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Abstract

We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of these al-

gorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that when the interface

is smooth (e.g., continuous with two continuous derivatives) the new methods are second-order accurate and the other

algorithms are first-order accurate. We propose a design criteria for a volume-of-fluid interface reconstruction algo-

rithm to be second-order accurate. Namely, that it reproduce lines in two space dimensions or planes in three space

dimensions exactly. We also introduce a second-order, unsplit, volume-of-fluid advection algorithm that is based on a

second-order, finite difference method for scalar conservation laws due to Bell, Dawson and Shubin. We test this ad-

vection algorithm by modeling several different interface shapes propagating in two simple incompressible flows and

compare the results with the standard second-order, operator-split advection algorithm. Although both methods are

second-order accurate when the interface is smooth, we find that the unsplit algorithm exhibits noticeably better res-

olution in regions where the interface has discontinuous derivatives, such as at corners.
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1. Introduction

There are numerous instances in which it is necessary to reconstruct and/or track the boundary between
two materials or states of matter in a numerical computation. Examples include numerical models of fluid
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jetting devices [1–4], weld pools [5], molten metal [6,7], semiconductor device etching [8–11], thin flame

models of combustion [12–15] and clouds [16].

An overview of the state of the field in the early 1980s may be found in [17]. Since that time, many new
approaches to tracking the interface between two materials have appeared. A notable example is the level

set approach of Osher and Sethian [8,18–22]. There has also been considerable work devoted to developing

algorithms that approximate the front as a collection of line segments in two space dimensions or polygons

in three space dimensions [23,24] and on boundary integral methods [25,26]. A good idea of the current

state of the field may be found in the recent reviews by Scardovelli and Zaleski [27] and Sethian and

Smereka [28].

In this article we study a class of interface tracking algorithms known as volume-of-fluid methods. In a

volume-of-fluid method the motion of the interface itself is not tracked, but rather the volume of each
material in each cell is evolved in time and the interface at the new time is reconstructed from the values of

the volumes at this new time. For this reason volume-of-fluid methods are sometimes referred to as volume

tracking methods [29].

The basic idea behind a volume-of-fluid method is as follows. 1 Suppose that we wish to track the in-

terface between two materials, say a dark fluid and a light fluid, in two dimensions. We begin by covering

the problem domain with a grid with spacing h ¼ Dx ¼ Dy. With each grid cell we associate a number fi;j
that represents the amount of dark fluid in the i; jth cell,

fi;jh2 ¼ volume of dark fluid in the i; jth cell:

The number fi;j is called the volume fraction (of dark fluid) in the i; jth cell. It is apparent that

06 fi;j 6 1; ð1Þ

that the volume fraction associated with the light fluid is 1� fi;j and that a portion of the interface lies in the

i; jth cell if and only if 0 < fi;j < 1. The discrete variable fi;j is a discretization of the characteristic function

associated with the dark fluid,

f ðx; yÞ � 1 if there is dark fluid at the point ðx; yÞ;
0 if there is light fluid at the point ðx; yÞ;

�
ð2Þ

in the sense that

fi;jh2 �
Z Z

i;jth cell

f ðx; yÞdxdy:

Since the fluid type does not change along particle paths in an incompressible, non-reacting flow, the

characteristic function f is passively advected with the flow. Hence, f satisfies the advection equation,

ft þ ufx þ vfy ¼ 0; ð3Þ

where ~u ¼ ðu; vÞ denotes the fluid velocity. If the flow is incompressible, then ~u satisfies

ux þ vy ¼ 0: ð4Þ

Multiplying (4) by f and adding it to (3) we obtain a conservation law for the characteristic function f ,

ft þ ðuf Þx þ ðvf Þy ¼ 0: ð5Þ
1 Here and in the remainder of this article we restrict the discussion to uniform square grids and two space dimensions. Neither of

these restrictions are necessary. We employ them merely for simplicity and clarity of exposition.
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Eq. (5) reflects the fact that in an incompressible flow conservation of mass is equivalent to conservation of

volume, and hence conservation of f .
In a compressible flow the velocity field~u does not satisfy (4) and hence f is not conserved. However the

mass of each material is conserved and therefore it is important that a numerical method for modeling this

phenomena also conserve the mass of each fluid. It is relatively easy to design a volume-of-fluid interface

tracking algorithm that does this [30–32]. Volume-of-fluid algorithms are the basis for most of the large

application codes that are used at the national laboratories to model multi-phase, compressible phenomena

on Eulerian grids [33–36]. These codes are also used extensively by geophysicists to model meteor impacts

and related problems [37–39].

Recently, there have been several important improvements to the basic volume-of-fluid methodology for

modeling compressible flows. Colella et al. [30] have developed a model of interface motion in compressible
flow in which (5) is modified by the addition of a term that accounts for the effect of isentropic volume

changes due to changes in the pressure; i.e., changes in the specific volume V of the form ðoV =oP ÞS. Their
method allows one to model disparities in the compressibility of two materials (e.g., air and water) on a sub-

grid scale. Puckett and Saltzman [32] have developed an algorithm for tracking gas interfaces in three space

dimensions that is based on these ideas Miller and Puckett [31] have developed a similar model for tracking

the interface between two solids at very high pressures and temperatures (e.g., magmas) in the hydrostatic

limit (i.e., without strength) while Miller and Colella [40] have developed a method for modeling the motion

of the interface between a gas and a solid (with realistic constitutive laws) in shock physics applications.
In this article we restrict ourselves to consideration of incompressible flow problems. One might expect

the incompressible advection problem to be less difficult than the corresponding problem in compressible

flow. However our experience has been that this is generally not true. The difficulty in modeling incom-

pressible flow arises because f is also constrained by the maximum principle (1) but numerical errors in

estimating the fluxes in (5) lead to overshoot and undershoot in the values of f . In practice we have found

that for the simple advection problems considered here these errors are on the order of machine zero (e.g.,

see Tables 14 and 20). For more difficult problems they tend to be on the order of one hundredth of a

percent (e.g., see the computations in [41] and [21]).
Since in an incompressible flow f satisfies (5), the time update of the discrete variable fi;j can be ac-

complished with a conservative finite difference method. One can therefore draw on the vast body of

knowledge for high-resolution numerical methods for conservation laws [42–45] to devise a method for

updating f numerically. In this article we present a volume-of-fluid advection algorithm that is based on

ideas developed by Bell et al. [42] to construct a finite difference method for modeling solutions of scalar

conservation laws.

Volume-of-fluid methods have been in use for several decades. In one of the earliest implementations of

these methods DeBar [46] used a volume-of-fluid algorithm in a two-dimensional Eulerian method to model
compressible multi-phase flow. Another early algorithm of this type is the simple line interface calculation

(SLIC) method of Noh and Woodward [47]. SLIC and its variants have been very widely used. For ex-

ample, Colella et al. [48–50] used it to model shock wave refraction at a gas interface. In [12] Chorin de-

veloped an improved version of SLIC in order to model flame propagation and combustion. Ghoniem et al.

[13] and Sethian [15] used Chorin’s version to model turbulent combustion, while Whitaker [51] used it to

model Hele–Shaw flow. Another well-known volume-of-fluid algorithm is the VOF algorithm of Hirt and

Nichols [52]. 2 Several codes based on the VOF algorithm, namely SOLA-VOF [52,53] and its descendants

NASA-VOF2D [54], NASA-VOF3D [55], RIPPLE [56,57] and FLOW3D [58] have been, and continue to
be, widely used by researchers to model interfaces and free surfaces in industrial applications. For example,
2 Many workers use the acronym ‘‘VOF’’ – which stands for ‘‘Volume-of-fluid’’ – to refer generically to any volume-of-fluid

algorithm. However, we refrain from doing so since others use it to refer specifically to Hirt and Nichols’ algorithm and the associated

fluid dynamics code SOLA-VOF [52,53].
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researchers at Xerox have used a modified version of these codes to model the flow in thermal ink jet devices

[2,3] and they have been used extensively by material scientists to model weld pools [5] and solidifying

droplets [6,7]. However, the volume-of-fluid algorithms in all of the methods just referred to are built
around relatively crude interface reconstruction algorithms that rely on a piecewise constant or ‘‘staircase’’

representation of the interface, such as the one shown in Fig. 1(c), and advection algorithms that are at best

first-order accurate.

More modern volume-of-fluid interface reconstruction methods use a linear approximation to the in-

terface in each multifluid cell [16,29,32,59–62]. This results in a piecewise-linear approximation to the in-

terface as shown in Fig. 1(d). However, as we demonstrate (prove) in Section 3, a linear approximation to the

interface in each cell is not sufficient to guarantee a second-order accurate approximation to the interface.

In Section 3 we demonstrate (numerically) that a sufficient condition for a volume-of-fluid interface
reconstruction algorithm to be second-order accurate on smooth interfaces, is for the algorithm to re-

produce linear interfaces exactly. We show that two interface reconstruction algorithms introduced by the

authors (the least squares volume-of-fluid interface reconstruction algorithm (LVIRA) [61] and the efficient

least squares volume-of-fluid interface reconstruction algorithm (ELVIRA) [63]) have this property. These

second-order accurate piecewise-linear interface reconstruction algorithms have been used extensively to

model a variety of compressible and incompressible flows, including the motion of fluid interfaces in

variable density incompressible flow [21,41], shock refraction in gases [64–66], shock refraction and impact

jetting in solids in the hydrostatic limit [31,39,67], thin flame models for tracking deflagrations and deto-
nations [14,68], and shock waves in coupled gas dynamics-solid mechanics applications [40].

There seems to be a widely held belief in the CFD community that one cannot obtain high-order ac-

curacy with a volume-of-fluid algorithm [24, p. 26]. Perhaps this is due to the widespread use of SLIC and

VOF, which are at best first-order accurate and can easily fragment a smooth front (e.g., see Figs. 10 and 11

and Figs. 6 and 8 of [69]). One of the goals of this article is to demonstrate that one can construct high-
(d) Piecewise Linear
Approximation
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(a) True Interface (b) Volume Fractions

(c) SLIC Approximation

Fig. 1. Volume-of-fluid methods represent an interface (a) by storing volume fractions associated with the interface as shown in (b). An

approximation to the interface is produced using an interface reconstruction method such as SLIC, shown in (c), or a more general

piecewise linear approximation as in (d).
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order accurate volume-of-fluid interface tracking algorithms that are as effective, and for some problems

more effective, than competing methods. There are four principal reasons for the effectiveness of volume-

of-fluid algorithms:
(1) Volume-of-fluid algorithms naturally conserve the mass of each fluid. For incompressible flow this is

because the advection algorithm is a conservative discretization of the conservation law (5) for f , which
is equivalent to the mass conservation equation. In a compressible flow the mass of each fluid compo-

nent must still be conserved even though the characteristic function f is not. In a volume-of-fluid meth-

od this can be easily arranged by appending a separate conservation law for the mass of each fluid to

the original system of conservations laws [30–32].

(2) In both compressible and incompressible flows it is desirable, if not essential, that the location of the

interface as determined by the interface tracking algorithm coincide with the location of the jump in
density (and possibly other quantities) as determined by the underlying discretization of the fluid flow

equations. Since the flux of a conserved quantity can be written in terms of the fluid volume that crosses

a cell edge, it is a simple matter to enforce these constraints in a volume-of-fluid method.

(3) Volume-of-fluid methods automatically handle changes in the global topology of the front, such as

fronts that break up into droplets or fronts that collide with themselves and merge. This eliminates

the algorithmic complexity that can occur when the front is modeled by a collection of line segments

or polygons. Furthermore, the logical structure of the algorithm is not significantly more complicated

in three dimensions than in two. This is in contrast to polygonal representations of the front in which
the logical complexity increases substantially in going from two to three dimensions. (A discussion

of the complexity issue can be found in [11].)

