(2) manages the integration of (4.1) on these grids such
that the grid—grid and grid—domain edge boundary condi-
tions are consistently maintained in time, and (3) dynami-
cally maintains a hierarchy of higher-resolution subgrids
whose placement may be controlled to reduce local errors
and provide enhanced spatial resolution. The AMR strat-
egy in the context of a system of hyperbolic conservation
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laws is described in [7-10], and our independently coded
C++/FORTRAN hybrid implementation is based on the
algorithms defined in these references. Here, we describe
details of this algorithm that are specific to our multiphase
integrator and its application described in the following
section.

There are several processes in the AMR algorithm that
require special consideration in multiphase computations.
Foremost among these is the creation of fine grid patches.
When a coarse grid patch is projected onto a refined grid
patch, simple polynomial interpolation of the cell-centered
quantities 7/ may lead to a smearing of phase boundary
interfaces across several fine grid cells. In the application
described in the following section we store the following
eight cell-centered quantities:

p=fip1 + fop2

pu

pv

pE = fipiéi + foprés

hi

fipr

fipiéa
fo

Here f; is the volume fraction of phase 1 and f, is the
volume fraction of vacuum in a cell. Neither of these is a
conserved quantity. Moreover, the phase volume fractions
are not smoothly varying functions within a cell. They
assume values of 0 or 1 in single-phase regions and take
fractional values only in regions of space that straddle the
interphase boundary.

There are two approaches to rectifying this problem.
First, when a grid patch containing a phase boundary is
projected onto a refined grid, an interface reconstruction
routine, such as that described in Section 5.2, may be used.
Only those fine grid cells that straddle the reconstructed
interface will then contain more than one phase and inter-
face smearing will not occur. An alternative approach is
to require that multiphase cells always be refined at the
maximum resolution. When this is done the fine multiphase
grids are filled by the initialization subroutines instead of
by interpolation from coarse grid cells. Since the interfaces
are always computed with the maximum level of refine-
ment, the interpolation of multiphase coarse cells is never
necessary. Since the computational cost of refined grid
patches greatly exceeds that of coarser grids, this strategy
is computationally expensive. Nevertheless, we adopt this
second strategy in the computations shown here, since in
these computations we are principally concerned with re-
solving features associated with the interfaces.

U= (6.1)
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FIG. 10. Wilkins’ problem: (a) density and (b) pressure at 0.5 us; (c, d) same at 2.5 us; (e, f) and 5.0 us. (g) L, denstiy errors comparing 500-,
250-, and 125-cell calculations at 5.0 us; and (h) order of convergence.
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FIG. 11. Release of a compressed aluminum bar leading to spall: (a) density, (b) velocity, (c) pressure, and (e) vacuum volume fraction at 1.0
us. (e=h) Same at 2.0 us, (i-1) at 3.0 us, and (m-p) at 10.0 us.

There are other processes in the AMR algorithm thatare not conservative. One algorithm within AMR that leads to
robust when each cell-centered quantity is a conservative discrepancies with our nonconserved cell-centered quanti-
density, but are somewhat problematic when there are cell-  ties is the matching of coarse grid and neighboring fine grid
centered quantities such as phase volume fractions that are  cell boundary fluxes. To simultaneously manage nested fine
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FIG. 11— Continued

and coarse grid hierarchies conservatively requires that the
fine-grid boundary fluxes and the neighboring coarse-grid
cell boundary fluxes be made equal over each coarse time
step. For example, suppose that within a particular coarse
grid there is a fine subgrid with four times greater spatial
resolution. The fine subgrid will be integrated four times

with time step Atz = Alcoarse/4 for each integration of the
surrounding coarse grid. At the end of that coarse time
step the coarse cell edge flux computed on the coarse grid
must equal the sums over four fine time steps of the four
neighboring fine cell edge fluxes. To accomplish this the
coarse cell edge flux is adjusted to equal the computed
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total flux from the fine cell edges. When this adjustment
is done on nonconserved variables, such as phase volume
fractions, the adjusted coarse cell quantities 7/ will become
incompatible to some degree. Specifically, the condition
of mechanical equilibrium (i.e., equality of stresses) will
be violated and hence a pressure equilibration, as discussed
in Section 5.5, is required.

