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Abstract We study shock refractions at the interface
between two materials with convex equations of state involv-
ing only two shocks, which we refer to as shock pairs or
shock pair systems. We present experimental and computa-
tional evidence for the existence of both regular and irregu-
lar shock pair systems in gases and develop a von Neumann
type theory for regular systems that one can use to predict the
angle of incidence at which a regular shock pair will occur.
We show regular shock pair refractions obey the Principle
of Shock Reciprocity; i.e., if the two materials are exchanged
there is no effect on the polar diagram of the regular shock
pair system, the angle between the two shocks in the pair or
the streamline deflection angle. We also study regular and
irregular shock pair systems in gases numerically and com-
pare the numerical results with experimental data and our
theory.
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1 Introduction

In this article, we study shock refractions involving only two
shock waves at the interface between two materials with con-
vex equations of state. We refer to these refractions as shock
pairs or shock pair systems. We present experimental and
computational evidence for the existence of both regular and
irregular shock pair systems in gases and develop a von Neu-
mann type theory for regular systems that one can use to
predict the angle of incidence at which a regular shock pair
will occur. We show regular shock pair refractions obey the
Principle of Shock Reciprocity. In other words, if the two
materials are exchanged there is no effect on the polar dia-
gram of the regular shock pair system, the angle between the
two shocks or the streamline deflection angle. Hence, there
is no way to determine from the polar diagram of a regular
shock pair which polar is the incident shock polar and which
is the transmitted shock polar. In this case, we show how
to use the concept of wave direction to distinguish between
the incident and transmitted shocks by observing the regular
shock pair system in the physical plane. We also study regu-
lar and irregular shock pair systems in gases numerically and
compare the numerical results with experimental data and
our theory.

In Sect. 1.1, we begin with a brief discussion of the refrac-
tion of an oblique shock wave at the interface between two
media and wave impedance. The material in this section is a
synopsis of the development and extensive discussion of the
theory of wave impedance in [1]. Readers who are unfamil-
iar with this material are referred to [1] and the references
there. We will need to refer to this material in the discussion
that follows. In Sect. 1.2, we state the goals of this investiga-
tion and describe what is new and original about this work
as compared to previous work in this area by the authors
and others. Then, in Sect. 1.3 we conclude the introduction
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with several paragraphs explaining how our presentation will
proceed.

1.1 Shock refraction, shock polars, and wave impedance

In this section, we summarize the theory of wave impedance
for the refraction of a plane shock wave striking a planar
material interface at an oblique angle of incidence αi . This
material was developed and described in detail by Hender-
son in [1] and has been successfully used to study experi-
ments and computations of oblique refraction in [2] and [3].
In the present article we prove that in the case of shock pair
refraction the angle αp at which the incident and transmit-
ted shock impedances are equal, and other quantities derived
from the equality of impedance condition, tend to the appro-
priate quantity in the acoustic limit. For example, we show
that as the pressure jump across the incident and transmit-
ted shocks tend to one αp → α∗

p, where α∗
p is the angle

of intromission from acoustics [4]. We refer the interested
reader to [1] for a more detailed account of the theory of
wave impedance for oblique shock refraction.

In Sect. 1.1.2, we also briefly summarize the shock polar
theory as it applies to our investigation of shock pairs.

1.1.1 Oblique shock refraction

Suppose a plane shock wave i is propagating with a velocity
Ui in a material whose properties and state are known, and
suppose also it enters another material with different prop-
erties, or state, which are also known, and which causes its
velocity to change to Ut . The shock will be said to refract
whenever Ut differs in either magnitude or direction from
Ui . The shock will be called the incident shock i if it propa-
gates in the incident material and the transmitted shock t if
it propagates in the second or transmission material.

