
JOURNAL OF COMPUTATIONAL PHYSICS 128, 134–164 (1996)
ARTICLE NO. 0200

A High-Order Godunov Method for Multiple Condensed Phases1

GREGORY HALE MILLER* AND ELBRIDGE GERRY PUCKETT†

*Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637; and †Department of Mathematics
and Institute of Theoretical Dynamics, University of California, Davis, California 95616

Received June 20, 1995; revised May 7, 1996

extensively to compute unsteady shock reflections in gases
and has a demonstrated ability to resolve complex waveWe present a numerical algorithm for computing strong shock

waves in problems involving multiple condensed phases. This interactions in excellent agreement with experiment [20].
method is based on a conservative high-order Godunov method in Our approach to modeling cells that contain more than
Eulerian form, similar to those that have been used extensively for one material species is based on an algorithm for modeling
gas dynamics computations, with an underlying thermodynamic

two or more gases that is due to Colella, Glaz, and Fergusonmodel based on the Mie–Grüneisen equation of state together with
(CGF) [15]. In their algorithm the interface between eacha linear Hugoniot. This thermodynamic model is appropriate for a

wide variety of nonporous condensed phases. We model multiple fluid is tracked with a volume-of-fluid interface tracking
phases by constructing an effective single phase in which the den- algorithm and the equations of motion for a single phase
sity, specific energy, and elastic properties are given by self-consis- are supplemented with evolution equations for the volume
tent averages of the individual phase properties, including their

fraction, total energy, and mass density of each phase inrelative abundances. We use a second-order volume-of-fluid inter-
the multifluid cells. The resulting system of conservationface reconstruction algorithm to decompose the effective single-

phase fluxes back into the appropriate individual component phase laws is of hyperbolic type and thus can be solved using a
quantities. We have coupled a two-dimensional operator-split ver- straightforward extension of the second-order Godunov
sion of this method to an adaptive mesh refinement algorithm and method for a single gas phase. The CGF formulation ac-
used it to model problems that arise in experimental shock wave

counts for the thermodynamic properties of each phasegeophysics. Computations from this work are presented. Q 1996

separately, while modeling the pressure and velocity in allAcademic Press, Inc.

cells, including those that contain more than one phase,
as single-valued quantities. In particular, given a single

1. INTRODUCTION uniform pressure acting on a multiphase cell, this algorithm
will correctly account for the different compression or

We present a numerical method for modeling strong expansion that each phase undergoes as a result of that
shock waves in condensed matter in which two or more stress. Colella et al. [22, 38] have used this algorithm, in
material phases are present. The basis of our algorithm is conjunction with a second-order volume-of-fluid interface
a second-order Godunov method for approximating solu- tracking algorithm, to model wave interactions in a me-
tions of the type originally proposed by Colella [12], Colella dium consisting of two gases. Their results are in excellent
and Glaz [14], and Colella and Woodward [17] for the agreement with the shock refraction experiments of
compressible Euler equations for a single material. This Abd-el-Fattah and Henderson [1–3] and Jahn [24].
methodology is second-order accurate in regions of smooth In this paper we describe the extension of the CGF
flow and captures shocks with a minimum of numerical algorithm to materials in condensed phases, i.e., liquids and
overshoot and dissipation. By itself, this second-order Go- solids in the hydrostatic limit. In particular, our algorithm is
dunov methodology for a single gas phase has been used designed to model materials that can be well approximated

by the assumption that the Hugoniot is linear in the UP 2
US plane, where US is the shock speed and UP is the particle
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tional support was provided by the National Energy Research Supercom- transition. Our method is capable of modeling strong com-
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Our work was initially motivated by the need to examine questions that arise in the use of shock waves to experimen-
tally measure the EOS of geophysical materials. Finally,certain edge effect signals that occur in shock wave experi-

ments designed to measure the equation of state (EOS) in Section 8 we present our conclusions.
of geophysical materials [35]. Here we present the results
of several computations designed to answer additional 2. THE EQUATION OF STATE
questions relevant to that work. We have also studied the

A perfectly general thermodynamic description of con-accuracy of the method by using it to model high-velocity
densed matter (indeed any matter) is limited only by theimpact experiments that lead to jetting (e.g., [46]). This
conditions of thermodynamic stability that arise from thelatter work appears in [39]. We are especially interested
requirement that the specific internal energy E be a convexin accurately modeling interpenetration and jetting, partic-
function of its natural variables: the specific entropy Sularly as this phenomena appears in geophysical problems.
and the specific volume V 5 1/r. In terms of the partialGiven the excellent experimental agreement obtained
derivatives of the energy function, the conditions of stabil-in the gas dynamics computations cited above we chose to
ity are as follows:develop a Godunov method to study these problems. Other

Godunov methods have been developed to model the types
(i) The heat capacities CV and CP must be positive,of problems that are of interest to us here. These include

CTH [29] and CAVEAT [5] which are based on a solution
of the compressible Euler equations in a ‘‘Lagrange plus CV ; E

TU
V

. 0, (2.1)
remap’’ form, rather than the strict Eulerian form upon
which our method is based. Moreover, most, if not all, high-
order methods that have been developed for modeling

CP ; H
TU

P

. 0, (2.2)condensed phases are based on a discretization of the un-
derlying equations that uses an edge-centered velocity. A
careful reading of [49] will show that these methods, which

where H is the specific enthalpy, H 5 E 1 PV.are analogous to the BBC method studied there, have a
(ii) The isentropic bulk modulus KS must be positive,tendency to smear important features of the flow field such

as contact discontinuities. Our method is purely Eulerian,
with cell-centered variables, and hence should be less sus-

KS ; P
 ln r

U
S

. 0. (2.3)ceptible to diffusive broadening of shock features than
Lagrangian plus remap methods [49].

Trangenstein and Colella [44] and Wang et al. [47] have
(iii) The product of the thermal expansion coeffi-developed Godunov methods for modeling elastic–plastic

cient,solids. Surveys of numerical methods for modeling impact
and penetration problems may be found in Zukas [50]
and McGlaun and Yarrington [30]. A capability of the

a ; 2
 ln r

T U
P

, (2.4)algorithm we describe, not found in most other ‘‘hy-
drocodes,’’ is the incorporation of an Adaptive Mesh Re-
finement (AMR) algorithm. This feature allows the com-

and the thermodynamic Grüneisen parameter,putational effort to be focused on those areas deemed
interesting or error-prone, without reducing the global
time step.

c ; V
P
EU

V

, (2.5)The remainder of this paper is organized as follows. In
Section 2 we describe the EOS model that we use in our
method. In Section 3 we describe the solution of the Rie-

must be nonnegative,mann problem for materials that satisfy this EOS. In Sec-
tion 4 we give the details of the second-order Godunov

ac $ 0. (2.6)method that we have written to approximate solutions of
the Euler equations for materials that obey our EOS. Sec-
tion 5 contains a description of how we have extended this However, these conditions place very weak constraints

on the EOS. A perfectly general thermodynamic modelmethod in order to model more than one phase of such
materials. In Section 6 we give a brief description of those may therefore require an arbitrary number of parameters

(e.g., [43]), or must be represented in tabular form fromfeatures of the AMR algorithm that are specific to our
implementation. In Section 7 we present the results of which thermodynamic states may be interpolated (e.g., [4,

23]). A perfectly general equation of state is also capable ofcomputations we have made with our method to study
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through

s 5 (K9S 1 1)/4, (2.9)

also evaluated at the centering point.
In what follows we assume the validity of the shock EOS

(2.7). Materials that are well represented by this assump-
tion include simple metals and alloys (e.g., aluminum, cop-
per, tungsten, tantalum, molybdenum, brass), many woods,
polymers (e.g., nylon, Teflon, acrylic, polyethylene), oxides
(e.g., periclase, corundum), liquids including water, and
silicates (e.g., enstatite, olivine, and molten broadly basaltic
compositions) except when they are porous or near phase
transitions. Materials that are not well described include
fused silica and quartz, which transform to the high-pres-
sure stishovite phase of silica, porous materials, and ideal
polytropic gases for which the shock EOS is

US 5 Af(G 1 1)UP 1 Ï[Af(G 1 1)UP]2 1 GP0V0 , (2.10)

where G 5 CP/CV is the adiabatic exponent and the Hugon-
iot centering point is given by (V0 , P0 , E0 5 P0V0/(G 2 1)).

These Hugoniot equations of state US(UP) parametri-
cally define thermodynamic shock states through the Ran-
kine–Hugoniot jump relations that express the conserva-
tion of mass, momentum, and energy:

r 5 r0
US

US 2 UP
, (2.11)FIG. 1. Representative data for nonporous solids without phase

changes from Ref. [28] are well-represented by linear US(UP) Hugoniot
equations of state. P 5 P0 1 r0USUP , (2.12)

E 5 E0 1
1
2

(P 1 P0)(V0 2 V) 5
1
2

U 2
P 1 P0V0

UP

US
. (2.13)

exhibiting pathological behavior that leads to complicated
and non-unique solutions of the Riemann problem [33].

A single Hugoniot curve, e.g., (2.7) or (2.10), describes onlyDespite the latitude afforded by stability requirements,
those thermodynamic states (V, P, E) that are accessible bya surprisingly large number of materials have very simple
a single shock starting from the thermodynamic state givenshock equations of state under conditions of single-phase
by the centering point (V0 5 1/r0 , P0 , E0). A particularstability [28]. In particular, the shock velocity US and the
centering point is chosen to define the ‘‘principal Hugon-particle velocity UP are often related by the simple linear
iot,’’ i.e., the particular (arbitrary) Hugoniot that serves asHugoniot equation
the backbone for a more general equation of state descrip-
tion. For solids that centering point is usually taken as zeroUS 5 c0 1 sUP (2.7)
pressure and ideal crystalline density at room temperature
(298 K), since those are the conditions from which solid-(e.g., see Fig. 1). It can be shown that the constant c0 in
phase Hugoniots are most often measured. To describe(2.7) is the bulk sound speed at the centering point (i.e.,
other thermodynamic states, including those accessed bythe thermodynamic state where UP R 0), and the constant
a rarefaction (i.e., a pressure release at constant entropy)s in (2.7) is related to the isentropic pressure derivative of
from a single shock state, the thermodynamic descriptionthe isentropic bulk modulus,
offered by the principal Hugoniot EOS must be augmented
by additional information.

A thermodynamically rigorous way of describing statesK9S ; KS

P U
S

, (2.8)
off of the Hugoniot is to use a Mie–Grüneisen formalism,
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The constitutive equations (2.7) and (2.16), the thermo-
dynamic identity (2.14), and the Rankine–Hugoniot jump
relations (2.11–2.13) together give a P–V–E thermody-
namic description of many typical condensed phases that
is internally consistent and thermodynamically stable over
a broad range of P–V–E space near the principal Hugoniot
curve. Thus, states accessible by a simple shock process
on the principal Hugoniot, and states accessible along a
rarefaction from the shock state, are well defined by the
equation of state model we use.

We now consider the domain of thermodynamic stability
of this equation of state model. We may solve our modelFIG. 2. The Mie–Grüneisen equation of state is constructed from a

univariant P(V) reference curve, from which neighboring pressures are equations (2.7), (2.11)–(2.13), (2.15), and (2.16) for the
determined via (2.15). We use a linear US(UP) Hugoniot for the compres- isentropic bulk modulus by writing
sion (V , V0) limb of the reference curve and a Murnaghan isentrope
for the expansion limb.