To remedy this problem we could implement the pres-
sure equilibration algorithm during the flux readjustment
AMR step. However, this is not necessary when the mate-
rial interfaces are always resolved on the finest grid
patches. Since the interface is interior to the fine grid
patches, the interface fluxes between fine and neighboring
coarse grid cells are always single phase.

Refined grids are created to reduce local truncation er-
ror, which is estimated using a method based on Richard-
son extrapolation [9]. Specifically, the local error 7 is esti-
mated by

TRU~ I

STy =T+ O, (62)

where .77 denotes the two-level finite difference operator,
applied twice with time step At),, and .%,, is the same opera-
tor but applied once with time step Aty, = 2At, to a grid
coarsened by a factor of 2 in each direction. Here, p is the
order of accuracy in space and time of the operator .7,
which we take to be 2, and 4 is the length of a cell on the
original grid. This estimate is performed every two time
steps (this is an adjustable parameter) and compared to a
user-defined error tolerance threshold. When that toler-
ance is exceeded the offending region is tagged for addi-
tional refinement.

In the work that follows, we compare the error in average
density p using a threshold 7., = 107*.%,7%. We set the
truncation error 7 to some large number at each phase
boundary. This ensures that the phase boundaries will lie
within the most refined cells and thereby avoid the prob-
lems described above. We also employ refinement criteria
other than (6.2). For the application discussed below we
want to resolve the shock front and steep rarefaction fans
with the highest resolution. To accomplish this we also
evaluate the divergence of the velocity field and assign
some large (fictitious) truncation error to those cells with
a large absolute values (|V - u| > 2/us).

7. AN APPLICATION TO EXPERIMENTAL SHOCK
WAVE STUDIES

7.1. A Computational Study

We have used the method described above to study the
propagation of edge effects in multiphase assemblies used
in geophysical shock wave laboratory experiments [35].
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FIG. 12. Sound speed determination from edge effects after [6]. In
time Ar the edge disturbance (originating at a corner, for instance) is
advected a distance UpAt with particle velocity Up and at the same time
radiates a distance cAt at the sound speed c in all directions. The intersec-
tion of this surface with the shock (which travels a distance UsAf) defines
a ray of angle «, where U3 tan’a = ¢*> — (Us — Up)>. When the shock
reaches the melt-metal interface the edge effect will propagate at the
different angle «y;. This angle is computed as indicated above, but with
the velocities relevant for the shocked metal.

This was done to assess whether the compressional edge
effects in the experiments described in [36] propagate as
acoustic waves—at the sound speed of the shock-com-
pressed sample [6]—or as oblique shocks. We determined
that the edge effects were acoustic and that the experiments
were therefore analyzed in an internally consistent way.
Preliminary work extending our earlier study is pre-
sented here.

Al'tshuler et al. [6], in experiments known to have acous-
tic edge effects, tried to measure the angle of intersection
of the moving shock wave with the acoustic edge effect
signal for the purpose of obtaining sound speeds under
shock-loading conditions. They detected the shock arrival
on the free surface of their samples and looked for the
onset of curvature to indicate the interference of edge
effects with the otherwise planar shock. Experiments with
encapsulated melts (Fig. 12) are complicated by the propa-
gation of the edge signal through the container, but have
qualitatively similar features. In principle, the sound speed
of an encapsulated liquid may be measured by observing
edge effects on the container surface.

Here we consider two questions relevant to the propaga-
tion of edge effects in encapsulated melts (Fig. 12). First,
“Given probable experimental errors in the detection of
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free surface motion, is it possible to detect the initial inter-
action of the edge effects with the otherwise planar shock
at the free surface of the container?”’ It is not obvious that
this should be the case because the strength of the leading
edge of the acoustic disturbance is weak and might be
undetectable after propagation through the metal con-
tainer. The experimentally detectable onset of edge effects
might be unacceptably different from the idealized model
shown in Fig. 12, or if the onset of shock front distortion
is compatible with the idealized model, the angle « in the
melt, and hence the melt sound speed might be deduced.
In actual practice the inference of « in a single experiment
will be contingent on determination of the angle ay that
describes the propagation of edge effects in the metal con-
tainer. The angle oy may be computed for some materials,
but will depend on whether a plastic shock or an elastic
precursor is the wave detected by the experimental appara-
tus. Alternatively, two experiments with identical con-
tainer thickness but different melt thickness could be used
to experimentally account for «y,, regardless of whether
the leading disturbance detected at the free surface is elas-
tic or plastic.? In this study we will assume the molybdenum
container has zero material strength. Although this is in-
consistent with experiment [18], it is an adequate assump-
tion for the purpose of assessing the feasibility of melt
sound speed measurement.