(4) The work required to update the front location is entirely local; typically one needs the velocity and

volume fractions in a 3� 3 block (or 5� 5� 5 block in 3D) of cells to update the volume fraction in

the center cell. Since the interface is a codimension 1 set, the computational work required to update

the location of the interface is typically OðNd�1Þ for a problem on a grid with Nd cells in dP 2 space

dimensions. Thus, the work required to update the front location is small compared to the work re-

quired to update the underlying velocity field. The local nature of volume-of-fluid algorithms also
makes them amenable to efficient parallelization strategies.

In conclusion, volume-of-fluid methods can be naturally formulated in conservative finite difference

form, thereby ensuring that the mass of each material is conserved and that the location of the interface will

coincide with jumps in density and other fluid properties, they handle changes in the topology of the front

without an increase in algorithmic complexity or computational cost and the work required to update the

front is small compared to the work required to update the underlying velocity field.

The remainder of this paper is organized as follows. In Section 2 we describe six volume-of-fluid interface

reconstruction algorithms, including the two new second-order accurate algorithms. In Section 3 we study
the spatial accuracy of these methods by using them to reconstruct various stationary interfaces. In Section

4 we discuss operator split advection algorithms and study the time accuracy of second-order accurate,

operator split advection by using it, in combination with each of the six interface reconstruction algorithms,

to approximate various interface shapes undergoing translation and rotation. In Section 5 we describe a

second-order accurate, unsplit advection algorithm we have developed and examine the accuracy of this

algorithm by applying it to the problems studied in Section 4. We state our conclusions in Section 6.
2. Volume-of-fluid interface reconstruction algorithms

In this section we consider the following problem. Let X be a region in the plane R2 and let

~zðsÞ ¼ ðxðsÞ; yðsÞÞ for 06 s6 1 be a piecewise smooth interface. In all of the examples we study~z is C0 and

piecewise C2. In addition, in all but one of these examples~z is a closed curve~zð0Þ ¼~zð1Þ, the exception being
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when~z is a line, in which case~zð0Þ;~zð1Þ 2 oX. We think of~z as separating X into two regions of fluids which

we refer to as ‘‘light’’ and ‘‘dark’’ fluid. Now cover X with a square grid Xh where h denotes the grid

spacing. For each 06 i6M and 06 j6N let fi;j represent the fraction of the i; jth cell’s volume that is
occupied by the dark fluid. The problem is to reconstruct the interface~z, given only the grid Xh and the

volume fractions fi;j, i ¼ 0; . . . ;M and j ¼ 0; . . . ;N . We refer to an algorithm for solving this problem as a

volume-of-fluid interface reconstruction algorithm.

Each of the algorithms described in this section produces a linear approximation to the interface in each

multifluid cell; i.e., each cell which satisfies 0 < fi;j < 1. (We use the terms multi-fluid and multi-material

interchangeably.) In general, these piecewise linear approximations are not continuous. All of the algo-

rithms except for SLIC use the volume fractions in a 3� 3 block of cells to determine the approximate

interface in the center cell of the block. SLIC uses only the volume fractions in a 3� 1 block of cells to
determine the approximate interface in the center cell of the block.

All of the algorithms described below except for SLIC also return a slope, or equivalently, a vector ~n
normal to the interface. In this article we adopt the convention that ~n always points away from the dark

fluid. The normal vector ~ni;j in the i; jth cell together with the volume fraction fi;j uniquely determines the

approximate linear interface in that cell. Thus, since the volume fraction fi;j is given, all of the algorithms

described below (but SLIC) are simply rules for determining a unit normal vector from the values of the

volume fractions in some neighborhood of the i; jth cell.

In what follows we often will replace the problem of finding the unit normal ~n to the approximate in-
terface with that of finding its slope ~m, since for many of the interface reconstruction algorithms we study

this results in very simple formulas for ~m. However, this approach is problematic when the best linear

approximation is a vertical, or nearly vertical, line. This can be remedied by rotating the 3� 3 block of cells

by 90� and applying the interface reconstruction algorithm in the new coordinate frame. In our discussion

of the various interface reconstruction algorithms below we will sometimes omit details related to this

coordinate transformation.

Because of the difficulty in representing a vertical line in slope intercept form, we have found that in

practice it is usually preferable to represent the approximate interface in each multi-material cell as a unit
vector~n ¼ ðnx; nyÞ normal to the approximate interface together with its distance d from the origin. In this

case the line satisfies the following equation

nxxþ nyy ¼ d:

We have found that this is a better computational representation than the slope intercept form

y ¼ ~mxþ b:
2.1. Simple Line Interface Calculation

This algorithm is due to Noh and Woodward [47]. Their version of SLIC is a strictly one-dimensional

method in which one uses the information in a 3� 1 block of cells to reconstruct the interface in the middle
cell. This necessitates the use of an operator split advection algorithm (described in Section 4) when one is

solving problems in two and three space dimensions. Chorin [12] (see also [51]) proposed a variant of the

original SLIC algorithm in which he uses the volume fraction information in a 3� 3 block of cells to re-

construct the interface in the center cell. However in general this modified algorithm still does not yield an

approximation to the interface that is independent of the sweep direction and hence one is still constrained to

use an operator split advection algorithm. Here we study the original version of SLIC as described in [47].

In the SLIC method the reconstructed interface is composed of one or (in two cases) two lines aligned

with the grid. The interface geometry and location is based on the values of the volume fractions in the a
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row of three cells centered on the cell containing the interface. Fig. 2 shows the interface geometry in four of

the nine possible cases. The other five cases are obtained by switching light and dark fluid, or by switching

left and right. Note that the approximate interface is not necessarily perpendicular to the sweep direction.
Since SLIC always returns horizontal or vertical lines, it obviously does not exactly reproduce all linear

interfaces and hence it is at best first-order accurate.

2.2. The center of mass algorithm

This method is due to Saltzman [32]. In the center of mass algorithm, one considers the dark fluid to have

a mass density of 1, and the light fluid to have no mass. To determine the approximate interface in the

center of a 3� 3 block of cells one first determines the center of mass ð�x; �yÞ of the 3� 3 block and then finds
a unit vector that points from this point to the center of the center cell. This vector is taken as the unit

normal ~n to the approximate interface.

To see if this method reproduces all lines exactly we consider the exact version of the method. In other

words, to find ð�x; �yÞ we integrate exactly rather than by using a numerical approximation to the integrals as

one would in practice. Let h be the cell width of the 3� 3 block, and choose a coordinate system in which

the center of the center cell is at the origin. If the center of mass algorithm reproduces all lines exactly, then

in particular for arbitrary m it must reproduce the line y ¼ mx exactly. Let ð�x; �yÞ be the coordinate of the

center of mass of this 3� 3 grid. We can find ð�x; �yÞ by

�x ¼
Z 1:5h

�1:5h

Z mx

�1:5h
xdy dx

Z 1:5h

�1:5h

Z mx

�1:5h
dy dx

�
¼
Z 1:5h

�1:5h
mx2 þ 1:5hxdx

Z 1:5h

�1:5h
mx

�
þ 1:5hdx

¼ 2:25mh3

4:5h2
¼ mh

2

and

�y ¼
Z 1:5h

�1:5h

Z mx

�1:5h
y dy dx

Z 1:5h

�1:5h

Z mx

�1:5h
dy dx

�
¼ 1

9h2

Z 1:5h

�1:5h
m2x2 � 2:25h2 dx

¼ 1

9h2
ð2:25m2h3 � 6:75h3Þ ¼ m2h� 3h

4
:

Thus, the slope of the line given by this method is

�x
��y

¼ mh
2

4

3h� m2h
¼ 2m

3� m2

and hence, the center of mass algorithm does not exactly reconstruct the line y ¼ mx. We therefore conclude

that this method is also at best first-order accurate.
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2.3. The central difference algorithm

In this algorithm, one finds the slope ~m of the approximate interface taking half the difference of the right
and left hand column sums of the volume fractions. In other words, the slope ~m of the approximate in-

terface in the ði; jÞth cell is given by

~m ¼ 1

2

X1
k¼�1

fiþ1;jþk � fi�1;jþk:

If we let

yi ¼ h
X1
k¼�1

fi;jþk;

then yi can be thought of as being an approximation to the y coordinate of the interface at xi ¼ ðiþ 1
2
Þh. In

the central difference algorithm we are determining the slope of the approximate interface by taking a

centered difference of the discrete variable yi.
In order to examine how well this method approximates an arbitrary line, we must consider the fol-

lowing two cases: (a) the line cuts opposite sides of the 3� 3 grid, as in Fig. 3(a) or (b) it cuts adjacent sides,

as in Fig. 3(b). First consider the case shown in Fig. 3(a). Suppose that the interface is given by
yðxÞ ¼ mxþ b. Let A1 be the sum of the volume fractions in the left hand column and A3 the sum of the

volume fractions in the right hand column in Fig. 3(a). We can determine A1 by noting that it is the area of

the trapezoid with sides of length b and mhþ b and width h while A3 is the area of the trapezoid with sides

of length 2mhþ b and 3mhþ b and width h,

A1 ¼
1

2h2
ðmhþ bþ bÞh ¼ m

2
þ b
h
;

A3 ¼
1

2h2
ð3mhþ bþ 2mhþ bÞh ¼ 5

2
mþ b

h
:

Note that these formulas are exact no matter how the line yðxÞ intersects a given cell, provided only that

the line cuts opposite sides of the 3� 3 grid. The central difference approximation to m ¼ y 0ðxÞ is given by

~m ¼ 1

2

X1
k¼�1

fiþ1;jþk � fi�1;jþk ¼
A3 � A1

2
¼ m:
h 2h 3h

2h

3h

h

0
h 2h 3h

2h

3h

h

0

c

(a) (b)

Fig. 3. (a) Center differences will exactly reconstruct a line that cuts opposite sides of a 3� 3 block of cells. (b) It will not exactly

reconstruct a line that cuts adjacent sides of a 3� 3 block of cells.
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Since the exact and approximate interfaces have the same slopes and the same volume fraction in the

center cell, they are the same line. Thus, when the true interface is a line that intersects opposite sides of the

3� 3 block, the approximate interface in the center cell will be precisely this line.
Now consider the case shown in Fig. 3(b), where c is the distance from the point where the line yðxÞ in-

tersects the top of the 3� 3 block to the right-hand side of this block. Again, let A1 be the sum of the volume

fractions in the left hand column, and let A3 be the sum of the volume fractions in the right hand column. The

quantityA1 is still the area of the trapezoid with sides of length b andmhþ b, andwidth h. However, nowA3, is

the area of the shape formed by subtracting the right triangle with the sides of length c and 3mhþ b� 3h from
the trapezoid with sides of length 2mhþ b and 3mhþ b, and width h. Thus, in the second case we have

A1 ¼
1

2h2
ðmhþ bþ bÞh ¼ m2 þ bh;

A3 ¼
1

h2
1

2
ð3mh

�
þ bþ 2mhþ bÞh� 1

2
ð3mhþ b� 3hÞch

�

¼ 5

2
mþ b

h
� 3

2
cm� bc

2h
þ 3

2
c:

Again these formulas are exact no matter how the line intersects a given cell, provided only that the line

yðxÞ intersects adjacent sides of the 3� 3 block. The central difference approximation to the slope m is thus,

A3 � A1

2
¼ m� 3

4
cm� bc

4h
þ 3

4
c:

Thus, when the linear interface intersects adjacent sides of the 3� 3 block, the approximate interface in the

center cell will not be the original interface. Thus the central difference algorithm is not second-order accurate.

In practice one does not know that the true interface is a valid function of x (e.g., it could be a vertical
line). We can address this problem by also determining an approximation ~my to m by differencing the top

and bottom rows and choosing the best value of ~m. One way to choose between the two values is to choose

the smaller value

~m ¼ minf~mx; ~myg:

This strategy will always return an exact approximation to a line that cuts opposite sides of the 3� 3

block, even a vertical line. Another (better) strategy is discussed in Section 2.6.