KS 5 r
P
r
U

S

5 r
P
r
U

E

1
P
r

P
EU

r

. (2.17)

P(E, V) 5 PH (V) 1
1
V
EE

E
H

(V)
c(V, E) dE (2.14) Evaluated at a principal Hugoniot state, (2.17) be-

comes

(see Fig. 2). Here we have assumed that the Hugoniot curve
centered at (V0 , P0 , E0) can be uniquely parameterized by KS 5

c
2

(P 2 P0) 1 KH F1 2
c

2V
(V0 2 V)G , (2.18)

V. In other words, for V . V0 , there exist monotonically
increasing functions PH (V) and EH (V) such that (V,

where KH 5 dPH /d ln r is the incompressibility takenPH (V), EH (V)) is a unique point on the Hugoniot. The
along the Hugoniot curve. In general, KH may be writtenMie–Grüneisen approach is particularly favored because,

at least for states close to the Hugoniot, it is commonly
found that the Grüneisen parameter c depends only on

KH 5
US

V0
(US 2 UP) FUS 1 UP(dUS/dUP)

US 2 UP(dUS/dUP)G , (2.19)the specific volume, c 5 c(V), and hence,

and for a linear material (i.e., obeying (2.7)),P(E, V) 5 PH (V) 1
c(V)

V
[E 2 EH (V)]. (2.15)

KH 5
US

V0
(US 2 UP) Fc0 1 2sUP

c0
G . (2.20)The dependence of the Grüneisen parameter on specific

volume is often represented by

This incompressibility will always be positive when s . 1;
however, the parameter s may be less than 1 for somec(V) 5 c0 SV

V0
Dq

, (2.16)
materials at low pressure. For such materials a linear Hu-
goniot cannot be extrapolated beyond UP 5 c0/(1 2 s)
since beyond this limit the particle velocity would exceedwhere q is a constant that is usually in the range (0, 1).

We note that the Grüneisen parameter is positive for most the shock velocity, a physical impossibility. Respecting this
limit on UP , the incompressibility (2.20) will be positivematerials and for those materials where it can be negative

it is negative only over a limited P–V range. Therefore, for any positive value of s.
We will exclude from consideration materials for whichwhen we invoke a model such as (2.16) that precludes a

sign change in c, we will require c0 to be positive. When s , 0. This limits the shock equation of state to materials
whose principal Hugoniots are monotonic and single-c is always positive, as implied by (2.16), the energy E is

a single-valued function of P and V. Note also that this valued in pressure. This in turn greatly simplifies the solu-
tion of the Riemann problem, discussed in the followingGrüneisen parameter model is inconsistent with Nernst’s

postulate that the entropy of systems with nondegenerate section.
Given the positivity of KH , we can see from (2.18) thatground states is zero at absolute zero of temperature. For

consistency with Nernst’s postulate the Grüneisen parame- for P . P0 the isentropic bulk modulus will be negative
only when c . 2V/(V0 2 V) (when P . P0 the monotonicityter must approach zero at zero temperature [11].



138 MILLER AND PUCKETT

FIG. 3. Pressure–specific volume (P–V) equation of state projections for molybdenum (Mo) and molten midocean ridge basalt (MORB), each
at 14008C. The equation of state parameters are given in Table I. The solid curve is the Hugoniot. The P–V domain of stability is bounded from
below by the KS 5 0 boundary (dashed). If a thermal model is included, the T 5 0 absolute zero isotherm (dotted) limits the field of stability. For
the equations of state shown here, all super-Hugoniot states are thermodynamically stable. This includes all thermodynamic states accessible by an
arbitrary combination of simple shocks and rarefactions.

of the linear Hugoniot requires V0 . V). This condition KS

E U
r

5
c(1 1 c 2 q)

V
. (2.21)means that thermodynamic stability is not guaranteed at

all points on the principal Hugoniot for arbitrary choice
of the parameters c0 and q. However, this condition is not
particularly restrictive in practice since c is typically in the Here the parameter q is  ln c/ ln VuS , which is compatible

with the symbol used in (2.16) but does not necessitate therange (0.5, 2) and for positive q decreases with compres-
sion. Thus this condition of thermodynamic stability is assumption made there that c is independent of energy at

fixed volume. It is most commonly assumed that q # 1,violated only for large c0 and for large compression ratios
(V0/V 2 1). and further that c . 0, and hence that the isentropic bulk

modulus will increase with increasing energy at constantThe isentropic bulk modulus off of the principal Hugon-
iot may be determined by direct application of (2.17) to volume. When this is true, increasing energy (equivalently,

increasing pressure) will increase the bulk modulus. Thus,the equation of state (2.15), or by application of a Mie–
Grüneisen-type correction to (2.18): for any volume there is some positive pressure for which



GODUNOV METHOD FOR MULTIPLE CONDENSED PHASES 139

the bulk modulus will be positive. Conversely, for any
volume there is a pressure (possibly below the Hugoniot)
where the bulk modulus will be zero and thus violate (2.3).
This low-pressure instability may not limit the overall P–V
domain of thermodynamic stability, however, which is also
bounded at low pressures by the zero degree isotherm
(Fig. 3).

The thermodynamic model presented thus far, i.e., (2.7),
(2.11)–(2.13), (2.15), and (2.16), is not complete in that it
does not allow determination of temperature, entropy, or
free energy of the system. The model must be augmented
by additional specification of the heat capacity or thermal
expansivity. The computational model presented in this
paper does not require such a thermal description. How-
ever, for completeness we note that a common assumption
such as CV 5 3k/atom, where k is Boltzmann’s constant,
does not necesssarily satisfy the additional thermodynamic
stability requirements. The condition CV . 0 is obviously
satisfied by this choice, but the product ac ;
c2CV/(VKS 2 c2CVT) is not guaranteed nonnegative even
when CV . 0 and KS . 0. Thus, from the point of view
of determining thermodynamic stability, the thermal (CV)
and mechanical (P–V–E) variables cannot be entirely de-
coupled. Moreover, we note that the stability of a simple
shock wave and the uniqueness of the Riemann problem
are not guaranteed by a material’s thermodynamic stabil-
ity. Fused silica, for example, is a thermodynamically meta-
stable phase that exhibits shock wave instability over a
range of particle velocities.

States of low pressure and high internal energy are prob-
lematic with the Mie–Grüneisen EOS description since
they necessitate the use of an expanded (V . V0) reference
state (Fig. 2). This reference state cannot be the Hugoniot FIG. 4. Schematic pressure–velocity (P–U) wave curve configura-
since that would entail negative UP that are not physically tions and corresponding time–distance (t–x) characteristics of the five

Riemann problem solutions: (a) two shocks, (b) L shock and R rarefac-meaningful. For reference volumes greater than V0 we use
tion, (c) two rarefactions, (d) L rarefaction and R shock, and (e) twoa Murnaghan isentropic EOS [37]
rarefactions that result in a pressure below the yield strength resulting
in spallation. Here ‘‘cd’’ denotes the contact discontinuity and ‘‘*’’ denotes
the Eulerian cell-edge characteristic (zero velocity).

P 5 SP0 1
K0S

K90S

D S r

r0
DK90S

2
K0S

K90S

. (2.22)

pressure derivative of the isentropic bulk modulus may
The corresponding internal energy state is simply com- be computed:
puted from this pressure equation,

K9S 5
KS

P U
S

5 Fr
P
r

1 r2 2P
r2 1

P
r

P
E

(2.24)
E 5 E0 2 EV

V0

PdV. (2.23)

1 2P
2P

rE
2

P
r

P
E

1
P
r2 SP

ED2

1
P2

r2

2P
E2G 1

KS
.The isentropic moduli in the Murnaghan EOS are compati-

ble with the values on the Hugoniot evaluated at its center-
ing point, K0S 5 r0c2

0 and K90S 5 4s 2 1. Thus the Hugoniot 3. THE RIEMANN PROBLEM
and Murnaghan curves are continuous to second order
in V. The Riemann problem is the determination of the wave

families that will result from the juxtaposition of two con-Finally, for later reference we indicate how the isentropic
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stant states, called here the left and right states and denoted Ucd
R 5 UR 1 EPcd

R ,PR

PR

(rc)21 dP. (3.2)
L and R (Fig. 4). The left state has two possible P–U wave
curves: one that describes shock states centered at L and
one that describes states accessible along a rarefaction The possibilities for the left state are analogous, but the
from L. The right state has two similarly defined wave sign conventions must be changed to reflect the different
curves. The rarefaction limbs of the P–U wave curves are directional orientation of that material. The left shock is
always monotonic, but the shock limbs need not be, and given by
the L and R wave curves might intersect more than once
(an odd number of times). With one exception, the inter- Ucd

L 5 UL 2 Ï(Pcd
L 2 PL)(1/rL 2 1/rcd

L ), (3.3)
section of a L and a R wave curve defines the normal stress
Pcd at the contact discontinuity between the L and R states

with Pcd
L and rcd

L lying on the Hugoniot centered at (rL ,and the velocity Ucd of this interface. This exception occurs
PL , and EL), and the left rarefaction is given bywhen the computed normal stress Pcd is negative and

greater in magnitude than the strength of either material.
Then the solution to the Riemann problem describes a Ucd

L 5 UL 2 EPcd
L ,PL

PL

(rc)21 dP. (3.4)
process of cavitation or spallation. In this case the L and
R wave curves intersect the wave curve of the interceding
vacuum state (Pcd 5 0), and the L-vacuum and R-vacuum We have used two methods to solve the Riemann prob-

lem with our equation of state. First, we can construct aninterface velocities are distinct (Fig. 4e).
Let us describe the initial constant states by their density, exact solution to the problem. We accomplish this by

writingpressure, velocity, and equation of state parameters. We

UL(P) 5 UL 2 5E
P

PL

dP
KS(VL 2 V) 2 c(P 2 PL)(VL 2 V) 1 V(P 2 PL)

(2KS 2 c(P 2 PL))Ï(P 2 PL)(VL 2 V)
, if shock;

EP

PL

dP
1

ÏrKS

, if rarefaction.

(3.5a)

UR(P) 5 UR 1 5E
P

PR

dP
KS(VR 2 V) 2 c(P 2 PR)(VR 2 V) 1 V(P 2 PR)

(2KS 2 c(P 2 PR))Ï(P 2 PR)(VR 2 V)
, if shock;

EP

PR

dP
1

ÏrKS

, if rarefaction.