The region of the liquid sample influenced by edge ef-
fects is dispersive and covers a range of pressures, which
is about 10 GPa in the experiments described below. The
leading edge of the affected region is determined by the
sound speed of the sample under the shock conditions that
pertain where the shock is planar. However, within the
large affected region the distribution of thermodynamic
and hydrodynamic properties will be sensitive to the sam-
ple’s pressure-dependent sound speed over the range of
pressures found in the affected region. In the context of
the thermodynamic model discussed in Section 2 above, the
details of the region affected by edge signals will depend on
both y, and g (see (2.16)). Thus the second question we
address in this section is, “Is the detected free surface
arrival sufficiently sensitive to the parameters vy, and g that
an inverse method might be constructed to deduce these
parameters from the measured free surface record across
the width of the region influenced by edge effects?”” The
first question addresses the detectability of the onset of
edge effects at the free surface; the second question exam-
ines the information content of the record within the af-
fected region.

These investigations are motivated by the experiments

2 An edge effect will be seen in the surrounding metal, but the nominal
pressure there is different from that in the material to the left of the
liquid. The angles ay in the metal adjacent to the liquid cannot, therefore,
be deduced by a measurement of ay in the surrounding metal.
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FIG. 13. Experimental setup. A projectile, consisting of a polycarbo-
nate sabot carrying a 6.4-mm-thick metal plate, is accelerated to between
1.0 and 2.5 km/s by an 80-mm-diameter single-stage gun. The projectile
strikes a target assembly made of molybdenum plates and containing a
silicate glass. Prior to impact the target assembly is induction-heated to
above the liquidus of the silicate composition. The (left) free surface of
the target is observed with a streak camera. The streak camera records
the light reflected off the free surface in one spatial (r) and as a function
of time (7). The reflectivity changes when the shock reaches the free
surface. Shown is #,, the time when a planar shock reached the free
surface after traversing three layers of molybdenum, and ¢, the time
when a planar shock traversed a layer of molybdenum, the liquid sample,
and a second layer of molybdenum. The relative time (¢, — ;) determines
a point on the liquid Hugoniot [36].

illustrated in Fig. 13, which are currently being conducted
by the first author for the purpose of determining the
Hugoniot EOS of silicate liquids. If the experimental data,
particularly the streak camera record, contain information
on the sound speed and also possibly on the volume depen-
dence of the sound speed, then that information is available
at no additional experimental cost. A separate issue, not
taken up, is, “How might the target be redesigned to opti-
mize the sensitivity of the streak record to the sound speed
information?”” To address that question, parameters that
we consider here to be invariant, such as the metal plate
thicknesses and metal-liquid interface angles, could be
changed.

We present the results of three computations (Table III)
which we have conducted to address the first two questions.
In the first computation, we model the propagation of a
planar shock through a molybdenum container and into
an encapsulated liquid sample (midocean ridge basalt,
MORB) using the experimentally determined thermody-
namic parameters shown in Table I. The simulated system
is 10 X 10 mm on an initial 100 X 100 coarse grid. One
level of grid refinement is allowed, with the fine grid cells
one-fourth the size of the coarse cells. The system is in
cylindrical coordinates with the bottom edge being the
axis of symmetry. The computations described below took
approximately 50 CPU-min each on a Cray C90.