We note that in their SOLA-VOF method Hirt and Nichols [52] used a centered difference of the volume

fractions to determine a location on the interface for the purposes of specifying pressure boundary con-
ditions. However they used an algorithm that is quite similar to SLIC to reconstruct the interface for the

purposes of updating the volume fractions in time. Based on the computational tests described below, we

believe that their volume fraction advection algorithm would have been more accurate if they had also used

the central difference algorithm in the interface reconstruction phase of the volume fraction update.

2.4. Parker and Youngs’ method

In this method, due to Parker and Youngs [70], one calculates an approximation torf , which is taken to
point in the direction normal to the approximate interface. One calculates rf with the following difference

scheme

of
ox

¼ fE � fW
2

;

of
oy

¼ fN � fS
2

:



f

f f

f

W

N

E

S

Fig. 4. The stencil that Parker and Youngs use to determine rf .
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The variables fE, fW, fN, fS are centered in the cells as shown in Fig. 4 and are given by

fE ¼ 1

2þ a
ðfiþ1;j�1 þ afiþ1;j þ fiþ1;jþ1Þ;

fW ¼ 1

2þ a
ðfi�1;j�1 þ afi�1;j þ fi�1;jþ1Þ;

fN ¼ 1

2þ a
ðfi�1;jþ1 þ afi;jþ1 þ fiþ1;jþ1Þ;

fS ¼
1

2þ a
ðfi�1;j�1 þ afi;j�1 þ fiþ1;j�1Þ;

where a is a free parameter. Parker and Youngs report that a ¼ 2 seems to give the best results.

In order to determine how well Parker and Youngs’ method approximates straight lines, we consider the

line y ¼ 1
3
xþ h shown in Fig. 5(a). The volume fractions due to this line are shown in Fig. 5(b). The values

of fE, fW, fN, fS are

fE ¼ 1

aþ 2

5a
6

�
þ 1

�
;

fW ¼ 1

aþ 2

1a
6

�
þ 1

�
;

fN ¼ 0;

fS ¼
1

aþ 2
ð1þ aþ 1Þ ¼ 1;

and hence

of
ox

¼ ðfE � fWÞ
2

¼ a
3ðaþ 2Þ ;

of
oy

¼ ðfN � fSÞ
2

¼ � 1

2
:

The slope of the approximate interface is therefore

~m ¼ �of =ox
of =oy

¼ 2a
3ðaþ 2Þ :
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Fig. 5. (a) Parker and Youngs’ method will reconstruct this line exactly only if a ¼ 2. (b) The volume fractions associated with the line

shown in (a). (c) Parker and Youngs’ method does not reconstruct this line exactly for a ¼ 2. Thus it does not reproduce all linear

interfaces exactly, and so we conclude it is at best a first-order method. (d) The volume fractions associated with the line shown in (c).
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The correct slope of the line is m ¼ 1
3
. Thus if we wish to choose a so that

2a
3ðaþ 2Þ ¼

1

3
:

We must have a ¼ 2. In other words, only the value of a ¼ 2 will yield the correct linear interface

y ¼ 1
3
xþ h. We now show that choosing a ¼ 2 does not result in an algorithm that reconstructs all lines

exactly. Consider the line y ¼ 2
3
xþ h shown in Fig. 5(c). The volume fractions due to this line are shown in

Fig. 5(d). When a ¼ 2 the values of fE, fW, fN, fS are

fE ¼ 1

4
1

�
þ 2þ 2

3

�
¼ 11

12
;

fW ¼ 1

4
1

�
þ 2

3
þ 0

�
¼ 5

12
;

fN ¼ 1

4
0

�
þ 2

12
þ 2

3

�
¼ 5

24
;

fS ¼
1

4
ð1þ 2þ 1Þ ¼ 1;

and hence

of
ox

¼ 1

2

11

12

�
� 5

12

�
¼ 1

4
;

of
oy

¼ 1

2

5

24

�
� 1

�
¼ �19

48
:
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The slope of the approximate interface is therefore

~m ¼ �of =ox
of =oy

¼ 1

4

48

19
¼ 12

19
: ð6Þ

Since the correct slope is m ¼ 2=3, we conclude that Parker and Youngs’ algorithm does not reconstruct

all linear interfaces exactly.
Note that the quantity in (6) is independent of the grid width h. This implies that the approximation to

the slope does not improve as h ! 0; i.e., in general this algorithm makes an Oð1Þ error in the slope of the

interface. We therefore conclude that Parker and Youngs’ algorithm is at best first-order accurate. This is

consistent with the numerical results presented in Sections 3–5.

2.5. Least squares volume-of-fluid interface reconstruction algorithm

The LVIRA is due to Puckett [61] and has been used to model fluid interfaces in compressible [31,65–67]
and incompressible [41,71] flows. Consider the 3� 3 block of cells centered on the i; jth cell. Let f ðxÞ be a
curve that passes through the i; jth cell and let fk;l for k ¼ i� 1; . . . ; iþ 1, l ¼ j� 1; . . . ; jþ 1 represent the

volume fractions due to the function f , in the 3� 3 block. Now let ~f be a linear approximation to f with

slope ~m and volume fractions ~fk;l and assume that ~f has the same volume fraction in the i; jth cell as f ; i.e.,
fi;j ¼ ~fi;j. Define E2

i;j to be the discrete L2 error between the volume fractions in the 3� 3 block of cells

centered on the i; jth cell,

E2
i;jð~mÞ ¼

X1
k;l¼�1

ð~fiþk;jþlð~mÞ
 

� fiþk;jþlÞ2
!1

2

: ð7Þ

In the LVIRA algorithm one minimizes E2
i;j as a function of ~m by rotating the line ~f under the constraint

that this line exactly reproduces the volume fraction in the center cell, ~fi;j ¼ fi;j.
3

Note that basic design criterion in the LVIRA algorithm is to minimize some measure of the error

between the volume fractions given by the true and approximate interfaces. One could instead choose to
minimize the discrete L1 error

E1
i;j ð~mÞ ¼ max

k;l¼�1;1
j~fiþk;jþlð~mÞ � fiþk;jþlj

or the discrete L1 error

E1
i;jð~mÞ ¼

X1
k;l¼�1

j~fiþk;jþlð~mÞ � fiþk;jþlj ð8Þ

in the 3� 3 block of cells centered on the i; jth cell, subject to the constraint that ~fi;j ¼ fi;j.
We claim that if the original interface f ðxÞ is a line, then the LVIRA algorithm with any of the norms

defined in (7) and (8) will exactly reconstruct the line in the i; jth cell. To see this suppose that f ðxÞ is a line

and assume that that the minimization procedure will always find the correct global minimum when given

volume fraction data fk;l due to a linear interface in a 3� 3 block of cells. (Our test problems below

demonstrate that this is a reasonable assumption.) Each of the norms Ep
i;j in (7) and (8) has a minimum
3 In order for (7) to represent our algorithm correctly one must allow ~m to have the value ~m ¼ 1. For this reason it is better to

express the error Ei;j in (7) as a function of the unit normal ~n to the approximate interface. However, we use the formulas for the

approximate slope ~m instead of those for the unit normal vector~n, since we assume that they will be more familiar most readers. We

hope that the use of ~m in (7) this will not cause the reader confusion.
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value of 0 that is attained when fk;l ¼ ~fk;l for each cell in the 3� 3 block. This will only occur when
~f ðxÞ ¼ f ðxÞ: Thus the LVIRA algorithm reconstructs linear interfaces exactly.

In the work presented below we determine the slope ~m by using the central difference algorithm to obtain
an initial guess and then using Brent’s algorithm to minimize E2

i;j. (Brent’s algorithm is an iterative method

that fits a parabola over the interval, and uses the minimum of the parabola as the next guess for the

minimum of the given function. If it cannot fit a parabola, it does a golden section search. The method

stops when both the interval and consecutive guesses are within a given tolerance. See [72] for further

details.) To help ensure that Brent’s method will converge to the global minimum, we slowly expand the

interval about the initial guess until the error at the endpoints of the interval is greater than the one given by

the initial guess. In Fig. 7 we present an example of Brent’s method improving on the initial guess given by

the central difference algorithm and finding the minimum of the function E2
i;jð~mÞ shown in Fig. 6.

We note that the term ‘‘least squares’’ that has come to be associated with this algorithm may be

somewhat misleading. It was chosen because the method was originally designed to minimize the discrete L2

error defined in (7). Since this is the same measure of error that is minimized in a ‘‘least squares’’ data fit it

seemed natural to refer to the algorithm as the ‘‘least squares’’ volume-of-fluid interface reconstruction

algorithm. However, one should note that given a fixed volume fraction fi;j in the center cell, the function

Fð~nÞ that takes a unit vector~n normal to the approximate linear interface ~f in the center cell and returns

the volume fractions ~fiþk;jþl for k; l ¼ �1; . . . ; 1 in the 3� 3 block of cells surrounding this cell, subject to

the constraint that ~fi;j ¼ fi;j, is nonlinear. Thus, unlike the least squares data fitting algorithm, the problem
of minimizing (7) can not be formulated as the solution of a system of linear equations.

2.6. Efficient least squares VOF interface reconstruction algorithm

The ELVIRA is due to Pilliod [63] and has been used in thin flame models for tracking deflagrations and

detonations [14,68], and to track the motion of fluid interfaces in variable density incompressible flow [21],

and to track the motion of the boundary between a gas and a solid in shock physics applications [40].
-1.0 -0.5 0.0 0.5 1.0
~m

0.0
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  (

m
)

Fig. 6. The error E2
i;jð~mÞ between a circle that passes through the cell center, with a tangent line of slope of 0.5 at that point, and the

approximate interface ~f with slope ~m.



0.40 0.45 0.50 0.55 0.60
~
m

0.000

0.002

0.004

0.006

0.008

~
2

E
  (

m
)

central differencing

Brent’s method

Fig. 7. We use the centered difference algorithm to obtain a starting point for Brent’s method, which we then use to find the minimum

of the curve shown in Fig. 6.
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In the ELVIRA method, one obtains the slope ~m of the approximate linear interface ~f by choosing

between six candidate values of ~m. The first three of these six candidate values are the backward, central
and forward differences of the column sums of the volume fractions. In other words, we consider the

following three values

~mx
b ¼

X1
l¼�1

fi;jþl � fi�1;jþl;

~mx
c ¼

1

2

X1
l¼�1

fiþ1;jþl � fi�1;jþl;

~mx
f ¼

X1
l¼�1

fiþ1;jþl � fi;jþl:

ð9Þ

The other three candidate values are the backward, central, and forward differences of the column sums

of the volume fractions in the y-direction; i.e., the differences of the row sums,

~my
b ¼

X1
k¼�1

fiþk;j � fiþk;j�1;

~my
c ¼

1

2

X1
k¼�1

fiþk;jþ1 � fiþk;j�1;

~my
f ¼

X1
k¼�1

fiþk;jþ1 � fiþk;j:

ð10Þ

(Note that the slopes ~my are with respect to the coordinate system which is rotated 90� from the original

coordinate system. The lines ~f ð~myÞ associated with these slopes and the resulting errors Ep
i;jð~myÞ must be
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interpreted appropriately.) To determine the best slope ~m to use for a given collection of volume fractions

fk;l in the 3� 3 block we minimize one of the norms in (7) and (8) over the slopes in (9) and (10),

~m ¼ minfEp
i;jð~mx

bÞ; . . . ;E
p
i;jð~mx

f Þ;E
p
i;jð~my

bÞ; . . . ;E
p
i;jð~my

f Þ; ð11Þ
where the superscript p ¼ 1, 2, 1 denotes one of the discrete norms in (7) and (8).