For simplicity we will assume the boundary between the
two materials is a plane surface and that i encounters the
boundary at some angle of incidence αi . The angle of trans-
mission αt is related to the angle of incidence αi by the refrac-
tion law,

Ui

sin αi
= Ut

sin αt
, (1)

where Ui,t ≡ | Ui,t | denotes the magnitude of the vector
Ui,t ; i.e., Ui,t are the wave speeds for the i and t shocks,
respectively, measured in the laboratory frame (Fig. 1).1

1 In figures that contain a diagram of a shock wave system the incident
shock i is always shown moving from right to left, since this is the
direction i travels in the schlieren photographs of the experiments in [5,
6] and [7] (e.g., see Figs. 10, 11).

Fig. 1 Regular-refraction-with-a-shock-reflection (RRR). i , r , t , inci-
dent, reflected and transmitted shocks; U, Up , velocity and piston vec-
tors in the laboratory reference frame; Upi,t,r , signed magnitude of the
piston vectors; Mi , Mt incident and transmitted materials; mu , md
undisturbed and disturbed (deflected) material interface; α, β, wave
angles with respect to the disturbed and undisturbed interfaces; δ,
streamline deflection angle; R, refraction node; O, origin or ‘corner’;
Note Upi cos βi + Upr cos βr = Upt cos βt [see (10)]

Here the term “laboratory frame” refers to the frame of
reference in which the velocity u0 in the undisturbed medium
ahead of the incident and transmitted shocks is u0 = 0. (More
generally, one can define the laboratory frame to be the frame
of reference in which the origin O (Fig. 1) is at rest with
respect to u0.) The relative refractive index η is defined as

η ≡ Ui

Ut
. (2)

Combining (1) and (2) yields

η ≡ Ui

Ut
= sin αi

sin αt
, (3)

from which it is concluded that the shock will be refracted
(bent) by the materials if η �= 1. A refraction is said to be
slow–fast if η < 1 and fast–slow if η > 1.

Denote the speed of sound in the undisturbed initial mate-
rial by a0i and in the undisturbed transmission material by
a0t . The relative acoustic refractive index ηa [4] is defined by

ηa ≡ a0i

a0t
. (4)

Note that

η ≡ Ui

Ut
→ ηa ≡ a0i

a0t
as ξi,t ≡ P0i,t

P1i,t
→ 1.

In other words, η → ηa in the acoustic limit, P1i,t → P0i,t .
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Fig. 2 q0, q1, velocity of the flow upstream (resp. downstream) of,
and relative to, the incident shock i ; q0n , q1n , q0t and q1t normal and
tangential components of the flow velocities q0 and q1 respectively; Mi ,
incident shock Mach number; M0i and M1i , undisturbed free stream
Mach number upstream (resp. downstream) of, and relative to, i ; αi ,
angle of incidence or, equivalently, the angle between the upstream
velocity q0 and i ; δi , streamline deflection angle across i

1.1.2 Shock polars

Shock polars are used to describe steady-state shock waves
and related flow states across steady oblique shocks. The
equation of a shock polar is well known for the perfect gas
equation of state (e.g., see p. 347 of [8] or p. 623 of [9]).
For gamma-law gas equations of state one can find excel-
lent discussions in such text books as Chapter IV of [10] or
Chapter 9 of [11]. The derivation of the wave curve formulas
for general equations of state have appeared in [12] and [13].
The derivations of these formulas are straightforward appli-
cations of the general theory for wave curves of hyperbolic
systems as described in [14].

A derivation is presented here in outline for the shock
polar associated with the incident shock i , which we refer
to as the i shock polar. The equations for the t , n and s
shock polars discussed later in this paper are derived in an
analogous manner. Transforming now to coordinates at rest
with respect to the refraction node R as shown in Fig. 2, let
q0n = −Ui denote the normal component of the flow velocity
q0 upstream of the incident shock i , measured in coordinates
that are at rest with respect to i . Letting q0n = |q0n|, the
shock Mach number Mi is therefore

Mi ≡ Ui

a0i
= q0n

a0i
,

where a0i is the speed of sound in the undisturbed flow ahead
of the incident shock. The equation of the Rayleigh line fol-
lows from the continuity and momentum equations [15] as

q2
0n = P0V0

P1/P0 − 1

1 − V1/V0
.