(3.5b)

seek new left and right states that satisfy the compatibility In these equations V, c, and KS are understood to be
functions derivable from the equation of state that varyconditions of continuity of stress and of velocity at the

material interface joining the left and right states. That is, on the path of integration. Their pressure dependence is
different in the Hugoniot and isentropic integrals. Thewe seek an intersection in the P–U plane of the wave

curves emanating from the initial constant states. exact solution is found by integrating the L and R wave
curves as functions of a common upper limit of integrationThe right state, initially given by rR , PR , ER , and UR ,

might increase its velocity (away from the left state), de- P until the left-hand sides UL(P) and UR(P) are equal.
Then their common value is Ucd at Pcd 5 P, and the thermo-scribing a shock with particle velocity
dynamic variables under these conditions are known from
the evaluation of the respective integrands. Additional de-

Ucd
R 5 UR 1 Ï(Pcd

R 2 PR)(1/rR 2 1/rcd
R ), (3.1)

tails are given in the Appendix.
The second approach to solving the Riemann problem

is to assume that the shock equation of state, US(UP),where Pcd
R and rcd

R satisfy the compatibility conditions and
centered on the L and R states, is linear. Given our as-the Rankine–Hugoniot jump relations for a shock centered
sumed linear Hugoniot equation of state model, this as-at (rR , PR , ER). Note that (rR , PR , ER) may be different

from the centering of the principal Hugoniot (r0 , P0 , E0). sumption of linearity is strictly true only when the states
L and R correspond to the thermodynamic conditionsAlternatively, the right state may decrease its velocity

(move toward the left state), describing a rarefaction wave where the principal Hugoniot is centered. Generally, the
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shock velocity may be expanded as a power series in parti-
cle velocity,

US 5 Oy
i50

aiUi
P , (3.6)

where the coefficients ai may be interpreted thermodynam-
ically,

a0 5 ÏKS/r 5 c, (3.7a)
FIG. 5. The Riemann problem approximated with a quadratic P(U)

function. Point a on the R wave curve, at U 5 UR 2 a0R/a1R , is thea1 5 (K9S 1 1)/4, (3.7b)
point where the isentropic release branch of that wave curve violates the
thermodynamic constraint rc . 0. Point b on the L wave curve, at U 5

a2 5
8KSK0S 1 (K9S 1 1)(7 1 4c 2 K9S)

96c
, (3.7c) UL 1 a0L/a1L , is the corresponding point on the release branch of the L

curve. The ‘‘cd’’ point indicates the pressure and velocity of the contact
discontinuity. In this example both L and R shock waves are predicted.

etc., where K0S is the second isentropic pressure derivative
of the isentropic bulk modulus, and where all quantities

and (UL 2 Ucd), respectively, to take account of the initialare evaluated at the centering point; i.e., UP R 0. Thus,
velocities of those states and of their directional orien-evaluation of KS and K9S , the isentropic bulk modulus and
tation.its isentropic pressure derivative, specifies the two leading

If we consider recentered Hugoniots whose approximatecoefficients in (3.6) that give a linear approximation to the
linear US(UP) relations have positive slope (a1 . 0), thenactual recentered Hugoniot that is second-order in UP .
the physical solution to this quadratic equation, if it exists,Pressure, given by
is always given by

P 5 P0 1 r0USUP P P0 1 r0(cUP 1 Af(K9S 1 1)U2
P), (3.8) Ucd 5 [2b1 2 Ïb2

1 2 4b0b2]/(2b2), (3.12)

will be accurate to second order in UP. where
The rarefaction dUP/dP 5 6(rc)21 may also be ex-

panded in UP to give b0 5 PL 2 PR 1 rLUL(a0L 1 a1LUL)
(3.13a)

1 rRUR(a0L 2 a1RUR),

b1 5 2rL(a0L 1 2a1LUL) 2 rR(a0R 2 2a1RUR), (3.13b)P 5 P0 1 r0 FcUP 1
(K9S 1 1)

4
U2

P

(3.9) b2 5 rLa1L 2 rRa1R . (3.13c)

1
K0SKS 1 K9S 1 1

6c
U3

P 1 ? ? ?G . The other quadratic root is excluded because it is unphysi-
cal. It may be shown that the excluded root will be less
than UR 2 a0R/2a1R or greater than UL 1 a0L/2a1L . TheseIn the pressure–velocity plane the recentered Hugoniot
are the minima of the respective wave curves, and theyand rarefaction wave curves are equal to second order in
demark the point on the rarefaction branch of the waveUP . So, to this level of accuracy, we may construct either
curve where it ceases to be monotonic (Fig. 5). Thus thewave curve as a branch of the same quadratic function
excluded root lies on a part of the wave curve of either theP(UP). With this assumption the solution of the Riemann
L or R state where the wave curve is thermodynamicallyproblem is determined by a simultaneous solution of two
inconsistent with an isentropic rarefaction (thermody-quadratic equations:
namic consistency requires dP/dUuR/L 5 6rc; rc . 0).

The method described here is similar to that of DukowiczPcd 5 P0R 1 r0Ra0R(Ucd 2 UR) 1 r0Ra1R(Ucd 2 UR)2

[19] who also employed a quadratic P(U) function. How-
(3.10) ever, we evaluate the coefficients a0 and a1 with formulas

(3.7a), (3.7b) using the EOS evaluated at the L and RPcd 5 P0L 1 r0La0L(UL 2 Ucd) 1 r0La1L(UL 2 Ucd)2.
states, which may be significantly different from the Hu-

(3.11) goniot centering state, whereas Dukowicz takes the coeffi-
cient a1 to be globally constant. This difference gives our
method second-order accuracy in regions of smooth flowHere, the right-hand sides are expanded in (Ucd 2 UR)
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P̂R 5

HPR 1 rR(UL 2 UR) (a0R 1 a1R(UL 2 UR)) if UL . UR ;

PR 1 rRa0R(UL 2 UR) otherwise.

(3.14b)

Here, P̂L is the pressure material L would have, given a
quadratic P–U wave curve, if its velocity were changed
from UL to UR ; P̂R is similarly defined. Material L willFIG. 6. A failure of the quadratic release branch wave curves to
experience a shock when PL . P̂R , etc. Thus, when re-intersect in their domain of thermodynamic stability. To circumvent prob-

lems of this sort, which arise at strong rarefactions, the quadratic P(U) quired by a failure of (3.12), the linearization of the P–U
wave curve on the rarefaction branch is replaced by a (dashed) line wave curve for rarefactions is accomplished by
of slope rRa0R or 2rLa0L for the R and L wave curves, respectively,
when necessary.

a1L r Ha1L when PL . P̂R ;

0 otherwise.even when far from the Hugoniot centering point, where (3.15a)
our method is equivalent to Dukowicz’s.

We have found that the above quadratic formulation,
a1R r Ha1R when PR . P̂L ;

0 otherwise.
while robust in the case of smooth flow and arbitrarily

(3.15b)strong shocks, fails for strong rarefactions. These occur,
for example, when a shock wave collides with a free surface.

In our Godunov method, the Riemann solver must de-What happens in this case is that the recentered P–U
termine not the complete family of waves and characteris-quadratic may not intersect the P 5 0 axis (which describes
tics, but the thermodynamic state on the characteristicthe vacuum state wave curve). In this case there will be
whose speed is zero. This is the state whose Eulerian coor-no real solutions to the above quadratic equation. To rem-
dinate is at the same location as the initial discontinuityedy this problem, we make a further simplification: when
between the initial L and R states. We denote this statethe solution calls for a rarefaction we replace the constant
with the superscript ‘‘*’’. In what follows we shall assumea1 with zero (Fig. 6) if this is necessary to make the wave
that spallation does not occur.curves intersect. Since thermodynamic stability requires

If the contact discontinuity velocity is greater than zero,that the coefficient a0 be positive, the resulting linear P–U
Ucd . 0, then the ‘‘*’’ state lies on a characteristic belongingwave curve will always intersect the P 5 0 axis. Of course
to the L material. If in addition Pcd . PL , then the Lin making this approximation we have compromised the
solution to the Riemann problem consists of a single recen-accuracy of the solver for strong rarefactions. However,
tered shock wave with velocity (according to our equationthis has not proven to be a serious problem as judged
of state assumptions) US 5 UL 2 a0L 1 a1L(Ucd 2 UL). Ifby comparison of approximate results with computations
this velocity is positive then the ‘‘*’’ state lies to the leftconducted with an exact Riemann solver or by comparison
of the shock (* 5 L). When this velocity is negative theto exact solutions in one dimension. The reason our ap-
‘‘*’’ state lies to the right of the shock where the materialproximate solver works is that rarefactions are intrinsically
parameters are determined by the recentered Rankine–dispersive. As the wave system expands, the strength of
Hugoniot jump relations,the rarefactions computed by the Riemann solver becomes

progressively weaker, the need to linearize the P–U curve
lessens, and when required the linear P–U wave curve is r* 5 rL

2a0L 1 a1L(Ucd 2 UL)
UL 2 a0L 1 a1L(Ucd 2 UL) 2 Ucd ; L shock

more accurate.
We determine whether or not a rarefaction will occur (3.16)

on a given P–U wave curve by taking advantage of the
assumed P–U concavity of the quadratic. Define E* 5 EL 1

1
2

(PL 1 Pcd) S 1
rL

2
1

r*L
D ; L shock.

P̂L 5
(3.17)

HPL 1 rL(UL 2 UR) (a0L 1 a1L(UL 2 UR)) if UL . UR ;

PL 1 rLa0L(UL 2 UR) otherwise, Conversely, when the contact velocity is negative the ‘‘*’’
state samples R material. If a shock occurs, the shock wave
velocity US 5 UR 1 a0R 1 a1R(Ucd 2 UR) determines(3.14a)
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whether the ‘‘*’’ state samples unshocked R material or erties become unrealistic (the thermodynamic stability
condition (2.3) is violated at the minimum). We use thethe shocked state. When US . 0 the ‘‘*’’ state is shocked

and the Rankine–Hugoniot jump relations give quadratic wave curve to compute U cd when possible, but
use the thermodynamic analysis above, which is always
based on a linear P–U wave curve. This choice makes

r* 5 rR
a0R 1 a1R(Ucd 2 UR)

a0R 1 a1R(Ucd 2 UR) 1 UR 2 Ucd ; R shock our method robust, has little effect on its accuracy, but is
otherwise without justification.

(3.18) The leading and trailing characteristics of the rarefaction
fan may be computed with the model given above, as may

E* 5 ER 1
1
2

(PR 1 Pcd) S 1
rR

2
1

r*R
D ; R shock. any characteristic within the fan. However, for computa-

tional convenience we interpolate linearly in characteristic
velocity to obtain the ‘‘*’’ properties.(3.19)

In summary, if U cd . 0, then the ‘‘*’’ state lies in L
material. If a shock occurs and the characteristic associatedA more difficult circumstance than those described
with the shock is positive, then the ‘‘*’’ state is the originalabove is when Pcd , PL , in which case a rarefaction fan
L state: U* 5 UL , P* 5 PL , r* 5 rL , E* 5 EL . If a shockwill form. The leading edge of the fan travels with speed
occurs and the characteristic associated with the shock isUL 2 a0L . The trailing edge of the fan travels with speed
negative, then the ‘‘*’’ state is the shocked L material stateU cd 2 ccd

L , where ccd
L is the speed of sound in the L material

and the Rankine–Hugoniot jump relations apply: U* 5under the thermodynamic conditions corresponding to the
U cd, P* 5 Pcd, r* given by (3.16), and E* given by (3.17).contact discontinuity. An infinite number of characteristics
When the ‘‘*’’ state lies in L material but a rarefactionlie between these leading and trailing characteristics.
wave exists there, then we interpolate between the leadingWe compute the sound speed at the contact discontinuity
and trailing characteristics,by noting that when the rarefaction wave curve is linear,

as assumed above when there is no real solution to the
quadratic (3.12), we have

1
U*

P*

r*

E*
25 (1 2 sL) 1

UL

PL

rL

EL

2
(3.24)

P
U

5 ÏrKS 5 rc, a constant. (3.20)

Thus a linear P–U characteristic implies a bulk modulus
that varies inversely with density. Integrating this result
gives the density of the L state at the contact discontinuity.

1 sL 1
U cd

Pcd

rL S1 1
(PL 2 P cd)

KS,L
D21

EL 1
1
2

(P cd)2 2 P 2
L

rLKS,L

2 ,rcd
L 5 rL S1 1

(PL 2 Pcd)
KS,L

D21

. (3.21)

In addition, (3.20) gives the speed of sound at the contact
discontinuity referenced to the material velocity,

whereccd
L 5 a0,L

rL

rcd
L

. (3.22)

sL 5 min(1, max(0, s̃L)), (3.25a)
the isentropic dE 5 2PdV energy integral may also be
calculated to give the specific internal energy at the contact

s̃L 5
a0L 2 UL

a0L 2 UL 1 U cd 2 ccd
R

. (3.25b)
discontinuity of the rarefacting material:

Similarly, if U cd , 0, then the ‘‘*’’ state lies in R material.E cd
L 5 EL 1

1
2

(Pcd)2 2 P2
L

rLKS,L
. (3.23)

If a shock occurs, and its characteristic speed is negative,
then the ‘‘*’’ state is the original R state: U* 5 UR , P* 5
PR , r* 5 rR , E* 5 ER . If a shock occurs and its characteris-This analysis may also be carried out for a quadratic

P–U wave curve. However, as the minimum of the P–U tic speed is positive, then the ‘‘*’’ state is given by the
Rankine–Hugoniot jump conditions: U* 5 U cd, P* 5 Pcd,quadratic is approached, the implied thermodynamic prop-
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r* given by (3.18), and E* given by (3.19). If the ‘‘*’’ state
lies in R material but a rarefaction occurs, then

1
U*

P*

r*

E*
25 (1 2 sR) 1

UR

PR

rR

ER

2
(3.26)

1 sR 1
U cd

Pcd

rR S1 1
(PR 2 P cd)

KS,R
D21

ER 1
1
2

(P cd)2 2 P 2
R

rRKS,R

2 ,

where

sR 5 min(1, max(0, s̃R)), (3.27a)

s̃R 5
a0R 1 UR

a0R 1 UR 2 U cd 2 ccd
R

. (3.27b)
FIG. 7. Schematic representation of a high-order Godunov method.