We claim that this method reconstructs all linear interfaces exactly. In Section 2.4 we saw that if the true

interface is a line that intersects opposite sides of the 3� 3 block, then a centered difference of the column
sums exactly reproduces this line. In this case, (11) will return either ~m ¼ ~mx

c or ~m ¼ ~my
c, since one of these

values must result in Ep
i;jð~mÞ ¼ 0.

Now suppose that the linear interface does not intersects opposite sides of the 3� 3 block. Therefore, it

must intersect adjacent sides of the 3� 3 block. Consider the case shown in Fig. 3(b), where the interface is

given by y ¼ mxþ b with m6 1. Let A1 be the sum of the volume fractions in the left hand column and A2 be

the sum of the volume fractions in the middle column. The quantities A1 and A2 are given by

A1 ¼
m
2
þ b
h
;

A2 ¼
1

2h2
ð2mhþ bþ mhþ bÞh ¼ 3

2
mþ b

h
;

and their difference is,

~mx
b ¼ A2 � A1 ¼ m:

Thus a backward difference of the column sums exactly reconstructs a linear interface that intersects the

left hand side of the 3� 3 block and has slope m6 1. By considering the mirror image of Fig. 3(b), one can

see that a forward difference of the column sums will exactly reconstruct a linear interface that intersects the

right hand side of the 3� 3 block and has slope mP � 1. If the magnitude of the slope m of the true linear

interface is greater than one, then the argument above, applied to the 3� 3 block in a coordinate frame that

has been rotated 90�, shows that either a backward or forward difference of the row sums will produce the
correct slope. Thus, at least one of the errors Ep

i;jð~ma
bÞ inside the square brackets in (11) will be 0, thereby

guaranteeing that the ELVIRA algorithm will reconstruct all linear interfaces that pass through the center

cell of the 3� 3 block exactly.

If one only considers linear interfaces, the centered difference may seem redundant, since all three dif-

ference methods produce the correct slope when the linear interface intersects opposite sides of the 3� 3

block. For nonlinear interfaces, however, it appears that a centered difference sometimes produces a more

accurate approximation to the interface than the other two methods. For example, consider a circle that is

placed in the 3�3 block such that the top of the circle intersects the center of the center cell. Then a
backward difference results in a positive slope, a forward difference results in a negative slope, while a

centered difference results in a zero slope. The latter is the best approximation to the slope of the tangent to

the circle at the center of the center cell.
3. Stationary interface reconstruction

We now examine the accuracy of the reconstruction methods that were introduced in Section 2. All of
the test problems in this section are stationary; no advection is performed and hence there is no error due to

discretization in time.

3.1. Error measurement

The exact interface~z separates the plane into two regions, which we refer to as the ‘‘dark’’ fluid and the

‘‘light’’ fluid. Let f ðx; yÞ be the characteristic function associated with the dark fluid as defined in (2). The
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approximate interface also separates the plane into regions of dark and light fluid. Let ~f ðx; yÞ be the

characteristic function associated with this partition of the plane. Then a natural measure of the error

between the approximate and exact interfaces is

L1 ¼ 1

l

Z Z
jf ðx; yÞ � ~f ðx; yÞjdxdy; ð12Þ

where l is the length of the exact interface~z. In what follows, we evaluate (12) by finding the points where
the true and approximate interfaces intersect each other and the cell edges, and then evaluating the integrals

between these points analytically. We use the exact analytic equation instead of a numerical approximation

to the integral in order to avoid truncation error and to minimize execution time.

In what follows we will sometimes average (12) over many (100 or 1000) computations with different

initial data. This is done to avoid anomalously small values of L1 that might arise from a fortuitous

alignment of the interface with the grid. (For example, SLIC will reproduce a line exactly if the line is

parallel to one of the axes.)

In all of the tables below we calculate a the convergence rate of each algorithm between successive grid
spacings h. These convergence rates were calculated based on the assumption that the truncation error of

each method is of the form of C1hq, where q is the order of the method (i.e., the ‘‘Rate’’ and C1 is a constant

that is independent of both the grid size h and the time step Dt).
Please note that both the LVIRA and ELVIRA algorithms from Section 2 which we claim are second-

order accurate sometimes exhibit rates of convergence between successive grid spacings h are 2.00 or above

and sometimes lower than 2.00, but not lower than 1.9 (to two significant places). The fluctuations in the

convergence rate (aka the order of the methods) shown in Table 1 below are typical of a second-order

accurate method.

3.2. Test problems

Test problem 3.1. We begin by examining the accuracy with which each interface reconstruction algorithm

approximates a line. The errors reported here were averaged over 1000 lines with randomly generated

slopes and intercepts. It is apparent from the data presented in Table 1 that the errors produced by the

SLIC, center of mass, Parker and Youngs’ and centered difference algorithms decrease at a first-order rate.

However, it should be noted that the amplitudes of these errors differ by more than two orders of mag-
nitude, with SLIC consistently having the largest error for a given grid width h.

For all intents and purposes, the LVIRA and ELVIRA algorithms reproduce the lines exactly. The

magnitude of the ELVIRA algorithm’s error is machine zero, which here is Oð10�16Þ, while the magnitude

the LVIRA algorithm’s error is determined by the tolerance of the root finding algorithm that one uses with

it. Here that tolerance is 10�10 leading to an error that is Oð10�12Þ. In particular, when we use a tolerance of

10�10 in Brent’s method the error due to the LVIRA algorithm is Oð10�12Þ. When we changed the tolerance
Table 1

The average L1 error and convergence rate when approximating 1000 random lines

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
2

1.3e+0 1.5e)1 1.3e)2 5.2e)3 4.2e)12 3.2e)17
1
4

6.5e)1 1.0 7.6e)2 1.0 1.1e)2 0.3 2.8e)3 0.9 2.0e)12 – 2.1e)17 –
1
8

3.3e)1 1.0 3.7e)2 1.0 6.6e)3 0.8 1.6e)3 0.8 1.1e)12 – 1.9e)17 –
1
16

1.6e)1 1.0 1.9e)2 1.0 3.6e)3 0.8 7.2e)4 1.2 5.2e)13 – 9.8e)17 –
1
32

8.2e)2 1.0 9.2e)3 1.0 1.8e)3 1.0 4.1e)4 0.8 2.8e)13 – 2.6e)16 –
1
64

4.1e)2 1.0 4.8e)3 0.9 9.9e)4 0.9 1.8e)4 1.2 1.4e)13 – 7.3e)17 –
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to 10�14, the error reduced to Oð10�16Þ, which is machine zero. In other words, one can set the tolerance of

the root finder in the LVIRA algorithm so as to achieve an error that is machine zero.

Remark. In Test problem 3.1 the LVIRA and ELVIRA algorithms reproduce the linear interfaces exactly;

i.e., up to a given tolerance which is machine zero for the ELVIRA algorithm and is Oð10�12Þ for the

LVIRA algorithm. This is the reason that no convergence rates are reported for these two algorithms in

Table 1. Please also note that – as we discuss in the paragraph immediately above – one can also arrange for

the error due to the LVIRA algorithm to be machine zero by setting the tolerance of the root finding al-

gorithm (i.e., Brent’s method) to 10�14.

Test problem 3.2. Next we examine the accuracy with which each interface reconstruction algorithm ap-
proximates a circle. The data presented in Table 2 is the error L1 defined in (12) averaged over 1000 unit

circles with randomly generated centers. It is apparent from this data that the convergence rate of the SLIC

algorithm is precisely first-order rate with respect to h, while the convergence rate of the center of mass

algorithm oscillates about 1.0 on the coarser grids (h ¼ 1=2 and 1=4) and then is exactly 1.0 on the finer

grids. The convergence rate for Parker and Youngs’ method exhibits a similar behavior, but has a better

overall decrease; i.e., a larger convergence rate on the coarser grids. However note that the convergence rate

for Parker and Youngs’ method asymptotes to 1.0 as h ! 0. (In this regard, please read our remark below.)

The convergence rate of the LVIRA algorithm is precisely 2.0 for all values of h, while the convergence
rate of the ELVIRA algorithm oscillates about 2.0. This indicates that both the LVIRA and ELVIRA

algorithms are second-order accurate on this test problem. Finally we note that the convergence rate of the

centered difference algorithm is 2.0 on the coarse grids, but begins to decrease (2:0 ! 1:9 ! 1:8) as the grid
is refined. This is evidence that the centered difference algorithm is not second-order. See the remark in the

next paragraph and the discussion accompanying Test problem 3.3 for details of our reasoning.

Remark. We caution the reader against drawing conclusions concerning an algorithm’s accuracy from the

error and convergence rate data on grids that are too coarse; i.e., h too large, such as h ¼ 1=2, 1=4 and 1=8
in Table 2. The behavior of an algorithm on an under-resolved grid is not a good indicator of its behavior in

the limit as the grid spacing h ! 0, since such grids can give rise to anomalously large or small errors and

hence affect the quality of the convergence rate data. For example, the error due to Parker and Youngs’

method in Table 6 actually increases as h goes from 1
2
to 1

4
yielding a negative convergence rate. This is not a

flaw in the algorithm, but rather a symptom of computing on an under-resolved grid. The errors due to

Parker and Youngs’ method in Tables 2 and 6 are an excellent example of the effect of under-resolution on a

numerical method. In order to avoid confusion that may occur in interpreting our results on under-resolved

grids, we usually only present the results of computations for which hP 1
8
. However, we do display some

data from computations on coarser grids, because we think that it is a valuable illustration of the effects of

computing on an under-resolved grid.
Table 2

The average L1 error and convergence rate when approximating 1000 random circles

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
2

5.8e)3 6.7e)3 8.4e)3 7.8e)3 1.1e)2 9.2e)3
1
4

2.8e)3 1.0 3.2e)3 1.1 2.1e)3 2.0 2.0e)3 2.0 2.6e)3 2.0 2.0e)3 2.2
1
8

1.4e)3 1.0 1.8e)3 0.8 6.6e)4 1.7 5.1e)4 2.0 6.6e)4 2.0 5.2e)4 2.0
1
16

6.8e)4 1.0 9.9e)4 0.9 2.6e)4 1.3 1.4e)4 1.9 1.7e)4 2.0 1.4e)4 1.9
1
32

3.4e)4 1.0 5.1e)4 1.0 1.2e)4 1.2 3.9e)5 1.8 4.3e)5 2.0 3.6e)5 1.9
1
64

1.7e)4 1.0 2.5e)4 1.0 5.6e)5 1.1 1.1e)5 1.8 1.1e)5 2.0 9.0e)6 2.0
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It is surprising that a centered difference exhibits nearly second-order accuracy when we use it to re-

construct a circle, yet it is clearly not second-order accurate when we use it to reconstruct a line. We believe

that this is because the data in Table 2 is an average measure of the error and that, for a given circle, the
centered difference algorithm returns a second-order accurate approximation to a tangent to the circle in a

large proportion of the cells that contain a portion of the circle. Our reasoning is as follows. As we noted in

Section 2.4 a centered difference of the column sums of the volume fractions will reconstruct a line exactly if

the line passes through the opposite sides of the 3� 3 grid. It is likely that if the interface is circular, then in

a large number of cases there will be at least one second-order accurate linear approximation to the in-

terface (e.g., a tangent) that passes through opposite sides of the 3� 3 block and that the centered difference

algorithm may return a second order approximation to this line. However, if this is only true for most, but

not all cells that are occupied by the circular interface, then there must be some cells in which the centered
difference algorithm is only returning a first-order approximation to the interface.
Test problem 3.3. We tested this conjecture by examining the pointwise error produced by each algorithm,
rather than an integral norm of the error such as that defined in (12). For our purposes here we define the

error in the discrete L1 or ‘‘sup’’ norm by

L1 ¼ max
i;j

fL1
i;jg; ð13Þ

where the maximum is only taken over those cells ði; jÞ that contain a portion of the interface and

L1
i;j ¼ max

ðx;yÞ2Xi;j

jf ðx; yÞ � ~f ðx; yÞj; ð14Þ

where Xi;j denotes the i; jth cell.