The sequence of events for the first run is illustrated in
Fig. 14: the results shown apply qualitatively to the other
runs, too. The first snapshot shown illustrates the starting
configuration: a left-traveling planar shock in molybdenum
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TABLE III

Run Parameters

Property Value

All Runs

P in Mo. 60.8 GPa

P in MORB. 20.2 GPa
Run 1

Yo 0.18

q 1

c at 20.2 GPa 5.93 km/s

o 46.3°

2V 29.3°
Run 2

Yo 1.0

q 1

c at 20.2 GPa 5.62 km/s

@ 44.2°

(29 29.2°
Run 3

Yo 0.18

q -3.23

c at 20.2 GPa 5.62 km/s

@ 44.2°

(29 29.0°

is 303 ns away from striking the molybdenum-MORB
interface. The initial shock has a strength of 60.8 GPa.
When the shock reaches the interface, a weaker 20.2-GPa
shock is transmitted to the MORB, and a right-traveling
rarefaction is reflected into the molybdenum. Away from
the corner, the plane 60.8-GPa molybdenum shock contin-
ues unperturbed. The second snapshot shows the configu-
ration 358 ns after the shock reached the molybdenum-
MORSB interface. Note that the edge effect generated at
the corner is compressive inside the MORB, and expansive
in the molybdenum. After traversing the encapsulated
MORB, the shock reaches the left molypbdenum-MORB
interface. When that occurs a shock is transmitted into the
molybdenum and a right-traveling shock is reflected back
into the MORB. The strength of this second shock is about
45.4 GPa. Being a recentered shock in the MORB, this
shock is slightly sensitive to the thermodynamic model
parameters 7y, and ¢, and is therefore different in each of
the three computations. The third snapshot, at 628 ns after
initial interaction of the shock with the MORB, shows the
development of the reflected wave structure. The plane
shock in the MORB has not yet reached the second molyb-
denum-MORB interface, but a reflected shock wave struc-
ture has begun to develop where it has been bent forward
(to the left) by the edge effects. The final snapshot, at 756
ns after initial impact, shows a right-traveling rarefaction
fan that has reflected off of the molybdenum free surface
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at the top of the simulated system. At the bottom, adjacent
to the encapsulated MORB, the left-traveling shock has
not yet reached the free surface.

At each fine-grid time step we monitor the velocity
of the free surface. We arbitrarily mark the free surface
when its velocity reaches 10 m/s; we assume this to be
the onset of detectable surface motion that might be
recorded on a streak camera. The time-radius history of
these first motions constitutes a synthetic streak record
(Fig. 13). These measurements are at discrete intervals of
approximately 1 ns, which is comparable to instrumental
uncertainties. The synthetic streak records for our three
simulation runs are shown together in Fig. 15. Note that
some offset of these records is evident even where the
shock is planar when it reaches the free surface; the
magnitude of this error is within one fine-grid time step.
It may be explained by the fact that the time steps in
each simulation are determined independently by the
requirement that the CFL number, cAt/Ax, not exceed
a defined threshold, which is 0.4 in our case. Since the
sound speeds c differ in each of the three computations,
the time steps Ar differ correspondingly. Thus the time
intervals at which the free surface motion is examined
are different in each computation.

It is also evident on examination of Fig. 15 that the
distance between the radial coordinate of the outer metal—
liquid interface and the location of the first detectable edge
effects on the free surface are about 10% smaller than their
theoretical values. To a first approximation this suggests
a systematic bias of 10% of tan «, with corresponding
systematic errors that affect the inferred sound speed. This
answers in part the first question we posed. The onset of
edge effects on the free surface motion are not detectable
without bias. Underestimation of the radial extent of the
edge signal leads to underestimates of c and overestimation
of y. Therefore experimental results must be interpreted
with some caution.

The second and third computations are characterized
by equal high-pressure sound speeds that are about 5%
lower than those in the first computation. The value of «
for both of these runs is identical, but the value of ay
differs somewhat, since the recentered Hugoniots of the
modeled liquids differ. The second computation has a
greatly increased value of vy,, whereas the third computa-
tion has a greatly reduced value of g. These values are
substantially different, and in no way constitute small per-
turbations from the experimentally determined parameter
set that we used in the first computation. Nevertheless,
the free surface wave forms of these runs do not differ
materially. Their offset in time is within the error of the
synthetic streak records and also within experimental un-
certainties. Therefore the answer to the second question
is negative. The free surface motion is insensitive to the
pressure dependence of the liquid sound speed with as
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FIG. 14. Simulation of a left-traveling shock in molybdenum interacting first with an encapsulated MORB liquid and then with a free surface.
Contour plots of density (first row), pressure (second row), velocity divergence (third row), and vorticity with superimposed AMR fine-grid structure
(fourth row). The relative times are —303 ns (first column), 358 ns (second column), 628 ns (third column), and 756ns (fourth column). The vacuum
boundary condition at the left side of the problem domain is shaded, as is the approximately rectangular MORB sample region in the interior. The

molybdenum container is unshaded.

much as 10 GPa leverage on the pressure-dependent quan-
tities in the affected region.