(a) Cell-centered variables (filled dots) are used to construct a central
difference approximation to the slope. The resultant distributions (dashed

4. THE SECOND-ORDER GODUNOV METHOD volumes) may be limited to satisfy certain monotonicity constraints
(shaded volumes). (b) Upwind characteristic tracing is used to deduce

Our high-order Godunov method for multiple phases is the time-centered cell-edge L and R states that provide the initial data
for the Riemann problem. (c) The ‘‘*’’ state of the Riemann problembased on some conceptually straightforward modifications
determines the time-centered fluxes used in the conservative Euler equa-of the ‘‘standard’’ single-phase high-order Godunov
tions.method (Fig. 7) that has been used extensively to compute

problems in gas dynamics. As background to a discussion
of these modifications we present a brief summary of the
single-phase high-order Godunov method upon which our
multiphase algorithm is based.

We begin with the two-dimensional compressible Euler
F (U ) 51

ru

ru2 1 P

ruv

ruE 1 uP
2 (4.3)equations written in conservation form,

U

t
1

F (U )
x

1
G(U )

y
5 0, (4.1)

and
where

G(U ) 51
rv

ruv

rv2 1 P

rvE 1 vP
2 , (4.4)

(U ) 51
r

ru

rv

rE
2 (4.2)

where E 5 E 1 As(u2 1 v2) is the total (internal plus kinetic)
specific energy. For simplicity we present the algorithmis the vector of conserved quantities. The corresponding

flux vectors in the x and y directions are for a Cartesian coordinate system.
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We will solve these two-dimensional equations by using
a second-order operator splitting technique [42], in which
we solve the one-dimensional equations

A 51
u r 0 0 0

0 u 0 1/r 0

0 0 u 0 0

0 KS 0 u 0

0 rH 0 0 u

2 , (4.10)
U

t
1

F (U )
x

5 0 (4.5a)

U

t
1

G(U )
y

5 0 (4.5b)
is evaluated at time n from the cell-centered quantities.
The eigenvalue decomposition of A, A 5 SLS21, where S
is the matrix of right eigenvectors and L is the diagonalin the sequence (4.5a), (4.5b), (4.5b), (4.5a). The time step
matrix of eigenvalues, isfor each one-dimensional integration is half the time step

for the two-dimensional problem.
The essence of a first-order Godunov method [21] is

a discretization of (4.5), with the fluxes computed from
solutions to the Riemann problem at the cell edges. In
other words, A 51

1 0 0 r r

0 0 0 2c c

0 1 0 0 0

0 0 0 KS KS

0 0 1 rH rH

2 ? 1
u 0 0 0 0

0 u 0 0 0

0 0 u 0 0

0 0 0 u 2 c 0

0 0 0 0 u 1 c

2U
n11
i 5 U

n
i 2

Dt
Dx

(F (U *,n
i11/2) 2 F (U *,n

i21/2)), (4.6)

where U *,n
i11/2 is the solution to the Riemann problem at

coordinate xi11/2 with initial data UL and UR given by U
n
i

and U
n
i11 , respectively.

This method can be made second-order, in both space
? 1

1 0 0 21/c2 0

0 0 1 0 0

0 0 0 2H/c2 1

0 21/(2c) 0 1/(2KS) 0

0 1/(2c) 0 1/(2KS) 0

2 .and time, by computing L and R states from second-order
estimates of the value of U at the cell edge at the half
time step tn11/2 5 tn 1 Dt/2,

(4.11)

U
n11
i 5 U

n
i 2

Dt
Dx

(F (U *,n11/2
i11/2 ) 2 F (U *,n11/2

i21/2 )). (4.7)
The exact solution to the linearized equations (4.8) is

The time- and edge-centered L and R states are con-
Q n11/2

i61/2 5 Q n
i 1

1
2

(6DxI 2 DtA)Q n
x , (4.12)

structed using an upwind characteristic tracing method [14]
based on the quasilinear form of (4.1),

where Q n
x denotes Q /x evaluated at time n, but this result

includes both upwind and downwind characteristics. ToQ

t
1 A

Q

x
5 0, (4.8) make the solution fully upwind we filter the downwind

characteristics from the matrix A, obtaining

where
Q n11/2

i61/2 5 Q n
i 1

1
2

(6DxI 2 DtSL6S21)Q n
x , (4.13)

L6
ii 5 6max(6Lii , 0). (4.14)

In other words, in the course of tracing to the right edge(Q ) 51
r

u

v

P

rE

2 (4.9)
of a cell (to xi11/2 5 xi 5 Dx/2), only those eigenvalues of
A (which is evaluated at xi) that are positive are retained
(Fig. 7b); the negative eigenvalues are set to zero. Con-
versely, in the course of tracing to the left edge of a cell
(to xi21/2 5 xi 2 Dx/2) the positive eigenvalues of A are
set to zero.are the variables we choose to trace. The matrix A,
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Upwind characteristic tracing requires an estimate of x̃ will fall in the range [0, 1], and will be less than one
only if the pressure jump scaled by the bulk modulus isthe slopes Q x of the cell-centered quantities Q . The slope

must be computed with some care to preserve monoton- sufficiently large and the velocity is convergent (i.e.,
ux , 0). The flattening parameter x is then given byicity and prevent the introduction of spurious oscillations.

Van Leer [45] introduced a second-order slope-limiting
scheme that is based on a central difference approximation
to the cell-centered slope. For each q [ Q , xi 5 Hmin(x̃i21 , x̃i) if Pi21 , Pi11 ;

min(x̃i , x̃i11) otherwise.
(4.19)

In summary, the limited slope we use for the purpose
DxuqvL

x,i u 5 5
min(Asuqi11 2 qi21u, 2uqi 2 qi21u, 2uqi11 2 qiu)

if qi21 , qi , qi11 is monotonic; (4.15)

0 otherwise.

of characteristic tracing is the Colella slope,

qC
x,i 5 ximin(uq4th

x,i u, uqvL
x,i u) sign(qi11 2 qi21). (4.20)

When the sequence qi21 , qi , qi11 is monotonic (4.15) gives
Finally, as is well known (e.g., see Godunov’s theoremthe central difference approximation to the slope, (qi11 2

in [27]), one cannot construct a high-order finite differenceqi21)/2Dx, possibly reduced so that the extrapolated cell-
solution of equations of the form (4.8) that preserves theedge values are guaranteed to lie between the appropriate
monotonicity of the solution. Colella and Woodward [17]cell-centered values. Limiting ensures that qi21/2 5 qi 2
found that in Eulerian methods there are circumstances

Dxqx/2 will fall between qi21 and qi and that qi11/2 5 qi 1
for which no amount of flattening will give sufficient dissi-

Dxqx/2 will fall between qi and qi11 .
pation. A remedy for that problem is that introduction of aColella [12] modified this slope limiter in two ways. First,
small amount of artificial viscosity in regions of convergentthe interpolator may be made fourth-order in space by
flow (i.e., div u , 0). Following Colella and Woodwardwriting
[17] after Lapidus [26], we modify the fluxes (4.3) in regions
of convergent flow by

q4th
x,i 5

2
3Dx Sqi11 2

Dx
4

qvL
x,i11 2

Dx
4

qvL
x,i21 2 qi21D . (4.16)

When the van Leer slopes qvL
s are not limited this gives a F (U )i11/2 r F (U )i11/2 1 ji11/2 1

ri 2 ri11

riui 2 ri11ui11

rivi 2 ri11vi11

ri E i 2 ri11 E i11

2 ,
fourth-order estimate of the slope.

Second, Colella introduced a ‘‘flattening’’ parameter x
to increase dissipation (entropy production) in regions of

(4.21)strong shock waves. In such cases, where abrupt jumps in
material properties are expected, a central-difference

ji11/2 5 max S0, 2Dxz Fui11 2 ui

Dx
1 (=yv)i11/2GD , (4.22)based slope approximation is not appropriate. Instead, the

‘‘flat’’ first-order Godunov scheme strategy is appropriate.
To implement this idea, following Colella and Woodward

where[17] and Colella [13], we introduce a measure of shock
strength

(=yv)i11/2 5
(vi11, j11 2 vi11, j21) 1 (vi, j11 2 vi, j21)

2Dy
(4.23)

z 5
uPi11 2 Pi21u

KS,i
(4.17)

is a central difference approximation to the transverse ve-
locity divergence centered at the i 1 1/2 cell edge. In (4.22)and obtain a parameter
z is a dimensionless adjustable parameter such that when
z 5 0 the artificial viscosity is turned off. In our computa-
tions we have used z 5 0.1. This adds diffusive dissipation
when there is a shock, regardless of the orientation of the

x̃i 5 5
0 if z . z1 ;

z1 2 z
z1 2 z0

if z1 . z . z0 ;

1 if z , z0 or ui21 , ui ,

(4.18) shock with respect to the direction of integration. However,
the inclusion of a transverse velocity gradient in j means
that artificial viscosity will not be employed at slip lines
oblique to the computational grid. Such features can be
mistaken for shocks when only the one-dimensional diver-where z0 and z1 are adjustable parameters. In our computa-

tions we have used z0 5 0.2 and z1 5 0.5. The parameter gence is considered.
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In summary, the single-phase high-order Godunov algo- Let f a denote the volume fraction of component a and
note thatrithm consists of the following steps: (1) Evaluate the equa-

tion of state in each cell using the cell-centered quantities.
(2) Compute the flattening parameter x, and the limited O

a

f a 5 1.
slopes Q n

x of the quantities Q n. (3) At each cell edge, find
the time-centered left and right states: Q n11/2

L,i11/2 by character-
We define the mass fraction ma of component a byistic tracing from cell i and Q n11/2

R,i11/2 by characteristic tracing
from cell i 1 1. (4) Using these L and R states at each cell

ma 5 f ara/r, (5.1)edge, solve the Riemann problem to determine the time-
centered fluxes, F (U *,n11/2), possibly modified by the addi-

where ra is the density of component a, and r, as defined bytion of an artificial viscosity. (5) Compute the cell centered
values of the conserved quantities at the next time step
using a conservative update (4.7) with the time-centered r 5 O

a

f ara, (5.2)
fluxes.

is the density of the composite. Similarly we let5. MULTIPLE PHASES

We are interested in shock wave problems that involve E 5 O
a

maE a (5.3)
multiple materials, each of which is well approximated by
the EOS described in Section 2 above. Our approach to

denote the specific internal energy of the composite, wherethis problem is based on a model developed by Colella et
E a is the specific internal energy of component a. Holdingal. [15] which has been used extensively to model problems
constant the mass of each component, we can write aninvolving multiple phases of polytropic ideal gases (e.g.,
equation relating the specific volumes V a 5 1/ra to the[22, 38]). The basic idea is to represent the state in each
specific volume V of the composite,multiphase cell (i.e., a cell that contain more than one

phase) as a single phase with internal energy, density, and
V 5 O

a

ma/ra. (5.4)elastic moduli appropriate to the multiphase composite.
The resulting single-phase system is advanced in time by
solving for the fluxes of conserved quantities (mass, mo-

Differentiating this result with respect to pressure, holdingmentum, and energy), with a high-order accurate Godunov
the entropies of each phase individually constant,method as summarized above. Those cells that only contain

a single phase, say phase 1, and that are neighbored on
both sides by cells that also only contain phase 1, are V

PU
S

5 2O
a

ma

ra

 ln ra

P U
S

, (5.5)
advanced in time using these fluxes. Cells that contain
more than one phase before or after the time step are
updated with an algorithm that approximates the appro- and rearranging gives an expression for the isentropic bulk
priate fluxes of the single-phase conserved properties (mass modulus of the composite:
and energy of phase 1, mass and energy of phase 2, etc.)
from the conserved fluxes of the effective single phase and
the volume fractions of each phase in nearby cells. We KS 5 SO

a

f a/K a
SD21

. (5.6)
now describe this algorithm in detail.