In the work presented here we evaluate the error L1
i;j in a given cell by determining the maximum distance

between the two curves f and ~f analytically and comparing these values with those at the cell edges.
Note that the definition in (13) and (14) is reasonable only when the true and approximate interfaces

occupy precisely the same cells. This precludes us from using it in later sections when we study the accuracy

of volume-of-fluid advection algorithms.

In Table 3 we present the error L1 when we used each method to reconstruct one randomly generated

circle. It is apparent that in this norm SLIC is Oð
ffiffiffi
h

p
Þ, LVIRA and ELVIRA are second-order accurate and

centered difference and the other algorithms are first-order accurate. This data supports our conjecture

concerning the near second-order accurate behavior of the central difference algorithm in the averaged L1

norm when it is used to reconstruct a circular interface. Namely that all of the algorithms except the
LVIRA and ELVIRA produce errors that are first-order in the grid spacing h in some of the cells that

contain the interface, whereas the LVIRA and ELVIRA algorithms produce errors that are second-order in

grid spacing h in all such cells.

Test problem 3.4. Next we study the accuracy of these methods when we use them to reconstruct a con-

tinuous interface that has several discontinuities in its first derivative. In the first test problem the exact

interface is a cross formed by removing four unit squares from the corners of a square three units on a side.

In Table 4 we present the results of using the various interface reconstruction methods to reconstruct this
shape. The data presented in Table 4 is the error L1 averaged over 1000 crosses with randomly generated

centers and orientations.

It is apparent from Table 4 that the SLIC algorithm exhibits precisely first-order accuracy, the center of

mass algorithm exhibits somewhat better than first order accuracy for the range of h tested, Parker and

Youngs’ algorithm reduces the error by a factor of 500 over the same range. The centered difference,

LVIRA and ELVIRA algorithms exhibit precisely second-order accuracy to two significant digits.



Table 4

The average L1 error and rate when approximating 1000 random crosses

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

1.6e)2 5.6e)3 4.5e)3 4.4e)3 4.4e)3 4.2e)3
1
16

7.9e)3 1.0 1.9e)3 1.5 1.2e)3 1.7 1.1e)3 2.0 1.1e)3 2.0 1.1e)3 2.0
1
32

3.9e)3 1.0 7.5e)4 1.4 3.7e)4 1.7 2.9e)4 1.9 2.8e)4 2.0 2.7e)4 2.0
1
64

1.9e)3 1.0 3.1e)4 1.3 1.2e)4 1.7 7.3e)5 2.0 6.8e)5 2.0 6.6e)5 2.0

Table 3

Maximum pointwise error L1 and convergence rate when approximating a circle

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

3.1e)1 5.6e)3 5.8e)3 2.1e)2 5.8e)3 5.8e)3
1
16

2.3e)1 0.4 2.6e)3 1.0 2.3e)3 1.3 9.2e)3 1.1 1.4e)3 2.0 1.4e)3 2.0
1
32

1.6e)1 0.5 1.3e)3 1.0 1.1e)3 1.0 4.3e)3 1.1 3.5e)4 2.0 3.5e)4 2.0
1
64

1.1e)1 0.5 6.4e)4 1.0 5.6e)4 1.0 2.0e)3 1.0 8.6e)5 2.0 8.6e)5 2.0

15 cells

5 cells

5 cells

Fig. 8. The notched circle, first introduced by Zalesak [73] to study the accuracy of advection algorithms, which we use in several of

our test problems.

Table 5

The average L1 error and rate when approximating 1000 random notched circles

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

1.2e)2 3.0e)3 2.6e)3 2.6e)3 2.5e)3 2.6e)3
1
16

5.3e)3 1.2 9.1e)4 1.7 6.9e)4 1.9 6.5e)4 2.0 6.3e)4 2.0 6.6e)4 2.0
1
32

2.7e)3 1.0 3.0e)4 1.6 1.9e)4 1.9 1.7e)4 2.0 1.6e)4 2.0 1.7e)4 2.0
1
64

1.2e)3 1.2 1.1e)4 1.5 5.4e)5 1.8 4.1e)5 2.0 3.9e)5 2.0 4.0e)5 2.0
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Test problem 3.5. Finally we study the problem of reconstructing the shape shown in Fig. 8. This shape is

produced by cutting a rectangle 1/3 units in width from a unit circle, starting 1/3 of a unit length from the

top of the circle. This shape was introduced by Zalesak [73] to study the accuracy of flux-corrected
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transport (FCT) on a simple advection problem. It has subsequently been used by many other authors to

study the accuracy of various advection algorithms [42,44].

In Table 5 we show the average L1 error that we obtained after approximating 1000 of these shapes with
randomly generated centers and orientations. We see that the SLIC algorithm exhibits roughly first-order

accuracy, the center of mass algorithm exhibits slightly better than first-order accuracy, Paker and Youngs’

algorithm exhibits slightly less than second-order accuracy and the enter difference, LVIRA and ELVIRA

algorithms exhibit clear second-order accuracy for this problem. 4
4. Volume-of-fluid advection algorithms

In order to approximate solutions of the advection equation (5) we need an algorithm for evolving the

volume fractions in time. Let un
i�1

2
;j
(resp. vn

i;j�1
2

) denote the value of u (resp. v) at the center of the left (resp.
bottom) edge of the i; jth cell and suppose that these velocities satisfy a discrete form of (4),

ðun
iþ1

2
;j
� un

i�1
2
;j
Þ

Dx
þ
ðvn

i;jþ1
2

� vn
i;j�1

2

Þ
Dy

� 0:

Given an approximation to the interface in each cell for which 0 < f n
i;j < 1 we wish to determine the

volume fractions f nþ1
i;j at the new time tnþ1 ¼ ðnþ 1ÞDt. We refer to algorithms for doing this as volume-of-

fluid advection algorithms.

In this article we study two types of advection algorithms. Both are based on the standard conservative

finite difference update of (5),

f nþ1
i;j ¼ f n

i;j þ
Dt
Dx

½F n
i�1

2
;j � F n

iþ1
2
;j� þ

Dt
Dy

½Gn
i;j�1

2
� Gn

i;jþ1
2
�; ð15Þ

where F n
i�1

2
;j
¼ ðfuÞni�1

2
;j denotes the flux of f across the left-hand edge of the i; jth cell and Gn

i;j�1
2

¼ ðfvÞni;j�1
2

denotes the flux across the bottom edge of the i; jth cell, etc.

4.1. Operator split advection

The simplest advection algorithm for approximating solutions of (5) is the fractional step or operator split

method,

f �
i;j ¼ f n

i;j þ
Dt
Dx

½F n
i�1

2
;j � F n

iþ1
2
;j�; ð16Þ
f nþ1
i;j ¼ f �

i;j þ
Dt
Dy

½G�
i;j�1

2
� G�

i;jþ1
2
�: ð17Þ

where the superscript � represents an intermediate value for the volume fractions and fluxes. There is a

simple geometric interpretation of the fluxes in (16) and (17). Suppose that un
iþ1

2
;j
is positive. Divide the

ði; jÞth cell into two disjoint rectangles, with areas un
iþ1

2
;j
DtDy on the right and ðDx� un

iþ1
2
;j
DtÞDy on the left as

shown in Fig. 9(a).
4 We caution the reader against drawing conclusions concerning an algorithm’s accuracy from the convergence rate data on the

coarser grids, namely h ¼ 1=2, 1=4 and 1=8. The behavior of an algorithm on an under resolved grid is not a good indicator of its

behavior in the limit as the grid spacing h ! 0.



u    t∆ ∆u    t

(a) (b)

Fig. 9. (a) In operator split advection, the fluid to the right of the dotted line crosses the right cell edge. (b) In a volume-of-fluid

method, we use the reconstructed interface to determine the amount of fluid that crosses each edge.

J.E. Pilliod Jr., E.G. Puckett / Journal of Computational Physics 199 (2004) 465–502 485
All of the fluid to the right of the dotted line in Fig. 9(a) will cross the right-hand edge during this time

step. In particular, the flux of dark fluid across this edge is equal to the amount of dark fluid contained in
this rectangle. In a volume-of-fluid method, this can be determined by the location of the reconstructed

interface as shown in Fig. 9(b). Thus, if Viþ1
2
;j denotes the volume of dark fluid in the center cell to the right

of the dotted line in Fig. 9(b), then the (approximate) volume fraction flux across the right hand cell edge is

given by

F n
iþ1

2
;j ¼ uniþ1

2
;jViþ1

2
;j=ðuniþ1

2
;jDtDyÞ ¼ Viþ1

2
;j=ðDtDyÞ: ð18Þ

After using (18) in (16) to determine the intermediate volume fractions f �
i;j, one then uses these values to

reconstruct the interface in all cells that satisfy 0 < f �
i;j < 1. The vertical fluxes G�

i;jþ1=2 are then determined

by a geometric construction analogous to the one described for the horizontal fluxes, and the volume
fractions at the new time level f nþ1

i;j are found by inserting these vertical fluxes into (17). This procedure can

be made second-order accurate simply by alternating the sweep direction at each time step.

4.1.1. The CFL constraint

It is apparent from geometric considerations that one must choose the CFL number r so that the

amount of fluid that leaves a cell in one time step is no more than the amount of fluid that was originally in

the cell. In other words, one must choose r so that

Viþ1
2
;j � Vi�1

2
;j 6 fi;jDxDy ð19Þ

for all i, j. One way to ensure that (19) is always satisfied is to choose r 2 ð0; 1� so that

juniþ1
2
;jjDt6Dx=2 and jvni;jþ1

2
jDt6Dy=2 for all i; j: ð20Þ

An alternative, is to choose r 2 ð0; 1� so that

uniþ1
2
;j

�
� uni�1

2
;j

	
Dt6Dx and vni;jþ1

2

�
� vni;j�1

2

	
Dt6Dy:

This latter condition is less restrictive than (20) and will usually result in a larger time step

4.2. Test problems

Test problem 4.1. We begin by studying the accuracy with which second-order operator splitting combined

with each of the interface reconstruction methods approximates a line that is translating in a constant

velocity field. We obtained the errors reported in Table 6 by translating 100 randomly generated lines with



Table 6

The average L1 error after translating 100 randomly generated lines one time unit

h SLIC Rate CM Rate P&Y rate CD Rate LVIRA Rate ELVIRA Rate

1
2

9.6e)1 1.5e)1 6.7e)3 3.4e)3 4.0e)12 6.7e)17
1
4

5.1e)1 0.9 7.9e)2 0.9 9.9e)3 )0.6 2.2e)3 0.6 1.3e)12 – 6.8e)17 –
1
8

2.7e)1 1.0 3.6e)2 1.1 6.4e)3 0.6 1.5e)3 0.6 1.1e)12 – 1.1e)16 –
1
16

1.2e)1 1.1 1.8e)2 1.0 3.3e)3 0.9 4.0e)4 1.9 4.0e)13 – 9.0e)17 –
1
32

6.6e)2 0.9 9.5e)3 1.0 1.9e)3 0.9 3.1e)4 0.4 2.1e)13 – 4.2e)17 –
1
64

3.0e)2 1.1 4.4e)3 1.1 8.4e)4 1.1 1.1e)4 1.5 8.2e)14 – 7.9e)17 –
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unit velocity in a randomly generated direction for one unit of time and averaging the error L1 between the

approximate and exact solutions. It is apparent from the data in Table 6 that the SLIC, center of mass,

centered difference, and Parker and Youngs’ algorithms are all first-order accurate.

As with a stationary line, the LVIRA and ELVIRA methods essentially reproduce the interface exactly.

The error produced by the LVIRA method is entirely due to the tolerance we used in Brent’s algorithm. The

ELVIRA method is accurate to machine zero. One can use this as a design criterion for constructing a

formally second-order accurate interface tracking algorithm. Namely, require that it must propagate a
straight line with any slope in a uniform velocity field in any direction, exactly.