The undisturbed free stream Mach number M0i , which is
constant everywhere on the shock polar, is found from

M2
0i = q2

0

a2
0i

= M2
i

sin2 αi
= P0V0

a2
0i sin2 αi

P1/P0 − 1

1 − V1/V0
,

where q0 = |q0| denotes the speed of the flow which
impinges on the shock, measured in coordinates that are at
rest with respect to the refraction node R.

Now resolving the velocity vectors q0 and q1 upstream and
downstream of an oblique shock into component vectors, q0n ,
q1n , q0t and q1t which are normal and tangential to the shock
respectively (Fig. 2) and using the well-known fact that the
tangential component of the velocity does not change across
the shock (q0t = q1t ), we have

q1n

q0n
= V1

V0
= tan(αi − δi )

tan αi
, (5)

where δi is the streamline deflection angle across the incident
shock (Fig. 2). Then from (5),

tan δi = (1 − V1/V0) tan αi

1 + (V1/V0) tan2 αi
. (6)

The polar comprises a plot of ln(P1/P0) versus δi with
M0i held constant. In order to proceed any further, we need
the equation of state for the material, or its equivalent, such as
a set of tables. Then e1 can be eliminated between it and the
energy equation and a relation between P1 and V1 obtained.
This in turn can be used to eliminate V1 from (6). The polar
is then defined once the initial state of the material and M0i

are given.

1.1.3 Wave impedance for oblique shock refraction

If αi = 0 there will, in general, be a reflected wave propa-
gated back into the initial material as i passes into the trans-
mission material. The reflection may either be a compression
r or an expansion e. More precisely it will be a compression
if the wave impedance Z increases Zt > Zi and an expan-
sion if Z decreases Zt < Zi , but there will be no reflection
if there is no change in the impedance Zt = Zi . In this last
case, the wave system consists only of two shocks.

The wave impedance for an arbitrary one-dimensional
shock i is defined as in [1]

Zi ≡ P1 − P0

Upi

, (7)

where P is the pressure, the subscripts 0 and 1 refer to the con-
ditions upstream and downstream of the shock, respectively,
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and U pi is the (signed) speed of the piston associated with
the i shock (Fig. 1). The piston velocity Upi can be thought
of as the velocity of a moving boundary which generates the
shock. In other words,

Upi ≡ u1 − u0 (8)

where u1 is the velocity of the material downstream of the i
shock. The vectors Upi , u0, and u1 all are perpendicular to i
and are defined in the laboratory frame. (However, it should
be noted that the definition of Upi in (8) remains valid no
matter what frame of reference one uses for u0 and u1.) If
Zi is now interpreted as the mass flux, then (7) is simply the
momentum equation for the flow perpendicular to i and with
magnitude Zi . It is sometimes convenient to consider Zi as
a vector Zi in the same direction as Upi .

For an oblique shock (i.e., one for which αi �= 0), the
theory is simplified if we define an effective impedance Zi

by

Zi ≡ P1 − P0

Upi cos βi

Upi

Upi

, (9)

where βi is the disturbed angle of incidence; i.e., the angle
that i makes with the disturbed (downstream) interface
(Fig. 1). Note that the component of Zi perpendicular to the
disturbed interface reduces to Zi as defined in (7). In what
follows, we will usually use the effective impedance which
we will simply refer to as “the impedance” unless stated
otherwise.

For the r and t waves Zr and Zt are defined in a manner
analogous to (9) with βr , βt , Upr and Upt defined as in Fig. 1.
Note that since the component of the velocity downstream of
the t-shock and normal to the (disturbed) material interface
md must equal the component of the velocity downstream of
the reflected r -shock that is normal to the interface, it follows
that

Upi cos βi + Upr cos βr = Upt cos βt . (10)

This is depicted graphically in Fig. 1. Furthermore, in the
absence of a reflected wave r , (10) reduces to

Upi cos βi = Upt cos βt .