5.1. The Effective Single Phase Differentiation of this result, again separately holding the
masses and entropies of each phase constant, gives theFor each cell we specify the following conserved quanti-
isentropic pressure derivative of the isentropic bulk modu-ties: the mass of each phase, the total energy of each phase,
lus of the composite:the total normal and transverse momentum of the cell. We

additionally specify the volume fractions of each phase
(not a conserved quantity), from which the density of each K 9S 5 21 1 K 2

S O
a

f a

K a2
S

(K 9a
S 1 1). (5.7)

phase may be computed. From this information the amount
and thermodynamic state of each phase may be uniquely
determined. Specifically, we may compute the pressure P, The justification for holding each phase’s entropy indi-

vidually constant is that thermal equilibrium cannot beisentropic bulk modulus KS , and the isentropic pressure
derivative of the isentropic bulk modulus K 9S for each phase maintained on the relevant scales of length and time. The

absence of thermal equilibrium can be demonstrated asfrom its equation of state.
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follows. The time scale for thermal diffusion is tthermal P
L2/k, where L is the length scale and k is the thermal
diffusivity. The time scale for acoustic wave propagation,
i.e., pressure equalization, is tacoustic P L/c, where c is the
speed of sound. In solids the thermal diffusivity is typically
of order 1026 m2/s, and the sound speed is typically of
order 103 m/s, and thus the time scales are comparable
for length scales on the order of 1029 m, a few orders of
magnitude smaller than the smallest cell dimension we
have considered.

The effective single-phase quantities r, E, KS , and K 9S
define the linear approximation to the recentered compos-
ite phase Hugoniot (2.7)

US 5 ÏKS/r 1
1
4

(K 9S 1 1)UP , (5.8)

FIG. 8. Schematic representation of the second-order volume-of-fluid
interface reconstruction routine.from which the approximate Riemann problem may be

solved.
A complication arises in the case in which the material is

a mixture of one or more condensed phases with a vacuum.
duction of a different phase flux, are bounded on each sideSuch mixtures occur at the free surface of a body and may
by a multiphase edge.be formed by spallation. A homogeneous mixture of matter

At each multiphase edge we use a second-order volume-with vacuum, i.e., a porous material, is perfectly compress-
of-fluid interface reconstruction algorithm [25] to deter-ible, KS 5 0. On rarefaction KS remains zero, and hence
mine signed edge-centered individual phase volumesK 9S 5 21, implying that for a rarefaction the leading coef-
V a advected

i11/2 that will be advected across the edge in time stepficients a in (3.6) are a0 5 a1 5 0. If we ignore material
Dt. Let us consider a cell edge, say (i 1 1/2, j), for which thestrength, then P 5 0 during compression until the volume
Riemann solver has determined a time-centered interfacefraction fv of the vacuum is zero. At this point, where
velocity U*i11/2, j , and let us assume that this velocity ispressure first changes on compression, we have US 5
positive (Fig. 8). In time Dt, a volume DtU*i11/2, jAi11/2, j willUP 5 0 and the density of the composite differs from the
be advected across the cell edge, where Ai11/2, j is the areainitial density of the porous material only by removal of
of the (i 1 1/2, j) edge. That volume, which originates inthe vacuum volume. The first two terms of the power series
cell (i, j), may contain more than one phase. The second-expansion (3.6) are thus a0 5 0 and a1 5 1/fv on compres-
order volume-of-fluid strategy we employ seeks a best-fitsion. This linear approximation to the power series expan-
linear approximation to the interphase boundary and usession (3.6) can give a very bad fit to the correct EOS, particu-
that boundary estimate to compute the volume fractionslarly when fv is small. To overcome this problem we take
for each phase in the advected volume in the cell upstreama0 5 0 and a1 5 min(1/fv , a91) for porous multiphase cells,
of the multiphase edge.where a91 is computed by (3.7b) on a vacuum-free basis.

A linear approximation (Fig. 8, dashed line) to the true
material interface (Fig. 8, boundary of shaded volume) is5.2. Reconstruction of the Individual Phase Fluxes
found as the solution to a constrained least-squares prob-

We define a multiphase cell to be a cell that contains a lem: the function minimized is
nonzero volume fraction of more than one phase, and we
define a multiphase edge to be a cell edge that either: Oi11

k5i21
Oj11

l5j21
( f linear

k,l 2 f actual
k,l )2,

(a) separates single-phase cells that contain differ-
ent phases,

where f actual
k,l are the given volume fractions, f linear

k,l are the(b) bounds a multiphase cell, or
volume fractions due to the linear interface with unit nor-(c) neighbors a cell edge that satisfies criterion (a)
mal n, and the (i, j)th cell is the cell upwind of the edgeor (b).
in question. The solution is constrained so that the volume
fraction in the center cell due to the line is identical to theThis definition ensures that cells that can experience a

multiphase flux, or that may become multiphase by intro- actual volume fraction in the center cell
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f linear
i, j (n) 5 f actual

i, j , (5.9) equation of continuity of the bulk, which may be obtained
by summing (5.10) over a,

for any n. The intersection of the linear approximation
with the advected volume (Fig. 8, bold lines) gives the r

t
1

(ru)
x

5 0, (5.17)individual phase fluxes V a, advected
i11/2 whose sum is U* Dt. This

diagram illustrates a two-phase situation. Multiple-phase
volumes are solved by applying this method N 2 1 times
for N phases. Each application represents the system as to give the thermodynamically self-consistent advection
two phases: the phase of interest and everything else. equation for volume fractions:

5.3. Self-Consistent Multiphase Dynamics
f a

t
1

( f au)
x

5
f aKS

K a
S

u
x

. (5.18)The equations that express conservation of mass, mo-
mentum, and energy are

The right-hand side of (5.18) is the self-consistent volume( f arr)
t

1
( f arau)

x
5 0, (5.10) fraction change required to maintain isotropic stress while

obeying the constraint oa f a 5 1. Summation of (5.18)
gives oa f a/t 5 0 as required. The volume fractions of(ru)

t
1

(ru2 1 P)
x

5 0, (5.11)
the compressible phases (small K a

S) change most in re-
sponse to the total divergence.(rv)

t
1

(rvu)
x

5 0, (5.12) An internally consistent internal energy equation may
be written by adding a 2PdV work term to the conservative
advection equation. The volume change dV used is that(rE )

t
1

(rEu 1 Pu)
x

5 0. (5.13)
implied by the right-hand side of (5.18):

Equations for the evolution of volume fractions f a and
the individual phase specific energies E a must take into

( f araE a)
t

1
( f araE au)

x
1

f ara

r
u

P
x

5 2P
f aKS

Ka
S

u
x

.
account the constraints oa f a 5 1 and oa f araE a 5 rE. To
derive these evolution equations, we begin by expanding (5.19)
the continuity equation (5.10),

Since oa f a 5 0, the summation of (5.19) over a givesf a

t
1

( f au)
x

5 2
f a

ra

ra

t
2

f au
ra

ra

x
. (5.14) the conservative advection equation for total energy, as re-

quired.

Next, we assume that isotropic stress is maintained during
the advection process. Moreover, we assume that any com- 5.4. Discretization of Multiphase Equations
pression that takes place is isentropic and that the entropies

We now present a discretization of (5.10)–(5.12) andof the individual components remain constant. According
(5.18)–(5.19). The volume fraction of phase a in cell i,to these assumptions the pressure change (P) associated
following advection but prior to any readjustment (i.e.,with compression of the bulk will be equal to the pressure
with the right-hand side of (5.18) neglected), is given bychange (P a) associated with compression of each compo-
a discretization of (5.18),nent phase,

f a9i 5 f a
i 1

Va, advected
i21/2 2 Va, advected

i11/2

Vcell
i

, (5.20)
KS

r
r 5 P 5 P a 5

K a
S

ra ra. (5.15)

Substituting this result we may rewrite (5.14) to give
where Vcell

i denotes the volume of the ith cell. To effect
the volume fraction adjustment corresponding to the right-
hand side of (5.18) we must next compute an average bulkf a

t
1

( f au)
x

5 2
f aKS

rK a
S

r

t
2

f aKSu
rK a

S

r

x
. (5.16)

modulus K̃a
Si for each phase. This is a volume-weighted

average that takes account of the cell of origin of the
advected fluids and is defined byFinally, (5.16) may be simplified by substitution of the
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f a,n11
i ra,n11

i 5 f a
i r

a
i 1

Va advected
i21/2

Vcell
i

r̃a*
i21/2 2

V a advected
i11/2

V cell
i

r̃a*
i11/2

(5.24)

rn11
i un11

i 5 riui 1
Dt
Dx

[(r̃*i21/2u*2
i21/2 1 P*i21/2)

2(r̃*i11/2u*2
i11/2 1 P*i11/2)] (5.25)

f a9i Vcell
i

K̃a
Si

;

f a
i Vcell

i

Ka
Si

1
Va advected

i21/2

Ka
S,i21

1
Va advected

i11/2

Ka
S,i11

,

if U*i21/2 . 0 and U*i11/2 , 0;

f a
i Vcell

i 1 Va advected
i21/2

Ka
Si

1
Va advected

i11/2

Ka
S,i11

,

if U*i21/2 # 0 and U*i11/2 , 0;

f a
i Vcell

i 2 Va advected
i11/2

Ka
Si

1
Va advected

i21/2

Ka
S,i21

,

if U*i21/2 . 0 and U*i11/2 $ 0;

f a
i Vcell

i 1 Va advected
i21/2 2 Va advected

i11/2

Ka
Si

,

if U*i21/2 # 0 and U*i11/2 $ 0.

(5.21)
rn11

i vn11
i 5 rivi 1

Dt
Dx

[(r̃*i21/2u*i21/2v*i21/2)

2(r̃*i11/2u*i11/2v*
i11/2)] (5.26)

f a,n11
i ra,n11

i E a,n11
i 5 f a

i r
a
i E a

i 1
Va advected

i21/2

Vcell
i

r̃a*
i21/2Ẽ a*i21/2

2
Va advected

i11/2

Vcell
i

r̃a*i11/2Ẽ a*i11/2

5
1

Dt
Dx

f a,n11
i ra,n11

i

rn11
i

(P*i21/2 2 P*i11/2)
The adjusted volume fractions are

2 P S1 2 O
b

f b9i D f a9i KSi

K̃a
S

,
(5.27)f a,n11

i 5 f a9i 1 S1 2 O
b

f b9i D f a9i K̂Si

K̃a
S

(5.22)

where
where the phase average bulk modulus K̂S is computed
from the single-phase quantities K̃a

S using (5.6).
The advected fluxes in a single-phase Godunov method r̃*i21/2 5

oa Va advected
i11/2 r̃a*i21/2

ob V b advected
i11/2

. (5.28)
are computed from the solution to the Riemann problem.
Here, in our multiphase method where the Riemann prob-

5.5. Pressure Relaxationlem is solved for an effective single phase, we have a valid
estimate of u*, v*, and P*, but not of the single-phase Following the multiphase conservative updated de-
quantities ra* and E a*. In their place we use the appro- scribed in (5.24)–(5.27) above, the multiple phases in any
priate upwind quantities: single cell may not be in mechanical equilibrium (Pa ?