Remark. Please note that in Test problem 4.1 the LVIRA and ELVIRA algorithms translate lines exactly;

i.e., up to a given tolerance which is machine zero for the ELVIRA algorithm and is Oð10�12Þ for the

LVIRA algorithm. This is the reason that no convergence rates are reported for these two algorithms in

Table 6. Please also note that – as we discuss in the paragraph immediately preceding Table 1 – one can also

arrange for the error due to the LVIRA algorithm to be machine zero by setting the tolerance of the root

finding algorithm (e.g., Brent’s method) to 10�14.

Test problem 4.2. Next we present three tests with circles. In the first test we translate a unit circle in the x-
direction with unit velocity for one unit of time using various CFL numbers r. In Table 7 we present the

errors when we use r ¼ 1, while in Table 8 we present the errors when we use r ¼ 1=32. Note that errors

due to the SLIC, center of mass, Parker and Youngs algorithms decrease at a first-order rate for both values

of r, while the errors due to the LVIRA and ELVIRA algorithms decrease at a second-order rate for r ¼ 1.
Table 7

The L1 error after translating a circle one unit in time with CFL number r ¼ 1

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

1.8e)2 4.7e)3 1.5e)3 6.1e)4 1.0e)3 6.1e)4
1
16

9.1e)3 0.9 2.6e)3 0.9 8.7e)4 0.8 1.5e)4 2.0 2.8e)4 1.8 1.6e)4 1.9
1
32

4.7e)3 1.0 1.4e)3 0.9 4.6e)4 0.9 4.2e)5 1.9 6.6e)5 2.1 4.0e)5 2.0
1
64

2.4e)3 1.0 7.5e)4 0.9 2.3e)4 1.0 1.4e)5 1.6 1.6e)5 2.0 1.0e)5 2.0

Table 8

The L1 error after translating a unit circle one unit in time with r ¼ 1=32

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

1.8e)2 6.0e)3 2.4e)3 1.4e)3 1.5e)3 1.4e)3
1
16

9.1e)3 0.9 3.0e)3 1.0 1.3e)3 0.9 4.3e)4 1.7 5.0e)4 1.5 4.4e)4 1.7
1
32

4.7e)2 1.0 1.6e)3 1.0 6.6e)4 1.0 1.3e)4 1.7 1.5e)4 1.7 1.3e)4 1.8
1
64

2.4e)3 1.0 8.0e)4 1.0 3.2e)4 1.0 4.2e)5 1.6 4.8e)5 1.7 3.8e)5 1.7



J.E. Pilliod Jr., E.G. Puckett / Journal of Computational Physics 199 (2004) 465–502 487
Also note that it is apparent from the data presented in these two tables that, in general, decreasing the

CFL number did not reduce the error. In fact, the amplitude of the error is generally larger when r ¼ 1=32
than when r ¼ 1. Furthermore, for the two second-order accurate algorithms LVIRA and ELVIRA, as
well as for the centered difference method, the convergence rate is adversely affected by the very small CFL

number. The increase in the amplitude of the error seen in Table 8 is almost certainly due to the accu-

mulation of local truncation error over 32 times as many time steps, and we believe that this is also the

cause of the degradation in the convergence rate of the second-order accurate algorithms.

Unless noted otherwise, we set r ¼ 0:5 in all of the remaining test problems.

Test problem 4.3. Next we translate 100 unit circles with randomly generated centers in a randomly gen-

erated direction with unit velocity for one unit of time. In Table 9 we present the L1 error averaged over 100
randomly chosen circles. It is apparent that the center of mass, SLIC, Parker and Youngs’ and centered

difference methods are first-order accurate, and the LVIRA and ELVIRA methods are second-order

accurate.

Test problem 4.4. In our final test with circles we place a unit circle with its center at cell center and rotate it

with unit angular velocity for one rotation. Here we used a CFL number of r ¼ p=6. It is apparent from the

data presented in Table 10 that SLIC, the center of mass and Parker and Youngs’ algorithms exhibit first-

order accuracy while the other three algorithms exhibit second-order accuracy. Starting with the left-hand
column and moving right, the overall decrease in the error for each algorithm when the grid was reduced

from h ¼ 1=2 to 1=64 was 20, 47, 185, 827, 893 and 1146, respectively. A precisely second-order accurate

decrease in the error would be by a factor of 1024.

Test problem 4.5. In the next collection of test problems we study the accuracy of the operator split ad-

vection algorithm when we use it to model the motion of a cross rotating and translating in a uniform

incompressible velocity field. We average the error over 100 crosses with randomly generated centers and

randomly generated orientations. In the first test problem we translate each cross in a randomly generated
direction with unit velocity for one unit time. It is apparent from the data presented in Table 11 that none of

the algorithms reduce the error at a second-order accurate rate. This is to be expected, since the cross has
Table 9

The average L1 error after translating 100 random unit circles in random directions

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

3.1e)2 9.0e)3 1.9e)3 9.6e)4 1.5e)3 1.0e)3
1
16

1.8e)2 0.8 4.8e)3 0.9 1.1e)3 0.9 2.5e)4 2.0 4.1e)4 1.9 2.5e)4 2.0
1
32

1.1e)2 0.8 2.4e)3 1.0 5.8e)4 0.9 1.0e)4 1.2 1.1e)4 1.9 6.6e)5 1.9
1
64

6.3e)3 0.7 1.2e)3 1.1 2.8e)4 1.1 5.8e)5 0.8 2.7e)5 2.0 2.0e)5 1.7

Table 10

The L1 error after rotating a circle once with the operator split advection algorithm

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

3.0e)2 2.9e)3 1.0e)3 7.8e)4 8.6e)4 7.7e)4
1
16

1.9e)2 0.7 1.1e)3 1.4 4.0e)4 1.3 2.9e)4 1.4 2.5e)4 1.8 2.3e)4 1.7
1
32

8.8e)3 1.1 6.2e)4 0.9 2.0e)4 1.0 5.5e)5 2.4 5.9e)5 2.1 5.7e)5 2.0
1
64

4.6e)3 0.9 3.1e)4 1.0 7.8e)5 1.3 1.8e)5 1.6 1.5e)5 2.0 1.3e)5 2.1



Table 11

The average L1 error after translating 100 random crosses in random directions

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

2.8e)2 1.1e)2 9.4e)3 9.5e)3 9.5e)3 9.4e)3
1
16

1.5e)2 1.0 4.1e)3 1.4 3.1e)3 1.6 3.0e)3 1.7 2.9e)3 1.7 3.0e)3 1.7
1
32

8.1e)3 0.8 1.7e)3 1.3 1.0e)3 1.6 9.3e)4 1.7 9.1e)4 1.7 9.2e)4 1.7
1
64

4.9e)3 0.7 7.8e)4 1.1 3.4e)4 1.5 3.0e)4 1.6 3.1e)4 1.6 2.9e)4 1.6
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discontinuities in its’ first derivative at the corners, and hence a typical analysis of the error (e.g., by Taylor

series expansion) would fail at these points. However, it is also apparent, both from the data presented in

Table 11 that the convergence rates for the centered difference, LVIRA and ELVIRA methods are

somewhat better than those for Parker and Youngs’ method, the center of mass method and especially the

SLIC method.

Test problem 4.6. Next we take a cross, centered on a cell center, with its sides initially parallel to the grid,
and rotate it with unit angular velocity for one rotation. It is apparent from the data in Table 12 that all of

the methods are first-order accurate. The reduction in the accuracy of the LVIRA and ELVIRA methods to

first-order is presumably due to the discontinuities in the first derivative of the interface at the corners. This

conjecture is consistent with all of the data presented in this paper.

In Fig. 10 we compare the shape of a cross after it has been rotated using each of the various interface

reconstruction methods and compare it with the exact solution in Fig. 8. In this example the grid width was

h ¼ 1=64. Notice that the approximate and true solutions differ the most at the corners, where the derivative

of the function that describes the interface is discontinuous. This is consistent with our conjecture above
concerning why the second-order accurate algorithms LVIRA and ELVIRA are only first order accurate on

these problems.

Note also note the degree to which the SLIC computation has broken up the interface; i.e., it is no longer

even remotely akin to a continuous function. This behavior is commonly seen in computations with vol-

ume-of-fluid methods that are based on the SLIC [47] and so-called ‘‘VOF’’ [52] interface reconstruction

algorithms. In fact, this artifact is so common that users of these methods have a name for it: ‘‘flotsam’’,

and have devised various ad-hoc methods for reducing its occurrence [69, p. 138]. It is apparent from Figs.

10 and 11 that the flotsam problem is completely eliminated when SLIC is replaced by any one of the
piecewise linear interface reconstruction algorithms. We also note that Chorin [74] has developed im-

provements to SLIC that reduce the amount of fluid trailing behind the true interface.

Test problem 4.7. Finally we tested the second-order accurate operator split advection method with the

various interface reconstruction methods on Zalezak’s test problem. Here we revolved the shape shown in

Fig. 8 about a point 5/3 units below its center for one revolution. It is apparent from the data in Table 13

that all of the methods exhibit an OðhÞ decrease in the error.
Table 12

The L1 error after rotating a cross counterclockwise one revolution

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

4.8e)2 3.9e)2 3.3e)2 3.3e)2 3.4e)2 3.3e)2
1
16

3.3e)2 0.5 1.8e)2 1.1 1.6e)2 1.0 1.6e)2 1.0 1.6e)2 1.1 1.6e)2 1.0
1
32

2.5e)2 0.4 1.0e)2 0.8 8.5e)3 0.9 8.5e)3 0.9 8.5e)3 0.9 8.5e)3 0.9
1
64

1.5e)2 0.7 6.4e)3 0.7 5.3e)3 0.7 5.3e)3 0.7 5.3e)3 0.7 5.3e)3 0.7



LVIRA

Parker & Youngs

SLIC

ELVIRA

Central Difference

Center of Mass

Fig. 10. A cross that has been rotated one revolution using the operator split advection algorithm and the various interface recon-

struction methods. Notice that only the SLIC algorithm produces flotsam.
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In Table 14 we present the difference between the volume (area) of the initial shape and the final shape
for the computations presented in Table 13. It is apparent that all of the methods conserve the volume (or

equivalently the mass) of the shape to better than 1.1e)14 which is nearly machine zero.

In Fig. 11 we present the results of using the operator split advection method and the various interface

reconstruction methods on Zalesak’s test problem on a grid with h ¼ 1=15. This grid size was chosen to

facilitate direct comparison with other published results of the same test problem [42,73]. Note that, as

expected, the error is greatest at the corners. We believe this is caused by the discontinuity in the first

derivative of the function that describes the interface at these points.
5. Unsplit advection

For many problems one will obtain satisfactory results with the second-order accurate, fractional step

method described in Section 4. However for some problems, such as unstable displacements in porous



LVIRA

Parker & Youngs

SLIC

ELVIRA

Central Difference

Center of Mass

Fig. 11. The result of using the operator split advection algorithm and the various interface reconstruction methods on Zalesak’s test

problem. Again notice that only the SLIC algorithm produces flotsam.