7.2. Code Timings

We conducted additional computations of the problem
described above on a Cray C90 in order to examine in
detail the computational cost of our method. In our imple-
mentation we have taken care to ensure that every loop
that could vectorize on the Cray does. We studied two
cases, a single 100 X 100 grid on which refinement is not
allowed, and the same case but using AMR to achieve
effective 400 X 400 resolution. At CFL 0.4 the 100 X 100
case ran for 308 time steps while the effective 400 X 400
case ran for 318 time steps to reach time ¢ = 1.3 us from
the start of the computation. (The initial conditions were
such that the shock struck the Mo/Morb interface at time
t = 469 ns.)

In all of the runs we determined the average cost of
integrating one cell for one time step was consistently 20.7
ws of Cray C90 CPU time. This figure includes the cost of
setting up the sweep arrays and of all calls to the EOS
routines, the Riemann problem solver, and other steps in
the second-order Godunov method, but it excludes the cost
of reconstructing the interface from volume fraction data.
We present per-cell data excluding the interface routines
since these routines are not currently written to optimize
the speed of the algorithm. When we included the cost of
the interface reconstruction routines, the average cost per
cell increased by about 12 us of CPU time.

The total cost to advance the entire grid with an effective
400 X 400 resolution by one time step is about 6.99 CPU,
including AMR overhead but still excluding interface re-
contruction. The total cost to advance a real 400 X 400
grid one time step is calculated to be 400° X 4 X 20.7 X
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FIG. 15. Synthetic streak records with nominal and perturbed MORB parameters. Run 1 (solid line) is an experimentally determined parameter
set; run 2 (dotted line) is the sound speed reduced by increasing y,; and run 3 (dashed line) is the sound speed reduced to the same level as run
2 by decreasing g. The error bars indicate the difference between the theoretical first observation of edge effects (indicated by arrows) and their
first observation in the synthetic streak record. The synthetic records shown here have resolution similar to that of experimental records.

107 = 13.25 CPU-s, (400” cells, and 4 fine time steps per
coarse time step, at 20.7 X 107® s per cell). Based on
this scaling, employing AMR to achieve high resolution
reduces the computational expense by 6.26 CPU-s, per
time step, or 47%, in the example given.

8. CONCLUSIONS

We have presented a new numerical algorithm for the
integration of the Euler equations in multiphase systems
in which each of the phases is modeled by a Mie—Griineisen
EOS. In our algorithm we solve a conservation equation
for the mass and energy of each material phase, a transport
equation for the volume fraction of each phase, and an
equation that represents the conservation of momentum
for the multiphase composite. The fundamental assump-
tion underlying this approximation is that in a cell that

contains more than one phase, the pressure and velocity
of the composite are single valued, but the specific volume
and other thermodynamic properties of each phase are
separate. The resulting system of conservation laws is hy-
perbolic and can be solved with modern numerical tech-
niques for approximating solutions of hyperbolic conserva-
tion laws.

We use a second-order Godunov method to determine
the time- and edge-centered fluxes of conserved quantities,
which we then advance in time using a standard conserva-
tive finite difference update. At multiphase edges the Go-
dunov fluxes are determined by solving the Riemann prob-
lem for an effective single phase whose properties are those
of the multiphase composite and then determining the
advected volumes of each component phase using a sec-
ond-order volume-of-fluid interface reconstruction algo-
rithm. An equilibration step readjusts the volume fractions
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of the individual phases to enforce the condition of iso-
tropic stress within individual computational cells.

Our algorithm for modeling multiple phases is based on
an algorithm due to Colella et al. [15]. It differs from their
algorithm principally in details related to the underlying
EOS model. For instance, with our EOS model a lineariza-
tion based on constant isentropic bulk modulus Ky is rea-
sonable. However, for ideal gases where

Ks=Pr (8.1)
an assumption of constant polytropic index I is more ap-
propriate. Moreover, our method permits states with non-
positive pressures and zero densities, and such states are
incompatible with the ideal gas EOS.