The impedance Ze of a one-dimensional expansion wave e
may also be defined as in (7)

Ze ≡ P2 − P1

Upe

,

where P1 and P2 are the pressures upstream and downstream
of the wave, respectively, Upe is the magnitude of the piston
velocity Upe ≡ u2 − u1 associated with the expansion and
u1 and u2 are the velocities of the medium upstream and
downstream of the wave. Note that Upe is the velocity of a
piston that is withdrawing in the direction opposite that of the

Fig. 3 Regular-refraction-with-a-reflected-centered-expansion wave
(RRE)

wave propagation. The definition of the effective impedance
(vector) Ze for an expansion wave in two dimensions is more
difficult, since an expansion of say, the Prandtl–Meyer type,
is not a single plane surface but a fan of such surfaces (Fig. 3).
However, its magnitude Ze can be defined as

Ze ≡ P2 − P1∫
d(Up j cos β j )

where Up j denotes the magnitude of the piston velocity Up j

associated with the “ j th wave” in the expansion fan and β j

denotes the angle this wave makes with the disturbed gas
interface [1]. This may be rewritten in a more computation-
ally useful form as

Ze = P2 − P1

(u2 − u1) · n

where n is the unit vector normal to the disturbed gas inter-
face.

1.2 The goals of this investigation

A refracting wave system is said to be regular when all of
its waves meet at a single point, or node, R on the material
interface and are all locally straight at that point as illustrated
in Figs. 1 and 2. If the flow fields in a neighborhood of R
and between the waves and the interface are uniform, then
a particular field will have a constant particle velocity u and
constant thermodynamic state (S, V ), where S and V are
the specific entropy and specific volume, respectively. The
refraction is said to be irregular when there is at least one
curved wave at R and at least one non-uniform flow field in a
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Fig. 4 Regular-shock-pair refraction (RSP) (i − t) with M1i > 1 and
M1t > 1; note that the angle αt is measured with respect to the undis-
turbed material interface mu downstream of the refraction node R

neighborhood of R. It is well known that the refraction will
be regular when αi is sufficiently small but that otherwise it
will be irregular [1,16,17] and [18].

The simplest experiments on shock wave refraction at the
interface between two gases are conducted in the self-similar
configuration, a diagram of which is shown in Fig. 1. These
experiments are typically done with the gases initially sep-
arated by a very delicate membrane, as for example in the
experiments described in [5–7] and [17]. In these experi-
ments the authors’ used both weak and strong shocks and
photographed both regular and irregular wave systems. They
observed a number of irregular systems, including anomalous
refractions (AR) [5] and [17], Mach-reflection–refractions
(MRR) [5,17], and [17], and PreCursor-Mach-refractions
(PCMR) [6,7] and [2].

An illustration of a regular-refraction-with-a-reflected-
expansion (RRE) appears in Fig. 3. In [17] it was shown that
it is also possible for the reflected wave to be a shock; i.e.,
a regular-refraction-with-a-shock-reflection (RRR) as shown
in Fig. 1. The i and t shocks form a regular shock pair at the
transition RRE � RRR where the reflected wave degener-
ates into a Mach line. An illustration of this system appears
in Fig. 4.

Examination of the irregular shock refraction systems in
the references cited above reveals that some irregular systems
have shock pairs as part of the refraction; for example, see
the diagram of an MRR in Fig. 8. The schlieren photograph
of it in Figs. 10 and 11 show the Mach shock n refracting
into the transmitted shock t . Similar refracting pairs occur in
some PCMR systems. For example, see the diagrams in Figs.

12 and 13, which show the transmitted shock t refracting into
the side shock s.