P b). A procedure for reaching mechanical equilibrium is
described here. We seek a new pressure, common to all
phases, P, such that mechanical equilibrium will be
achieved while the constraint oa f a 5 1 is observed. This
may be accomplished by solving the following set of equa-S r̃a*i11/2

Ẽ a*i11/2

D5 5 S
ra

i

Ea
i 1 As(u*2 1 v*2)

D if up . 0;

S ra
i11

Ea
i11 1 As(u*2 1 v*2)

D if up # 0.

(5.23)
tions for the changes in volume fraction f a:

P 5 Pa 1 DPa 5 Pa 2
Ka

S

f a Df a (5.29)

We have validated the approximation given in (5.23) by O
a

Df a 5 0. (5.30)comparing computations obtained with this approximation
to computations obtained with an ‘‘exact’’ multiphase Rie-
mann solver in which the individual phase properties are

The resulting volume fraction update isdirectly available. Our comparisons indicate that the over-
all solution is insensitive to this approximation. A detailed
description of the ‘‘exact’’ multiphase Riemann solver we P 5 O

a

f aPa

Ka
S
@O

a

f a

Ka
S

(5.31)
used is presented in the Appendix.

With these approximate quantities, the mass, momen- Df a 5
f a

Ka
S

(Pa 2 P) (5.32)
tum, and energy updates are
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f a r f a 1 Df a. (5.33) (i) Evaluate the equation of state for each phase in
each cell to determine the quantities P, KS , and K9S .

Conservation of mass dictates a density update (ii) Construct an effective single phase by averaging
density r (5.2), internal energy E (5.3), isentropic bulk
modulus KS (5.6), and the isentropic pressure derivative

ra r
f ara

f a 1 Df a , (5.34) of KS , K9S (5.7).

(iii) Construct the flattening parameter x (4.17)–
(4.19). In multiphase applications we set the parameter xand the self-consistent isentropic 2PdV internal energy
(4.18) to zero in multiphase cells.update is

(iv) Compute limited slopes for the quantities r, u,
v, P, and E (4.15)–(4.20).f araEa r f araEa 2 PDf a. (5.35)

(v) Use upwind characteristic tracing to construct L
These equations are implemented, possibly iteratively, and R states centered at the half time step at each cell

in conjunction with equation of state evaluations that de- edge (4.11)–(4.14).
termine the pressures Pa and isentropic bulk moduli Ka

S (vi) Solve the Riemann problem at each edge. Com-
of each phase. pute the pressure P*, the velocities u* and v*, and the

In some experiments we have found that the relative internal energy E* of the state that lies on the zero-velocity
volume change Df a/f a called for in the pressure equilibra- characteristic.
tion step is too large to be compatible with the linearization

(vii) Compute the conserved fluxes (4.3), and updateimplicit in (5.29). In some cases this leads to extrapolation
the conserved quantities for those cells that contain onlyinto regions of thermodynamic space where the equation
a single phase (4.7). The fluxes at single-phase edges in-of state model we used was unstable. To prevent this patho-
clude an artificial viscosity term (4.21)–(4.23).logical behavior the procedure outlined above is modified

(viii) For each multiphase edge, implement a sec-by enforcing a limit on the maximum allowed change in
ond-order volume-of-fluid interface reconstruction routineDf/f. We define two constants: d2 is the largest uDf/f u al-
to determine the signed volumes Va advected

i11/2 of each phaselowed for compression, and d1 is the largest value allowed
advected across the edge with velocity u*.for expansion. We used the numerical values d2 5 0.1 and

d1 5 0.05. The limited fraction change in a binary system (ix) Update the volume fractions (5.20)–(5.22), den-
sities (5.24), momenta (5.25), (5.26), and energies (5.27).is then given by

(x) Relax multiphase cells to mechanical equilib-
rium. For each phase in each multiphase cell evaluate the

Df 1 r Hmin(Df 1, d1 f 1, d2 f 2, 1 2 f 1) if Df 1 . 0;

max(Df 1, 2d2 f 1, 2d1 f 2, f 2 2 1) otherwise.
equation of state to determine the pressure Pa and isen-
tropic bulk modulus Ka

S . Adjust volume fractions (5.31)–
(5.33), densities (5.34), and internal energies (5.35). This(5.36)
step may be iterated depending on the problem and the
accuracy required.It is in this pressure relaxation step of our multiphase

algorithm that we implement spallation. If the pressure 5.7. One-Dimensional Test Problems
within a vacuum-free (possibly single phase) cell is negative

We now present the results of three one-dimensionaland larger in magnitude than the yield strength (which we
test problems designed to highlight various features ofcurrently treat as a constant adjustable parameter) then
our method.vacuum is introduced and the condensed phases are re-

laxed to zero pressure with the procedure outlined above. A ‘‘smooth’’ rarefaction fan. First we present the re-
As indicated in Fig. 4e, spallation ought to be a feature of sults from a computation of the inside of a centered rarefac-
the Riemann solver. Our choice was based on a desire to tion in aluminum (Al). This is an example of ‘‘smooth
separate all multiphase considerations from the effec- flow’’ where we expect second-order convergence of our
tive single-phase integrator, which includes the Riemann method. The material properties of Al we used are those
solver. reported in Marsh [28] and shown in Table I. We computed

the ‘‘exact’’ rarefaction solution in aluminum by using a
5.6. Summary of the 1D Multiple-Phase High-Order fourth-order Runge–Kutta method to integrate the ODEs

Godunov Method

In detail, the multiphase algorithm consists of the follow- du
dp

5 (rc)21 (5.37)
ing steps:
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TABLE I energy at this time. The results are shown in Table II. This
test problem yielded a convergence rate of between 1.9Equation of State Parameters
and 2.6—depending on the quantity and the norm—

Property Value Dimensions verifying that our method achieves second-order accuracy
in regions of smooth flow. The initial and final profiles are

Aluminuma

shown in Fig. 9.
r0 2.785 Mg/m3

c0 5.328 km/s Wilkins’ test problem. Next we present a 1D test prob-
s 1.338 lem from Wilkins [48] in which a 4-mm piece of aluminum,
c0 2.0

traveling at 2 km/s, impacts an aluminum half space (Fig.q 1
10). In our computation of this problem we used a problemP0 0 GPa

T0 298 K domain 25 mm wide, from say 0 to 25, in which the 4-mm
MORBb

projectile initially occupies coordinates 1–5, the Al half-
r0 2.66 Mg/m3

space occupies coordinates 6–25, and the rest of the do-
c0 2.10 km/s

main is vacuum. The computation shown in Figs. 10a–10fs 1.68
was done on a 500-cell domain with CFL 0.3 and artificialc0 0.18

q 1 viscosity parameter z 5 0.02. Figure 10g shows the L1
P0 0 GPa density errors at time 5 es derived by comparing the com-
T0 1673 K putation shown above with similar computations on 250-
Cc

V 0.0012 MJ/kg ? K
cell and 125-cell domains. Peaks in the error spectrumMolybdenumd

occur at the free surface, the projectile–target interface (ar0 9.961 Mg/m3

c0 4.77 km/s double peak, exaggerated by ‘‘startup errors’’ [16]), both
s 1.43 ends of the rarefaction fan (first order in smoothness), and
c0 1.56 the shock (zero order smoothness). Figure 10h is the order
q 1

of accuracy derived from Fig. 10g. The average order ofP0 0 GPa
accuracy shown here is 1.75.T0 1673 K

Cb
V 0.00026 MJ/kg ? K

A test problem that includes spallation. This computa-
tion (Fig. 11) demonstrates how our method currently han-a Ref. [28].

b Ref. [41, 40] dles spall. Shown is a 30-mm-thick bar of aluminum in a
c CV is based on 3k/atom approximation. vacuum. Initially the Al has zero velocity and pressure,
d Ref. [34]. density, and internal energy given by (P, r, E) 5 (3.277,

21.841, 0.588). (This corresponds to a state on the principal
Hugoniot for which UP 5 1.0.) Left and right rarefactions
pass through the material, creating tension when they col-dr

dp
5 r/Ks (5.38)

lide. Vacuum is introduced when the pressure drops below
22.0 GPa. The abrupt change from 22.0 GPa to 0 caused
by the spallation process drives large amplitude acousticstarting from the right state VR 5 1/r0 , P 5 0, u 5 uR

until we reached the left state VL 5 0.3416, P 5 4.390,
u 5 u(VR). The velocity uR 5 26.0457 was chosen so that
the u 2 c characteristic state halfway through the fan (at TABLE II
V 5 (VR 1 VL)/2) was stationary. The quantities (r, E,

The Error and Convergence Rate in Computing the Interioru, and u 2 c) at each step of the numerical integration
of a Rarefaction Fan in Aluminum

were tabulated.
The initial conditions were generated by picking a start- Cells 1-Norm Rate 2-Norm Rate Max norm Rate

ing time t0 5 1 es and associating each coordinate x in the
Densityproblem domain [20.5 mm, 0.5 mm) with a characteristic;

16 1.4322D-06 3.6511D-07 1.9057D-06x/t0 5 u 2 c. The values of (r, E, and u) corresponding
32 3.6165D-07 2.0 6.4392D-08 2.5 4.6810D-07 2.0

to the characteristic u 2 c were obtained by interpolation
Momentumof the tabulated results. Boundary data at each time step

16 1.7623D-07 5.1802D-08 4.2595D-07of the computation was derived similarly by interpolating
32 4.2375D-08 2.0 8.7082D-09 2.6 1.1160D-07 1.9

with the appropriate characteristic x/t 5 u 2 c.
EnergyWe compared the computed solution with the ‘‘exact’’

16 2.2395D-05 5.7097D-06 2.9053D-05
one at time t 5 2.5 es. We computed the L1 , L2 , and max 32 5.6538D-06 1.9 1.0080D-06 2.5 7.1863D-06 2.0
norms of the error in the density, momentum, and total
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laws is described in [7–10], and our independently coded
C11/FORTRAN hybrid implementation is based on the
algorithms defined in these references. Here, we describe
details of this algorithm that are specific to our multiphase
integrator and its application described in the following
section.

There are several processes in the AMR algorithm that
require special consideration in multiphase computations.
Foremost among these is the creation of fine grid patches.
When a coarse grid patch is projected onto a refined grid
patch, simple polynomial interpolation of the cell-centered
quantities U may lead to a smearing of phase boundary
interfaces across several fine grid cells. In the application
described in the following section we store the following
eight cell-centered quantities:

U 51
r 5 f1r1 1 f2r2

ru

rv

rE 5 f1r1E1 1 f2r2E2

f1

f1r1

f1r1E1

fv

2 . (6.1)

FIG. 9. A rarefaction fan in aluminum centered on the grid: (a)
pressure before (solid) and after (dashed) 1117 iterations on a 32-cell
grid with CFL 0.5; (b) velocity before (solid) and after (dashed) 1117
iterations. Initial and boundary conditions are supplied by ‘‘exact’’ calcu-
lation. This computation was repeated with 16 cells, requiring 560 itera-
tions to reach the same time. A comparison of the L1 norm density errors,
based on comparison to exact results, reveals second-order convergence. Here f1 is the volume fraction of phase 1 and fv is the

volume fraction of vacuum in a cell. Neither of these is a
conserved quantity. Moreover, the phase volume fractions
are not smoothly varying functions within a cell. Theywaves that are evident in both the pressure and velocity
assume values of 0 or 1 in single-phase regions and takeprofiles. This spallation procedure initially creates a large
fractional values only in regions of space that straddle thenumber of cells that contain a mixture of aluminum and
interphase boundary.vacuum: a distinct material interface is not initially present.