Table 13

The average L1 error after translating 100 random notched circles in random directions

h SLIC Rate CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

4.8e)2 1.9e)2 1.6e)2 1.7e)2 1.7e)2 1.6e)2
1
16

2.5e)2 0.9 7.2e)3 1.4 6.2e)3 1.4 6.3e)3 1.4 6.4e)3 1.4 6.2e)3 1.4
1
32

1.4e)2 0.9 4.1e)3 0.8 2.9e)3 1.1 2.8e)3 1.2 2.9e)3 1.1 2.8e)3 1.2
1
64

6.9e)3 1.0 2.3e)3 0.8 1.4e)3 1.1 1.3e)3 1.1 1.3e)3 1.1 1.3e)3 1.1

Table 14

The difference between the intial volume and final volume of the shape in Fig. 8

h SLIC C of M P&Y C Diff LVIRA ELVIRA

1
4

0.0e+0 0.0e+0 4.4e)16 8.9e)16 8.9e)16 4.4e)16
1
8

1.3e)15 2.7e)15 3.1e)15 3.6e)15 2.7e)15 3.6e)15
1
16

)3.1e)15 )2.7e)15 )1.3e)15 )2.7e)15 )1.3e)15 )4.4e)16
1
32

)3.1e)15 )4.9e)15 )4.0e)15 )4.0e)15 )2.7e)15 )4.0e)15
1
64

7.1e)15 4.4e)15 3.1e)15 8.9e)16 1.1e)14 4.0e)15
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media, fractional step methods can distort the interface (e.g., see the discussion in [42]). A characteristic

feature of this problem is the so-called ‘‘push-pull’’ or ‘‘staircase’’ phenomenon. For problems such as these

it is preferable to use an unsplit advection algorithm. In this section we present an unsplit, volume-of-fluid
advection algorithm that is based on the approach used by Bell et al. [42] to develop a second-order ac-

curate, unsplit, finite difference method for approximating solutions of scalar hyperbolic conservation laws.

We then present the results of applying this advection algorithm to the test problems studied in Section 4.

Since SLIC is an inherently one-dimensional method, we will not use it in this section.

5.1. A first-order accurate unsplit advection algorithm

In order to present the basic idea behind the unsplit algorithm we begin by describing a first-order
accurate version. We wish to use a conservative finite difference method of the form (15) to approximate

solutions of the conservation law (5). To illustrate our approach we assume that u > 0 and v > 0, and

describe how one determines the flux F n
iþ1=2;j. The other cases are analogous.

The flux through the right-hand edge of the ði; jÞth cell in the time interval ðtn; tnþ1Þ is

F n
iþ1=2;j ¼

Z tnþ1

tn

Z yi;jþ1=2

yi;j�1=2

uðxiþ1=2; y; tÞf ðxiþ1=2;j; y; tÞdy dt ¼ uiþ1=2;j

Z tnþ1

tn

Z yi;jþ1=2

yi;j�1=2

f ðxiþ1=2;j; y; tÞdy dt ð21Þ

where we have assumed in our numerical discretization that uiþ1=2;j is constant on the space time interval

ðyi;j�1=2; yi;jþ1=2Þ � ðtn; tnþ1Þ. The integral in (21) is the amount of dark fluid in the space-time rectangle BCEF
shown in Fig. 12. We can find this amount by tracing back along the characteristics that originate from the
rectangle BCEF . This gives us the solid region ABCEFGH shown in Fig. 12. The domain of dependence of

these characteristics at time tn is the shaded region AHBEG in Fig. 13. Note that this region is the rectangle

ABDE, plus the triangle ABH , minus the triangle DEG,

F n
iþ1=2;j �

Z Z
ABDE

f dxdy þ
Z Z

ABH
f dxdy �

Z Z
DEG

f dxdy: ð22Þ

In order to approximate the right hand side of (22) we use one of the volume-of-fluid interface recon-

struction algorithms described in Section 2 to determine an approximation to the interface in cell ði; jÞ and
cell ði; j� 1Þ. We then compute the area of the intersection of the dark fluid with the rectangle ABDE and

the triangles DEG and ABH . This yields an approximation to each of the terms on the right hand side of (22)
and hence an approximation to F n

iþ1=2;j.
A

H

B

C

E

G

D

F

x

ty

Fig. 12. The fluid inside the object outlined in bold passes through the right cell edge EB between time tn and tnþ1.
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Fig. 13. The domain of dependence for characteristics that pass through the righthand edge EB of the ði; jÞth cell.
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The fluxes through the other three edges of the cell are found in an analogous manner. This method for

calculating the flux, which Colella [43] calls corner transport upwind (CTU) is first-order accurate. See [44]

for a detailed analysis of the accuracy of this method and [42] and [44] for the results of tests when this

method is implemented as a finite difference algorithm for linear advection problems.

5.2. A second-order accurate unsplit advection algorithm

We now describe a second-order accurate, unsplit, volume-of-fluid advection algorithm. Our approach is

based on the finite difference method for scalar conservation laws in multiple dimensions originally de-

scribed in [42]. We approximate the flux F n
iþ1=2;j in (21) by integrating (5) over the prism ABCDEF shown in

Fig. 12 and integrating by parts. We begin by writing (5) in the form

ft þ uxf þ ufx þ ðvf Þy ¼ 0;

and setting u ¼ uiþ1=2;j and ux ¼ ðuxÞi;j. Integrating over ABCDEF yieldsZ Z Z
ABCDEF

ðft þ ðuxÞi;jf þ uiþ1=2;jfx þ ðvf ÞyÞdxdy dt ¼ 0:

Integrating the above expression by parts, and noting that uiþ1=2;j is constant, we find that the flux F n
iþ1=2;j

is given by

F n
iþ1=2;j ¼

Z Z
ABDE

f dxdy þ
Z Z

ABC
vf dxdt �

Z Z
DEF

vf dxdt þ
Z Z Z

ABCDEF
ðuxÞi;jf dxdy dt: ð23Þ

The integral over ABDE is the volume of dark fluid in this rectangle. As above we use an interface re-

construction algorithm to determine an approximation to the interface in the ði; jÞth cell and use this ap-

proximation to compute the area of the intersection of the dark fluid with rectangle ABDE to compute this

quantity.

Now let R1 be the ratio of the volume of dark fluid in ABDE to the area of ABDE, and let V1 be the

volume of the prism ABCDEF . We approximate the volume integral in (23) byZ Z Z
ABCDEF

ðuxÞi;jf dxdy dt � R1V1ðuxÞi;j:
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In order to evaluate the integral over DEF in Eq. (23) we integrate (5) in the quasilinear form

ft þ uxf þ ufx þ vyf þ vfy ¼ 0

over the tetrahedron DEFGZ Z Z
DEFG

ðft þ ðuxÞi;jf þ uiþ1=2;jfx þ ðvyÞi;jÞf þ vi;jþ1=2fy dxdy dt ¼ 0: ð24Þ

The domain of dependence of DEF is the triangle DEG. Integrating the expression on the left hand side

of (24) we find that the tetrahedron DEFG is related to the triangle DEF throughZ Z
DEF

f dxdt ¼
Z Z

DEG
f dxdy þ

Z Z Z
DEFG

ððuxÞi;j þ ðvyÞi;jÞf dxdy dt: ð25Þ

The integral over DEG is the volume of dark fluid in the triangle DEG. We approximate this quantity by

using an interface reconstruction algorithm to determine an approximation to the interface in the ði; jÞth
cell and then computing the area of the intersection of the dark fluid with triangle DEG.

To obtain an approximation to the volume integral on the right hand side of (25), we begin by letting R2

be the ratio of the volume of dark fluid in DEG to the area of DEG, and let V2 be the volume of the tet-
rahedron DEFG. Our approximation to the volume integral in (25) is thenZ Z Z

DEFG
ðuxÞi;j
�

þ ðvyÞi;j
	
f dxdy dt ¼ R2V2 ðuxÞi;j

�
þ ðvyÞi;j

	
:

We evaluate integral over ABC in a similar manner. Thus we are able to evaluate each term of (23), and

hence determine the flux of dark fluid through the right hand edge BEFC of the ði; jÞth cell.

Note that if vi;jþ1=2 < 0, then the point G will lie in the ði; jþ 1Þst cell. Thus the tetrahedron DEFG will lie

in the ði; jþ 1Þst cell instead of the ði; jÞth cell. In this case we add the tetrahedron DEFG to the prism

ABCDEF , instead of subtracting it as we did above. Hence we add the integral over DEF instead of sub-

tracting it. In order to avoid the distorted region that arises when uiþ1=2;j and uiþ1=2;jþ1 are of opposite sign
we determine the x-coordinate of the vertex G by

x ¼ min iDx
�

þ Dx
2
; iDxþ Dx

2
� Dtuiþ1=2;jþ1

�
:

In this way we are assured that G lies in the ði; jþ 1Þst cell.

5.3. Test problems

In this section we use the second-order accurate unsplit advection algorithm just described to compute

most of the test problems presented in Section 4.

Test problem 5.1. We begin with the translation of a smooth interface, the unit circle. We take 100 unit

circles with randomly generated centers, translate each circle with unit velocity in a randomly generated
direction and average the L1 error in approximating each circle. It is apparent from the data shown in Table

15 that the errors associated with the center of mass and Parker and Youngs’ algorithms decrease at a rate

that is not quite OðhÞ. The overall decrease is by a factor of 5.8 and 12.9 respectively, whereas a precisely

first-order accurate method would have diminished the error by a factor of 16. 5 On the other hand the
5 Again however, we caution the reader against drawing conclusions concerning an algorithm’s accuracy from the convergence rate

data on under-resolved grids (e.g., h ¼ 1=4 and 1/8) in Table 15.



Table 15

The average L1 error and rate after translating 100 random circles in random directions

h CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
4

1.1e)2 4.0e)2 1.8e)2 2.1e)2 1.9e)2
1
8

1.0e)2 0.0 2.0e)2 1.0 3.8e)3 2.3 4.4e)3 2.2 3.9e)3 2.3
1
16

6.8e)3 0.6 1.1e)2 0.9 7.4e)4 2.4 1.1e)3 2.1 7.7e)4 2.3
1
32

3.6e)3 0.9 5.6e)3 0.9 1.8e)4 2.0 2.8e)4 1.9 1.8e)4 2.1
1
64

1.8e)3 1.0 3.1e)3 0.9 6.7e)5 1.4 7.5e)5 1.9 5.0e)5 1.9
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errors associated with the centered difference, LVIRA and ELVIRA algorithms decrease at a rate that is

somewhat better than Oðh2Þ. The overall decrease in the error being 274.6, 276 and 376, respectively,

whereas a precisely second-order accurate method would have diminished the error by a factor of 256. (But

in this regard, please see the footnote concerning drawing conclusions about an algorithm’s accuracy from

the convergence rate data on under-resolved grids.)

In summary, the center of mass and Parker and Youngs’ algorithms appear to be first-order accurate,

while the other three appear to be second-order accurate, although the centered difference algorithm shows
some evidence that its convergence rate may asymptote to 1.0 as h ! 0. As in Section 4.2 we conjecture that

the apparent second-order accurate behavior of the centered difference algorithm is again due to the fact

that on average it will produce a second-order approximation to a tangent to the circle in each cell. It is

important to note that this will not be the case when the interface is more nearly linear, in which case the

centered difference algorithm is on average first-order accurate as shown in Tables 1 and 3.

Test problem 5.2. In the next test problem we rotate a unit circle, centered on a cell center, with unit angular

velocity for ten rotations. It is apparent from the data in Table 16 that the rate of decrease of the errors
associated with each algorithm is comparable with the rate of decrease seen in the previous test problem. In

this problem however, the center of mass and Parker and Youngs’ algorithms exhibit a somewhat better

than OðhÞ decrease in the error. However, the same conclusions continue to apply.