The goals of this paper are as follows. The principle goal
of this paper is to develop a theory for the refraction of reg-
ular shock pairs. The basis of this theory is a formula for
predicting the angle of incidence αi = αp at which a regular
shock pair refraction will occur. We verify the validity of this
formula with our numerical computations. This is an impor-
tant but perhaps easily overlooked result. We have found that
the ability to predict αp, in combination with other ideas, has
been useful in analyzing more general irregular refractions
such as anomalous refraction (e.g., see [3]).

Second, we classify shock pair refractions by presenting
theoretical, experimental and numerical evidence to show
they can occur in all four of the possible configurations; i.e.,
the flow downstream of either shock in the pair can be super-
sonic or subsonic with respect to that shock. Besides the
regular refraction that occurs at the transition RRE � RRR,
in which the flow is supersonic downstream of both the i
and t shocks, we present an example of a shock pair in a
fast–slow gas combination in which the flow is supersonic
downstream of one member of the pair and subsonic down-
stream of the other and another example of a shock pair in
a slow–fast gas combination in which the flow is subsonic
downstream of both members of the shock pair. Both of these
examples are in agreement with shock polar analysis and our
numerical computations and are supported by photographs
of the refraction (either in Figs. 10, 11 or in cited references).

We also present theoretical, experimental and numerical
data from a sequence of shock refractions with a fixed gas
combination (Air/SF6) and inverse incident shock strength
ξi ≡ P0/P1 over an interval (αl , αr ) of angles of incidence
αi in which each refraction contains a shock pair. Using this
data we demonstrate the shock pairs are irregular in all of the
refractions but at the end point of the sequence, thereby con-
firming the existence of irregular shock pairs. We then argue
that the irregular shock pairs do not obey the assumptions
underlying our theory of regular shock pairs. In addition,
this example shows a regular i − t shock pair of ‘subsonic-
supersonic’ type (i.e., in which the flow downstream of the
i-shock is subsonic and the flow downstream of the t-shock
is supersonic) can exist as the endpoint, or boundary, of a
continuum of irregular refractions containing irregular shock
pairs.

There is very little discussion in the literature about the
existence of shock pair refractions. The only reference we
could find was in Glimm et al. [19]. They considered it dur-
ing their studies of two-dimensional Riemann problems and
called it a “transmission node”. To the best of our knowl-
edge the work described in this article is new and original.
It follows naturally from the previous work of the authors
in [1] and [2]. In addition, in [3] we use the formula that
we derive in the present article for predicting the angle αp
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at which a regular shock pair occurs, to study refractions in
which the flow downstream of the incident shock is subsonic
at the interface in coordinates with respect to the refraction
node R. For example, in [3] we use this formula in combi-
nation with other ideas to predict the angle αp of the regular
shock pair that forms the boundary of one side of a contin-
uum of refraction systems (parameterized by αi with the gas
combination and shock strength ξi fixed) found by Abdel-
Fattah and Henderson in [5], in which the incident shock i
is partly overrun by upstream moving compressions arising
in its rear that locally strengthen it and cause it to curve for-
ward in a neighborhood of R. In other words, this continuum
of refraction systems lies in the interval (α′

i , αp) for some
angle of incidence α′

i . Furthermore, on the other side of this
boundary (i.e., in the interval (αp, α

′′
i ) for some α′′

i ) the inci-
dent shock i is partly overrun by upstream moving expansion
waves that locally weaken it and cause it to curve backward
in a neighborhood of R.

In summary, while we believe shock pair systems are of
interest in their own right, we have also found the regular
shock pair theory presented in this article to be quite useful in
our analysis of certain irregular refraction systems. We plan
to present additional work along these lines in a companion
article at a later date.

1.3 An overview of this article

In Sect. 2.1 we list the assumptions we have made concern-
ing the equations of state of each material in a shock pair
refraction. Then, in Sect. 2.2 we review in detail the assump-
tions that underly our definition of a regular shock pair. In
Sect. 2.3 we present an equation for predicting the angle of
incidence αi = αp at which a regular shock pair will occur. It
is a quadratic equation for x = sin2 αp. This greatly simpli-
fies the calculation of αp. The coefficients of this quadratic
equation depend on the thermodynamic properties of the two
materials. Thus, the equation of state of each material must
be given in order to solve for αp, which can then be compared
with computations and experiments.