There are two approaches to rectifying this problem.With time the material coalesces, and distinct regions of
First, when a grid patch containing a phase boundary ismaterial separated by distinct regions of vacuum emerge.
projected onto a refined grid, an interface reconstructionThis computation was done on a 400-cell domain with
routine, such as that described in Section 5.2, may be used.CFL 0.8.
Only those fine grid cells that straddle the reconstructed
interface will then contain more than one phase and inter-6. ADAPTIVE MESH REFINEMENT
face smearing will not occur. An alternative approach is
to require that multiphase cells always be refined at theTo model two-dimensional problems, the one-dimen-

sional multiphase method for integrating Eqs. (4.1) pre- maximum resolution. When this is done the fine multiphase
grids are filled by the initialization subroutines instead ofsented above is driven by an adaptive mesh refinement

(AMR) application shell that (1) breaks the physical do- by interpolation from coarse grid cells. Since the interfaces
are always computed with the maximum level of refine-main into a number of two-dimensional rectangular grids,

(2) manages the integration of (4.1) on these grids such ment, the interpolation of multiphase coarse cells is never
necessary. Since the computational cost of refined gridthat the grid–grid and grid–domain edge boundary condi-

tions are consistently maintained in time, and (3) dynami- patches greatly exceeds that of coarser grids, this strategy
is computationally expensive. Nevertheless, we adopt thiscally maintains a hierarchy of higher-resolution subgrids

whose placement may be controlled to reduce local errors second strategy in the computations shown here, since in
these computations we are principally concerned with re-and provide enhanced spatial resolution. The AMR strat-

egy in the context of a system of hyperbolic conservation solving features associated with the interfaces.
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FIG. 10. Wilkins’ problem: (a) density and (b) pressure at 0.5 es; (c, d) same at 2.5 es; (e, f) and 5.0 es. (g) L1 denstiy errors comparing 500-,
250-, and 125-cell calculations at 5.0 es; and (h) order of convergence.
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FIG. 11. Release of a compressed aluminum bar leading to spall: (a) density, (b) velocity, (c) pressure, and (e) vacuum volume fraction at 1.0
es. (e–h) Same at 2.0 es, (i–l) at 3.0 es, and (m–p) at 10.0 es.

There are other processes in the AMR algorithm that are not conservative. One algorithm within AMR that leads to
discrepancies with our nonconserved cell-centered quanti-robust when each cell-centered quantity is a conservative

density, but are somewhat problematic when there are cell- ties is the matching of coarse grid and neighboring fine grid
cell boundary fluxes. To simultaneously manage nested finecentered quantities such as phase volume fractions that are
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FIG. 11—Continued

and coarse grid hierarchies conservatively requires that the with time step Dtfine 5 Dtcoarse/4 for each integration of the
surrounding coarse grid. At the end of that coarse timefine-grid boundary fluxes and the neighboring coarse-grid

cell boundary fluxes be made equal over each coarse time step the coarse cell edge flux computed on the coarse grid
must equal the sums over four fine time steps of the fourstep. For example, suppose that within a particular coarse

grid there is a fine subgrid with four times greater spatial neighboring fine cell edge fluxes. To accomplish this the
coarse cell edge flux is adjusted to equal the computedresolution. The fine subgrid will be integrated four times
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total flux from the fine cell edges. When this adjustment
is done on nonconserved variables, such as phase volume
fractions, the adjusted coarse cell quantities U will become
incompatible to some degree. Specifically, the condition
of mechanical equilibrium (i.e., equality of stresses) will
be violated and hence a pressure equilibration, as discussed
in Section 5.5, is required.

To remedy this problem we could implement the pres-
sure equilibration algorithm during the flux readjustment
AMR step. However, this is not necessary when the mate-
rial interfaces are always resolved on the finest grid
patches. Since the interface is interior to the fine grid
patches, the interface fluxes between fine and neighboring
coarse grid cells are always single phase.

Refined grids are created to reduce local truncation er-
ror, which is estimated using a method based on Richard-
son extrapolation [9]. Specifically, the local error t is esti-
mated by

I 2
h U 2 I2h U

2p11 2 2
5 t 1 O(hp12), (6.2)

FIG. 12. Sound speed determination from edge effects after [6]. In
time Dt the edge disturbance (originating at a corner, for instance) is
advected a distance UPDt with particle velocity UP and at the same time

where I 2
h denotes the two-level finite difference operator, radiates a distance cDt at the sound speed c in all directions. The intersec-

applied twice with time step Dth , and I2h is the same opera- tion of this surface with the shock (which travels a distance USDt) defines
a ray of angle a, where U2

S tan2a 5 c2 2 (US 2 UP)2. When the shocktor but applied once with time step Dt2h 5 2Dth to a grid
reaches the melt-metal interface the edge effect will propagate at thecoarsened by a factor of 2 in each direction. Here, p is the
different angle aM . This angle is computed as indicated above, but withorder of accuracy in space and time of the operator Ih ,
the velocities relevant for the shocked metal.

which we take to be 2, and h is the length of a cell on the
original grid. This estimate is performed every two time
steps (this is an adjustable parameter) and compared to a

This was done to assess whether the compressional edge
user-defined error tolerance threshold. When that toler-

effects in the experiments described in [36] propagate as
ance is exceeded the offending region is tagged for addi-

acoustic waves—at the sound speed of the shock-com-
tional refinement.

pressed sample [6]—or as oblique shocks. We determined
In the work that follows, we compare the error in average

that the edge effects were acoustic and that the experiments
density r using a threshold tmax 5 1024 I2h U. We set the

were therefore analyzed in an internally consistent way.
truncation error t to some large number at each phase

Preliminary work extending our earlier study is pre-
boundary. This ensures that the phase boundaries will lie

sented here.
within the most refined cells and thereby avoid the prob-

Al’tshuler et al. [6], in experiments known to have acous-
lems described above. We also employ refinement criteria

tic edge effects, tried to measure the angle of intersection
other than (6.2). For the application discussed below we

of the moving shock wave with the acoustic edge effect
want to resolve the shock front and steep rarefaction fans

signal for the purpose of obtaining sound speeds under
with the highest resolution. To accomplish this we also

shock-loading conditions. They detected the shock arrival
evaluate the divergence of the velocity field and assign

on the free surface of their samples and looked for the
some large (fictitious) truncation error to those cells with

onset of curvature to indicate the interference of edge
a large absolute values (u= ? uu . 2/es).

effects with the otherwise planar shock. Experiments with
encapsulated melts (Fig. 12) are complicated by the propa-

7. AN APPLICATION TO EXPERIMENTAL SHOCK gation of the edge signal through the container, but have
WAVE STUDIES qualitatively similar features. In principle, the sound speed

of an encapsulated liquid may be measured by observing
7.1. A Computational Study

edge effects on the container surface.
Here we consider two questions relevant to the propaga-We have used the method described above to study the

propagation of edge effects in multiphase assemblies used tion of edge effects in encapsulated melts (Fig. 12). First,
‘‘Given probable experimental errors in the detection ofin geophysical shock wave laboratory experiments [35].
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free surface motion, is it possible to detect the initial inter-
action of the edge effects with the otherwise planar shock
at the free surface of the container?’’ It is not obvious that
this should be the case because the strength of the leading
edge of the acoustic disturbance is weak and might be
undetectable after propagation through the metal con-
tainer. The experimentally detectable onset of edge effects
might be unacceptably different from the idealized model
shown in Fig. 12, or if the onset of shock front distortion
is compatible with the idealized model, the angle a in the

FIG. 13. Experimental setup. A projectile, consisting of a polycarbo-
melt, and hence the melt sound speed might be deduced. nate sabot carrying a 6.4-mm-thick metal plate, is accelerated to between
In actual practice the inference of a in a single experiment 1.0 and 2.5 km/s by an 80-mm-diameter single-stage gun. The projectile

strikes a target assembly made of molybdenum plates and containing awill be contingent on determination of the angle aM that
silicate glass. Prior to impact the target assembly is induction-heated todescribes the propagation of edge effects in the metal con-
above the liquidus of the silicate composition. The (left) free surface oftainer. The angle aM may be computed for some materials,
the target is observed with a streak camera. The streak camera records

but will depend on whether a plastic shock or an elastic the light reflected off the free surface in one spatial (r) and as a function
precursor is the wave detected by the experimental appara- of time (t). The reflectivity changes when the shock reaches the free

surface. Shown is t0 , the time when a planar shock reached the freetus. Alternatively, two experiments with identical con-
surface after traversing three layers of molybdenum, and t1 , the timetainer thickness but different melt thickness could be used
when a planar shock traversed a layer of molybdenum, the liquid sample,to experimentally account for aM , regardless of whether
and a second layer of molybdenum. The relative time (t1 2 t0) determines

the leading disturbance detected at the free surface is elas- a point on the liquid Hugoniot [36].
tic or plastic.2 In this study we will assume the molybdenum
container has zero material strength. Although this is in-
consistent with experiment [18], it is an adequate assump-
tion for the purpose of assessing the feasibility of melt illustrated in Fig. 13, which are currently being conducted

by the first author for the purpose of determining thesound speed measurement.
The region of the liquid sample influenced by edge ef- Hugoniot EOS of silicate liquids. If the experimental data,

particularly the streak camera record, contain informationfects is dispersive and covers a range of pressures, which
is about 10 GPa in the experiments described below. The on the sound speed and also possibly on the volume depen-

dence of the sound speed, then that information is availableleading edge of the affected region is determined by the
sound speed of the sample under the shock conditions that at no additional experimental cost. A separate issue, not

taken up, is, ‘‘How might the target be redesigned to opti-pertain where the shock is planar. However, within the
large affected region the distribution of thermodynamic mize the sensitivity of the streak record to the sound speed

information?’’ To address that question, parameters thatand hydrodynamic properties will be sensitive to the sam-
ple’s pressure-dependent sound speed over the range of we consider here to be invariant, such as the metal plate

thicknesses and metal–liquid interface angles, could bepressures found in the affected region. In the context of
the thermodynamic model discussed in Section 2 above, the changed.

We present the results of three computations (Table III)details of the region affected by edge signals will depend on
both c0 and q (see (2.16)). Thus the second question we which we have conducted to address the first two questions.

In the first computation, we model the propagation of aaddress in this section is, ‘‘Is the detected free surface
arrival sufficiently sensitive to the parameters c0 and q that planar shock through a molybdenum container and into

an encapsulated liquid sample (midocean ridge basalt,an inverse method might be constructed to deduce these
parameters from the measured free surface record across MORB) using the experimentally determined thermody-

namic parameters shown in Table I. The simulated systemthe width of the region influenced by edge effects?’’ The
first question addresses the detectability of the onset of is 10 3 10 mm on an initial 100 3 100 coarse grid. One

level of grid refinement is allowed, with the fine grid cellsedge effects at the free surface; the second question exam-
ines the information content of the record within the af- one-fourth the size of the coarse cells. The system is in

cylindrical coordinates with the bottom edge being thefected region.
These investigations are motivated by the experiments axis of symmetry. The computations described below took

approximately 50 CPU-min each on a Cray C90.
The sequence of events for the first run is illustrated in

2 An edge effect will be seen in the surrounding metal, but the nominal
Fig. 14: the results shown apply qualitatively to the otherpressure there is different from that in the material to the left of the
runs, too. The first snapshot shown illustrates the startingliquid. The angles aM in the metal adjacent to the liquid cannot, therefore,

be deduced by a measurement of aM in the surrounding metal. configuration: a left-traveling planar shock in molybdenum
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TABLE III at the top of the simulated system. At the bottom, adjacent
to the encapsulated MORB, the left-traveling shock hasRun Parameters
not yet reached the free surface.