Our one-dimensional integrator is part of an operator-
split two-dimensional integrator embedded within an adap-
tive mesh refinement shell. Details of the AMR algorithm
that are specific to our implementation are described. The
use of AMR allows us to focus the majority of the computa-
tional cost on those parts of the problem domain that we
deem to be interesting. We have chosen to concentrate the
computational effort on three regions: interfaces between
phases, regions of large absolute divergence (shocks and
steep rarefactions), and regions with comparatively large
errors in density as judged by using Richardson extrapola-
tion to estimate the local truncation error in the com-
puted density.

We have used this method to study wave interactions
in laboratory experiments designed to measure the equa-
tion of state of liquid silicates [35]. Here we have presented
additional computations aimed at extracting new informa-
tion from the experiments described in that paper. The
computations began with a 100 X 100 computational grid,
with interfaces, strong waves, and error-prone regions se-
lected for refinement on an effective 400 X 400 computa-
tional grid. We computed synthetic streak records with
spatial and temporal accuracy comparable to laboratory
data. These synthetic streak records suggest that inferences
of the high-pressure sound speed within the shocked liquid
are subject to systematic underestimation because of the
weakness of the edge effect at its leading edge. Also, the
structure of the affected signal cannot be used to deduce
the pressure dependence of the liquid sound speed in a
single experiment.

APPENDIX: AN “EXACT” MULTIPHASE
RIEMANN SOLVER

In essence, an ‘“‘exact” multiphase Riemann solver con-
sists of the integral equations (3.5), but where all individual
phase thermodynamic terms are replaced by their effective
single-phase counterparts (i.e., p for p, etc). Hugoniots
constructed in this manner, which is sometimes called ‘“‘the
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method of mixtures” [31, 32], have proven successful in
predicting the shock properties of alloys and binary me-
chanical mixtures of metals.

Of those bulk composite properties needed, only the
Griineisen parameter has not yet been specified. The sim-
plest model for the thermodynamic Griineisen parameter
of the composite is obtained by assuming that during iso-
pycnic compression: (1) the phases remain under isotropic
stress, (2) no energy is exchanged between phases, and
(3) the individual phase densities remain constant. Under
these conditions,

== 1__ fp® aEa
(pY) Z 5

whence

-1

7=(Sr)

In constructing the effective single-phase bulk modulus
we assumed that during isentropic compression the entrop-
ies of the individual phases remain constant. The self-con-
sistent isentropic expansion of a binary composite is thus

u VVIK,

p p/Ks

E PV/Ks
S o = ekl (A1)
aP|

E! PVYK}

p’ p*1K3

E? PV2/K2

We can envision the shock compression process as con-
sisting of an isentropic compression, followed by an isopyc-
nic energy change. Thus for each differential change in
pressure on the Hugoniot 6P, there is an isopycnic pres-
sure change of

S Ks(Vo—V)—V(P—P
= GP GS 5P — 5y s( 0 Vz ( 0) 5P,
and a corresponding isentropic part
Ks — 2V-—y(Vo—V
8Ps==> 5P, = pKj y_( 0= V) 6Py,
K‘/( 2KS - ’)/(P - P())

where V, and P, are at the mixed phase Hugoniot centering
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point and 6Ps + 6P, = 6P,. Now we divide the total
differential pressure change into component isopycnic and
isentropic parts. During the isopycnic process the assump-
tions described above in the derivation of y hold, and
during the isentropic part entropies are individually held
constant. The self-consistent shock properties of a binary
composite are thus

P pIK,
E (Vo= V+ (P+ Py)VIK,)
P p' (p'/K%)6Ps/ 6P,
aP| | V|| (evikb)spsisp, + (ViyYopysP,
I (p*/K3)6P5/6P,,
E? (PV?*/K%)6P5/8P,,+ (V*Iy?)6P;/ 6P,

(A2)

The particle velocity may be determined directly from the
Rankine—Hugoniot jump relations,

u=V(P - P)(V,— V),

instead of by integration.

An “exact” multiphase Riemann solver may be con-
structed as described in Section 3, but by integrating the
vector equations (A.1) and (A.2) to the pressure where
the L and R integrals converge to a common velocity. The
integrals then provide the individual phase “*’’ properties
needed for the construction of individual phase fluxes.
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