Next, in Sect. 3 we classify shock pair refractions in terms
of whether the flow is supersonic downstream of both shocks,
supersonic downstream of one and subsonic downstream of
the other or subsonic downstream of both. In Sect. 3.1–
Sect. 3.3 we use shock polar diagrams to illustrate each of
these cases. In order to justify the use of shock polars in
the cases where the shock pair is irregular and unsteady, in
Sect. 3.4 we argue that these latter systems occur locally as a
self-similar system in a coordinate frame in which the origin
is at the refraction node R, and therefore they are ‘pseudo-
steady’.

In Sect. 4 we introduce the Principle of Shock Reciprocity,
which states that, for a regular shock pair, if the two mate-
rials are exchanged there is no effect on the polar diagram

for the regular shock pair system the angle between the two
shocks in the system or on the streamline deflection angle.
In order to determine which of the two shocks in the pair is
the incident shock and which is the transmitted shock we use
the concept of wave direction, which we review in Sect. 4.1.
Then, in Sect. 4.2 we formally define the Principle of Shock
Reciprocity and describe how one can use the wave direction
to differentiate between the incident and transmitted shocks
in the physical plane.

In Sect. 5 we briefly discuss the experiments from which
we obtained our experimental data and the schlieren photo-
graph shown in Figs. 10 and 11. In Sect. 6.1 we describe
the numerical method we used to obtain our computational
results and in Sect. 6.2 we list the numerical parameters we
used in our computations, such as the size of the computa-
tional domain, grid refinement and other details relevant to
these computations.

In Sect. 7 we present experimental and numerical evidence
in perfect gases for the existence of regular and irregular
shock pair refractions. In Sect. 7.1 we compare experimental
data from a sequence of experiments in the Air/SF6 gas com-
bination with ξi = 0.25 over an interval (αl , αr ) of angles of
incidence αi with data obtained from our computations and
data calculated from the regular shock pair theory under the
assumption that each of the shock pairs in the sequence is reg-
ular. Upon comparison we find the regular shock pair theory
agrees with the experimental and numerical data only at the
right-hand αr endpoint of the sequence. We conclude all of
shock pairs in the sequence but the last are irregular. Finally,
in Sect. 7.2 we present contour plots from some of our compu-
tations of regular and irregular shock pairs in three different
gas combinations. These computational results support the
analysis presented in the previous sections, demonstrate the
wide range of parameter space over which shock pairs are
found, and illustrate the utility of understanding shock pair
refraction as a separate phenomenon in its own right. We
finish with a discussion of our conclusions in Sect. 8.

2 Shock pair refractions

By definition, a shock pair refraction consists of only two
shocks i and t , say. Since there is no reflected wave, the
(effective) wave impedances are equal in magnitude,

Zi ≡ P1i − P0

Upi cos βi
= P1t − P0

Upt cos βt
≡ Zt . (11)

In addition, we assume the von Neumann ‘jump’ or ‘bound-
ary’ conditions apply everywhere along the material inter-
face; i.e., there is no change in pressure or in streamline
direction across the interface (e.g., see [20]).
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2.1 Assumptions on the equations of state of the materials

We assume that the equation of state for each material has
the form P = P(V, T ) where V is the specific volume and
T is the temperature. We also assume that each equation of
state obeys the general convexity condition (e.g., see [21]),
(

∂2 P

∂V 2

)

S
> 0, (12)

or equivalently,

G ≡ V 3

2a2

(∂2 P

∂V 2

)

S
> 0,

where

a2 = −V 2
(∂ P

∂V

)

S

is the speed of sound squared and G is the non-dimensional
form of the derivative in (12); i.e., the fundamental derivative
(e.g., see [11]). The condition in (12) is obeyed by nearly all
materials that are in a single phase (e.g., see [22]), although
it can fail near a phase boundary (e.g., see [21,23] and [24]).