In Fig. 14, we present five unit circles that have been rotated ten times with the various interface re-

construction methods on a grid with h ¼ 1=32 and compare the results with the true solution. At this level

of graphical resolution all of the approximate solutions are indistinguishable from the true solution. In fact,

even when magnified by a factor of 64, the approximate interfaces still appear to be continuous – although

not smooth – in spite of the fact that they are actually composed of a collection of discontinuous line
segments.
Table 16

The L1 error after rotating a circle 10 times with the unsplit advection algorithm

h CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
2

1.6e)2 1.4e)2 1.4e)2 1.4e)2 1.4e)2
1
4

5.3e)3 1.6 3.0e)3 2.2 3.3e)3 2.1 3.9e)3 1.9 3.3e)3 2.1
1
8

3.1e)3 0.8 9.7e)4 1.6 1.7e)3 0.9 9.8e)4 2.0 1.7e)3 0.9
1
16

1.4e)3 1.2 2.9e)4 1.7 7.1e)4 1.3 2.4e)4 2.0 7.2e)4 1.3
1
32

6.3e)4 1.1 1.4e)4 1.0 1.5e)4 2.2 5.9e)5 2.0 1.5e)4 2.3
1
64

3.0e)4 1.1 6.8e)5 1.1 1.7e)5 3.2 1.5e)5 2.0 1.6e)5 3.2



LVIRA

Parker & Youngs

True

ELVIRA

Central Difference

Center of Mass

Fig. 14. A unit circle that has been rotated for ten revolutions with the unsplit advection algorithm and various reconstruction

methods.
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Test problem 5.3. In our next test we repeat the linear advection test problem with crosses described in

Section 4.2. As before, we averaged the error obtained after advecting 100 crosses with randomly generated

centers with unit velocity for one unit in time in a randomly generated direction. As one can see from Table
17, all of the interface reconstruction algorithms produce comparable errors, which decay at a rate that is

somewhat better than first-order, but is certainly not second-order. This is presumably due to the lack of

smoothness in the interface shape. Starting with the left-hand column and ending with the right, the overall

decrease in the error is by a factor of 70, 108, 120, 123 and 124, respectively. The tendency of the center of

mass algorithm (or SLIC in Sections 3 and 4) to produce the smallest overall decrease in the error and for

the ELVIRA algorithm to produce the largest overall decrease in the error, even when all of the algorithms

are performing at a nominally first-order accurate rate, was consistently displayed in all of the test problems

we studied.

Test problem 5.4. Our conjecture that all of the interface reconstruction algorithms are first-order accurate

when one uses them to advect a non-smooth interface is confirmed by our next test. In this case we take one

cross centered on a grid point and rotate it once with unit angular velocity. It is clear from the data in Table

18 that all of the algorithms produce comparable errors and that these errors are decreasing at a rate which

appears to asymptote to 1.0 as h ! 0.
Table 17

The average L1 error after translating 100 random crosses in random directions

h CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
2

1.0e)1 9.5e)2 9.8e)2 9.9e)2 9.9e)2
1
4

2.8e)2 1.8 2.7e)2 1.8 2.7e)2 1.9 2.7e)2 1.9 2.7e)2 1.9
1
8

9.7e)3 1.5 8.5e)3 1.7 8.6e)3 1.7 8.5e)3 1.7 8.5e)3 1.7
1
16

3.6e)3 1.4 2.7e)3 1.6 2.6e)3 1.7 2.7e)3 1.7 2.6e)3 1.7
1
32

1.4e)3 1.3 8.8e)4 1.6 8.1e)4 1.7 8.0e)4 1.7 8.0e)4 1.7



Table 18

The L1 error after rotating a cross one revolution with the unsplit advection algorithm

h CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
2

1.7e)1 1.7e)1 1.7e)1 1.7e)1 1.7e)1
1
4

6.8e)2 1.4 6.3e)2 1.4 6.3e)2 1.4 6.3e)2 1.4 6.0e)2 1.4
1
8

2.6e)2 1.4 2.5e)2 1.4 2.5e)2 1.3 2.6e)2 1.3 2.5e)2 1.3
1
16

1.0e)2 1.3 1.0e)2 1.3 1.1e)2 1.3 1.1e)2 1.3 1.0e)2 1.3
1
32

3.9e)3 0.9 3.8e)3 1.4 4.0e)3 1.4 3.9e)3 1.5 4.0e)3 1.4
1
64

1.8e)3 0.8 1.4e)3 1.4 1.5e)3 1.5 1.5e)3 1.4 1.5e)3 1.5
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In Fig. 15, we present the approximate interfaces from Test problem 5.4 with grid width h ¼ 1=64 and

compare the results with the exact solution. If one compares images produced with the same interface

reconstruction in Figs. 10 and 15, it is apparent that there is a discernable improvement in the resolution of
the corners of the cross in Fig. 15. We conjecture that this improved resolution is due to an increase in the

accuracy with which the unsplit method resolves a portion of the overall error, such as the phase error

associated with finite difference solutions of the advection Eq. (3) [75, Chapter 1]. In particular, based on

the results presented here, we conjecture that for both advection methods, the order of this portion of the

error is as high or higher than that of the underlying advection algorithm, and that the phase error as-

sociated with the unsplit advection algorithm is one or more degrees higher than that associated with the
LVIRA

Parker & Youngs

True

ELVIRA

Central Difference

Center of Mass

Fig. 15. A cross that has been rotated one revolution with the unsplit advection algorithm and various reconstruction methods. By

comparing the results shown here with those shown in Fig. 10, one can see that the unsplit advection algorithm produces noticeably

better resolution of the corners.
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operator split advection algorithm. Thus, although both the fractional step and unsplit methods are second-

order accurate, the unsplit method produces better overall results.

Test problem 5.5. Finally we test the unsplit advection method on Zalezak’s test problem. As one can see

from the data in Table 19 all of the algorithms – with the possible exception of the center of mass algorithm

– produce comparable errors and that these errors are decreasing at a rate which appears to asymptote to

1.0 as h ! 0.

In Fig. 16 we present the results of computing Zalesak’s test problem on a grid with h ¼ 1=15. Again, we

chose this relatively coarse grid in order to facilitate a direct comparison with other published results of the

same problem such as in [42] and [73]. The coarseness of the grid prevents one from detecting the increased

resolution at the corners we expect with the unsplit advection algorithm. Higher resolution computations of
Table 19

The average L1 error for Zalesak’s test problem

h CM Rate P&Y Rate CD Rate LVIRA Rate ELVIRA Rate

1
8

1.8e)2 1.6e)2 1.6e)2 1.6e)2 1.6e)2
1
16

7.0e)3 1.3 5.8e)3 1.5 5.9e)3 1.4 5.8e)3 1.5 5.7e)3 1.5
1
32

3.7e)3 0.9 2.6e)3 1.1 2.7e)3 1.2 2.7e)3 1.1 2.6e)3 1.1
1
64

2.2e)3 0.8 1.3e)3 1.1 1.2e)3 1.1 1.3e)3 1.1 1.2e)3 1.1

LVIRA

Parker & Youngs

True

ELVIRA

Central Difference

Center of Mass

Fig. 16. Here we present the results of using the unsplit advection algorithm and the various reconstruction methods to compute

Zalesak’s test problem. Note that the computations shown here and in Fig. 11 were conducted on the very coarse grid shown in Fig. 8.

Consequently one cannot detect the increased resolution at the corners expected from the unsplit advection algorithm. Higher reso-

lution computations of this problem do exhibit better resolution with unsplit algorithm.



Table 20

The difference between the intial volume and final volume of the shapes in Fig. 16

h C of M P&Y Center difference LVIRA ELVIRA

1
4

0.0e+0 2.2e)15 )4.4e)16 )8.8e)16 4.4e)16
1
8

2.7e)15 5.3e)15 6.2e)15 3.6e)15 3.1e)15
1
16

8.9e)16 2.2e)15 )1.8e)15 )1.8e)15 )6.7e)15
1
32

)1.9e)14 1.6e)14 )1.0e)14 )2.2e)15 )1.1e)14
1
64

7.2e)14 4.9e)14 3.3e)14 3.3e)14 1.0e)14
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this problem do exhibit better resolution at the corners of Zalesak’s shape with unsplit algorithm. We

conclude that, although both the fractional step and unsplit methods are second-order accurate, the unsplit

method produces better overall results.

In Table 20 we present the difference between the volume (area) of the initial shape and the final shape

for the computations presented in Table 19. It is apparent that all of the methods conserve the volume (and

hence the mass) of the shape to better than one part in 1013, which is nearly machine zero.
6. Concluding remarks

We have presented a comprehensive framework for the design and implementation of modern volume-

of-fluid interface tracking algorithms and conducted an extensive computational study of the accuracy of

several commonly used versions of these algorithms. Our presentation is based on separating the interface

reconstruction phase from the advection or time update phase of the overall tracking algorithm and

studying the accuracy of the interface reconstruction algorithm independently of the advection algorithm.
In our study of volume-of-fluid interface reconstruction algorithms, we have identified several key prop-

erties – or design criteria – that we believe will ensure that the method is second-order accurate on smooth

interfaces; e.g., interfaces that have two or more continuous derivatives. In particular, we have found that if

a volume-of-fluid interface reconstruction algorithm is designed so that it always reproduces lines (or planes

in 3D) exactly, then it will be second-order accurate on smooth interfaces – in both the L1 and the L1 norms

– when used to reconstruct stationary interfaces. We have introduced two new volume-of-fluid interface

reconstruction algorithms that have this property and demonstrated that they consistently exhibit second-

order accuracy when we use them to reconstruct smooth stationary interfaces, whereas the other algorithms
we tested overall exhibit first-order accuracy.

In our study of volume-of-fluid advection algorithms we have demonstrated that one can obtain second-

order accuracy (in space and time) by combining one of our second-order accurate interface reconstruction

algorithms with a standard fractional step or operator split solution of the time evolution equation and

alternating the sweep directions at each time step (i.e., Strang splitting). We have also introduced a new

unsplit volume-of-fluid advection algorithm that is second-order accurate in space and time when combined

with one of the second-order accurate interface reconstruction algorithms. Furthermore we have shown

that the unsplit algorithm exhibits noticeably better resolution of the interface near discontinuities in the
derivatives of the interface (e.g., corners). Since this improved resolution does not manifest as an increase in

the order of accuracy of the advection algorithm, we conjecture that it is a higher order effect due to an

increase in the accuracy with which the algorithm resolves a portion of the error, such as the phase error

(e.g., see the discussion on phase errors in [75]).

Another conclusion that can be drawn from our study is that piecewise linear interface reconstruction

algorithms that reconstruct lines exactly will revert to first-order accuracy when the interface fails to be

sufficiently smooth (e.g., remains continuous but has discontinuities in the first-derivative). We conjecture
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that the constraint that a volume-of-fluid interface reconstruction method must always reproduce the

correct fluid volume in each cell is sufficient to guarantee first-order accuracy in the L1 norm for time

dependent advection problems – at least when the advection algorithm is formally second-order accurate as
is the case in our studies. This conclusion appears to be true even for reconstruction algorithms that do not

exhibit second-order accuracy on smooth interfaces, such as SLIC. However it is apparent from the results

presented in Table 3. that something more than this constraint is needed in order to guarantee first-order

accuracy in the L1 norm.

In summary, we have presented two new volume-of-fluid interface reconstruction algorithms and

demonstrated that they are more accurate than the most commonly used volume-of-fluid interface re-

construction algorithms. These new interface reconstruction algorithms are currently being used in a

number of application codes for modeling the motion of material interfaces in compressible gas dynamics
[65,66], high-pressure solids in the hydrostatic limit [31,39,67], combined gas dynamics/solid mechanics

shock physics [40] and variable density incompressible fluid flow [21,41,71]. We have also introduced a new,

unsplit volume-of-fluid advection algorithm, demonstrated that it is second-order accurate in space and

time and shown that it exhibits superior resolution of kinks or corners in the interface as compared to the

fractional step advection algorithm, which is currently the most widely used advection algorithm. This

unsplit advection algorithm has been used by Puckett et al. [41] to model the motion of an interface between

two immiscible fluids without surface tension moving in a two dimensional velocity field that satisfies the

incompressible Euler equations. We refer the reader to the papers by Sussman and Puckett [21] and
Sussman [22] for studies concerning the accuracy and convergence rate of these methods when they are used

to model the motion of an interface between two immiscible fluids with surface tension moving in a velocity

field that satisfies either the incompressible Euler or Navier–Stokes equations. The work in [21] and [22]

also includes computations in both radially symmetric coordinates and three space dimensions.
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