Property Value At each fine-grid time step we monitor the velocity
of the free surface. We arbitrarily mark the free surface

All Runs when its velocity reaches 10 m/s; we assume this to be
P in Mo. 60.8 GPa

the onset of detectable surface motion that might beP in MORB. 20.2 GPa
recorded on a streak camera. The time-radius history of

Run 1
these first motions constitutes a synthetic streak recordc0 0.18
(Fig. 13). These measurements are at discrete intervals ofq 1

c at 20.2 GPa 5.93 km/s approximately 1 ns, which is comparable to instrumental
a 46.38 uncertainties. The synthetic streak records for our three
aM 29.38 simulation runs are shown together in Fig. 15. Note that

Run 2 some offset of these records is evident even where the
c0 1.0 shock is planar when it reaches the free surface; the
q 1 magnitude of this error is within one fine-grid time step.
c at 20.2 GPa 5.62 km/s

It may be explained by the fact that the time steps ina 44.28
each simulation are determined independently by theaM 29.28

requirement that the CFL number, cDt/Dx, not exceedRun 3
a defined threshold, which is 0.4 in our case. Since thec0 0.18

q 23.23 sound speeds c differ in each of the three computations,
c at 20.2 GPa 5.62 km/s the time steps Dt differ correspondingly. Thus the time
a 44.28 intervals at which the free surface motion is examined
aM 29.08

are different in each computation.
It is also evident on examination of Fig. 15 that the

distance between the radial coordinate of the outer metal–
liquid interface and the location of the first detectable edge
effects on the free surface are about 10% smaller than theiris 303 ns away from striking the molybdenum–MORB

interface. The initial shock has a strength of 60.8 GPa. theoretical values. To a first approximation this suggests
a systematic bias of 10% of tan a, with correspondingWhen the shock reaches the interface, a weaker 20.2-GPa

shock is transmitted to the MORB, and a right-traveling systematic errors that affect the inferred sound speed. This
answers in part the first question we posed. The onset ofrarefaction is reflected into the molybdenum. Away from

the corner, the plane 60.8-GPa molybdenum shock contin- edge effects on the free surface motion are not detectable
without bias. Underestimation of the radial extent of theues unperturbed. The second snapshot shows the configu-

ration 358 ns after the shock reached the molybdenum– edge signal leads to underestimates of c and overestimation
of c. Therefore experimental results must be interpretedMORB interface. Note that the edge effect generated at

the corner is compressive inside the MORB, and expansive with some caution.
The second and third computations are characterizedin the molybdenum. After traversing the encapsulated

MORB, the shock reaches the left molybdenum–MORB by equal high-pressure sound speeds that are about 5%
lower than those in the first computation. The value of ainterface. When that occurs a shock is transmitted into the

molybdenum and a right-traveling shock is reflected back for both of these runs is identical, but the value of aM

differs somewhat, since the recentered Hugoniots of theinto the MORB. The strength of this second shock is about
45.4 GPa. Being a recentered shock in the MORB, this modeled liquids differ. The second computation has a

greatly increased value of c0 , whereas the third computa-shock is slightly sensitive to the thermodynamic model
parameters c0 and q, and is therefore different in each of tion has a greatly reduced value of q. These values are

substantially different, and in no way constitute small per-the three computations. The third snapshot, at 628 ns after
initial interaction of the shock with the MORB, shows the turbations from the experimentally determined parameter

set that we used in the first computation. Nevertheless,development of the reflected wave structure. The plane
shock in the MORB has not yet reached the second molyb- the free surface wave forms of these runs do not differ

materially. Their offset in time is within the error of thedenum–MORB interface, but a reflected shock wave struc-
ture has begun to develop where it has been bent forward synthetic streak records and also within experimental un-

certainties. Therefore the answer to the second question(to the left) by the edge effects. The final snapshot, at 756
ns after initial impact, shows a right-traveling rarefaction is negative. The free surface motion is insensitive to the

pressure dependence of the liquid sound speed with asfan that has reflected off of the molybdenum free surface
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FIG. 14. Simulation of a left-traveling shock in molybdenum interacting first with an encapsulated MORB liquid and then with a free surface.
Contour plots of density (first row), pressure (second row), velocity divergence (third row), and vorticity with superimposed AMR fine-grid structure
(fourth row). The relative times are 2303 ns (first column), 358 ns (second column), 628 ns (third column), and 756ns (fourth column). The vacuum
boundary condition at the left side of the problem domain is shaded, as is the approximately rectangular MORB sample region in the interior. The
molybdenum container is unshaded.

much as 10 GPa leverage on the pressure-dependent quan- In all of the runs we determined the average cost of
integrating one cell for one time step was consistently 20.7tities in the affected region.
es of Cray C90 CPU time. This figure includes the cost of

7.2. Code Timings
setting up the sweep arrays and of all calls to the EOS
routines, the Riemann problem solver, and other steps inWe conducted additional computations of the problem

described above on a Cray C90 in order to examine in the second-order Godunov method, but it excludes the cost
of reconstructing the interface from volume fraction data.detail the computational cost of our method. In our imple-

mentation we have taken care to ensure that every loop We present per-cell data excluding the interface routines
since these routines are not currently written to optimizethat could vectorize on the Cray does. We studied two

cases, a single 100 3 100 grid on which refinement is not the speed of the algorithm. When we included the cost of
the interface reconstruction routines, the average cost perallowed, and the same case but using AMR to achieve

effective 400 3 400 resolution. At CFL 0.4 the 100 3 100 cell increased by about 12 es of CPU time.
The total cost to advance the entire grid with an effectivecase ran for 308 time steps while the effective 400 3 400

case ran for 318 time steps to reach time t 5 1.3 es from 400 3 400 resolution by one time step is about 6.99 CPU,
including AMR overhead but still excluding interface re-the start of the computation. (The initial conditions were

such that the shock struck the Mo/Morb interface at time contruction. The total cost to advance a real 400 3 400
grid one time step is calculated to be 4002 3 4 3 20.7 3t 5 469 ns.)



GODUNOV METHOD FOR MULTIPLE CONDENSED PHASES 161

FIG. 15. Synthetic streak records with nominal and perturbed MORB parameters. Run 1 (solid line) is an experimentally determined parameter
set; run 2 (dotted line) is the sound speed reduced by increasing c0 ; and run 3 (dashed line) is the sound speed reduced to the same level as run
2 by decreasing q. The error bars indicate the difference between the theoretical first observation of edge effects (indicated by arrows) and their
first observation in the synthetic streak record. The synthetic records shown here have resolution similar to that of experimental records.

1026 5 13.25 CPU-s, (4002 cells, and 4 fine time steps per contains more than one phase, the pressure and velocity
of the composite are single valued, but the specific volumecoarse time step, at 20.7 3 1026 s per cell). Based on
and other thermodynamic properties of each phase arethis scaling, employing AMR to achieve high resolution
separate. The resulting system of conservation laws is hy-reduces the computational expense by 6.26 CPU-s, per
perbolic and can be solved with modern numerical tech-time step, or 47%, in the example given.
niques for approximating solutions of hyperbolic conserva-
tion laws.8. CONCLUSIONS

We use a second-order Godunov method to determine
the time- and edge-centered fluxes of conserved quantities,We have presented a new numerical algorithm for the

integration of the Euler equations in multiphase systems which we then advance in time using a standard conserva-
tive finite difference update. At multiphase edges the Go-in which each of the phases is modeled by a Mie–Grüneisen

EOS. In our algorithm we solve a conservation equation dunov fluxes are determined by solving the Riemann prob-
lem for an effective single phase whose properties are thosefor the mass and energy of each material phase, a transport

equation for the volume fraction of each phase, and an of the multiphase composite and then determining the
advected volumes of each component phase using a sec-equation that represents the conservation of momentum

for the multiphase composite. The fundamental assump- ond-order volume-of-fluid interface reconstruction algo-
rithm. An equilibration step readjusts the volume fractionstion underlying this approximation is that in a cell that
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of the individual phases to enforce the condition of iso- method of mixtures’’ [31, 32], have proven successful in
predicting the shock properties of alloys and binary me-tropic stress within individual computational cells.

Our algorithm for modeling multiple phases is based on chanical mixtures of metals.
Of those bulk composite properties needed, only thean algorithm due to Colella et al. [15]. It differs from their

algorithm principally in details related to the underlying Grüneisen parameter has not yet been specified. The sim-
plest model for the thermodynamic Grüneisen parameterEOS model. For instance, with our EOS model a lineariza-

tion based on constant isentropic bulk modulus KS is rea- of the composite is obtained by assuming that during iso-
pycnic compression: (1) the phases remain under isotropicsonable. However, for ideal gases where
stress, (2) no energy is exchanged between phases, and
(3) the individual phase densities remain constant. UnderKS 5 PG (8.1)
these conditions,

an assumption of constant polytropic index G is more ap-
propriate. Moreover, our method permits states with non-
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,positive pressures and zero densities, and such states are
incompatible with the ideal gas EOS.

Our one-dimensional integrator is part of an operator-
whencesplit two-dimensional integrator embedded within an adap-

tive mesh refinement shell. Details of the AMR algorithm
that are specific to our implementation are described. The c 5 SO
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use of AMR allows us to focus the majority of the computa-
tional cost on those parts of the problem domain that we
deem to be interesting. We have chosen to concentrate the In constructing the effective single-phase bulk modulus
computational effort on three regions: interfaces between we assumed that during isentropic compression the entrop-
phases, regions of large absolute divergence (shocks and ies of the individual phases remain constant. The self-con-
steep rarefactions), and regions with comparatively large sistent isentropic expansion of a binary composite is thus
errors in density as judged by using Richardson extrapola-
tion to estimate the local truncation error in the com-
puted density.

We have used this method to study wave interactions
in laboratory experiments designed to measure the equa-
tion of state of liquid silicates [35]. Here we have presented
additional computations aimed at extracting new informa- 
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tion from the experiments described in that paper. The
computations began with a 100 3 100 computational grid,
with interfaces, strong waves, and error-prone regions se-
lected for refinement on an effective 400 3 400 computa-
tional grid. We computed synthetic streak records with
spatial and temporal accuracy comparable to laboratory

We can envision the shock compression process as con-data. These synthetic streak records suggest that inferences
sisting of an isentropic compression, followed by an isopyc-of the high-pressure sound speed within the shocked liquid
nic energy change. Thus for each differential change inare subject to systematic underestimation because of the
pressure on the Hugoniot dPH there is an isopycnic pres-weakness of the edge effect at its leading edge. Also, the
sure change ofstructure of the affected signal cannot be used to deduce

the pressure dependence of the liquid sound speed in a
single experiment.
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APPENDIX: AN ‘‘EXACT’’ MULTIPHASE
RIEMANN SOLVER and a corresponding isentropic part

In essence, an ‘‘exact’’ multiphase Riemann solver con-
sists of the integral equations (3.5), but where all individual dPS 5

KS

KH

dPH 5 rKS
2V 2 c(V0 2 V)

2KS 2 c(P 2 P0)
dPH ,

phase thermodynamic terms are replaced by their effective
single-phase counterparts (i.e., r for r, etc). Hugoniots
constructed in this manner, which is sometimes called ‘‘the where V0 and P0 are at the mixed phase Hugoniot centering
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