2.2 The regular refraction of a shock pair

Suppose the flow fields are uniform in a neighborhood of the
shock node R as shown in Fig. 4. In this case the shock pair
is, by definition, a regular refraction. If the flow is not uni-
form in a neighborhood of R, then the system is an irregular
refraction. For regular refraction the pressure jumps across
the shocks are equal,

P1i − P0 = P1t − P0, (13)

and hence (11) implies

Upi cos βi = Upt cos βt . (14)

The refraction law (1) provides an extra equation and also a
relation between the flow Mach numbers M0i and M0t of the
i and t shocks

a0i M0i = a0t M0t , (15)

where (1) is for the laboratory frame and (15) is for the frame
at rest with respect to the refraction node R. In particular, the
flow Mach numbers M0i and M0t are always measured with
respect to R.

These equations, together with the equations of state for
the materials and the Rankine–Hugoniot equations are a com-
plete formulation of the regular two-shock refraction prob-
lem. Specifically, a solution is defined on the parameter set
(a0i , a0t , ξi , αi ), where the parameter ξi ≡ (P0/P1)i is the
inverse shock strength of the incident shock i . More com-
pactly, one can write (ηa, ξi , αi ). Thus, the parameter space
for the solution is a subset of Ω = [0,∞]×[0, 1]×[0, π/2].

Fig. 5 Shock polar diagram for the Air/CO2 gas combination with
M0i = 1.5204 and M0t = 1.9538 corresponding to an (i − t) pair such
as the one in Fig. 4; t = i , intersection of the i and t polars; s∗

i , s∗
t ,

sonic points on the i and t polars

Fig. 6 Regular refraction of an acoustic wave pair (i − t). This wave
pair is the acoustic limit of the RSP shown in Fig. 4. In other words, it
is the limit as ξi ≡ P0/P1 → 1 of the RSP in Fig. 4

A diagram of a regular shock pair refraction is shown in
Fig. 4. Each of the i and t shocks maps into its own polar in
the (δ, ln(P1/P0)) plane. However, since there is no reflected
wave, each shock must have the same polar coordinates,
which are denoted by (t = i) in Fig. 5. For ξi ≡ P1/P0 = 1
(Figs. 6, 7), the i and t shocks are reduced to acoustic degen-
eracies, which in the present context are regarded as trivial.
For P1/P0 > 1, the shock pair possibilities are as illustrated
in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. They are classi-
fied according as to whether the flow Mach numbers M1i and
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Fig. 7 Shock polar diagram for the CH4/CO2 gas combination with
M0i = 1.172 and M0t = 1.506 corresponding to an (i − t) pair such as
the one in Fig. 6; t = i , intersection of the i and t polars; s∗

i , s∗
t , sonic

points on the i and t polars

Fig. 8 Mach-reflection–refraction (MRR) containing an irregular-
shock-pair refraction (ISP) (n − t) with M1n < 1 and M1t > 1; n,
normal or Mach shock; cd, contact discontinuity; this diagram corre-
sponds to the schlieren photograph shown in Fig. 10

M1t downstream of i and t , and relative to them, are either
supersonic or subsonic.

2.3 A formula for predicting a regular shock pair

Suppose we are given two materials, an incident material
Mi and a transmission material Mt , together with their
equations of state and the inverse incident shock strength
ξi ≡ (P0/P1)i . We would like to predict the angle of inci-
dence αi = αp at which a regular shock pair refraction will
occur. This is equivalent to obtaining an expression for the
polar intersection point t = i shown in Fig. 5.

Fig. 9 Shock polar diagram for the CO2/CH4 gas combination with
M0n = 3.473 and M0t = 2.085 corresponding to an (n − t) pair such
as the one in Fig. 8; n = t , intersection of the n and t polars; s∗

n , s∗
t ,

sonic points on the n and t polars

Fig. 10 schlieren photograph for the Air/SF6 gas combination with
ξi = 0.25 and αi = 58◦; note that the i , n and t shocks are all traveling
from right to left as shown in the diagram in Fig. 8

One can solve this problem using equations (1) and (14)
together with the Rankine–Hugoniot equations and the equa-
tion of state for each material. After a tedious calculation,
during which a number of variables such as αt , βi and βt are
eliminated, one can obtain an equation for αi = αp in terms
of η ≡ Ui/Ut , the undisturbed material specific volume ratio
V0t/V0i , and the shock strength parameters (V1/V0)i and
(V1/V0)t , which are the specific volume ratios across the
i and t shocks, respectively. If we let x ≡ sin2 αp, then x
satisfies the following quadratic equation:

A2x2 + A1x + A0 = 0, (16)

with coefficients

A0 ≡ 1 − η2
(

V0t

V0i

)2

, (17a)
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Fig. 11 Enlargement of Fig. 10 about the refraction node R in which
the contact discontinuity cd and the Mach shock n are clearly visible;
note the thickness of the disturbed gas interface

Fig. 12 PreCursor-Mach-refraction (PCMR) containing an irregular-
shock-pair (ISP) (t − s) with M1 t < 1 and M1s < 1; s, side shock; n,
normal or Mach shock; cd, contact discontinuity; N , point at which s
and n shocks meet; (after the experiments in [17], Figs. 14 and 18)

A1 ≡ −
{

η−2

[

1 −
(

V1

V0

)2

t

]

− η2
(

V0t

V0i

)2

×
[

1 −
(

V1

V0

)2

i

]

+
[

1 −
(

V0t

V0i

)2
] }

, (17b)

A2 ≡ η−2

[

1 −
(

V1

V0

)2

t

]

−
(

V0t

V0i

)2
[

1 −
(

V1

V0

)2

i

]

.

(17c)

In order to proceed further, the equations of state of the
materials must be known. Let B0, B1 and B2 denote the coef-
ficients of the quadratic polynomial in (16) when the two
materials are perfect gases that obey the equation of state for
an ideal gas. Then (17) becomes
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Fig. 13 Shock polar diagram for the Ar/O2 gas combination with
M0t = 3.091 and M0s = 2.953 corresponding to a (t − s) pair such as
the one in Fig. 12; s = t , intersection of the s and t polars; s∗

s , s∗
t , sonic

points on the s and t polars

B0 = 1 − μi

μt
γi (γi + 1) M2

i [γi (γt + 1) M2
i + γt − γi ],

(18a)

B1 = −
{

1 −
(

μi

μt

)2

+ 4
μi

μt

(γt − γi )

γi + 1

(
M2

i − 1
) (

1 + γi M2
i

)

M2
i

[
γi (γt + 1) M2

i + γt − γi
]
}

,

(18b)

B2 = 4
μi

μt

(
M2

i − 1
) (

1 + γi M2
i

)

(γi + 1)2 M4
i

[
γi (γt + 1) M2

i + γt − γi
]

·
{
γt (γi + 1) M2

i − μi

μt

[
γi (γt + 1) M2

i + γt − γi
]}

,

(18c)

where μi , μt are the molecular weights and γi , γt are the
ratio of specific heats of the incident and transmitted gases
respectively.

In the acoustic limit V1/V0 → 1, or equivalently, Mi →
1, then (16) with (17) or with (18) gives exactly the same
result. That is, the acoustic limit is independent of the equa-
tions of state. Thus,

sin2 α∗
p = 1 − (ri/rt )

2

1 − (V0t/V0i )2 (19)

where ri,t ≡ ρ0i,t a0i,t = a0i,t/V0i,t is the acoustic
impedance of the incident and transmission materials and
ρi,t = 1/Vi,t is their density. Equation (19) is exactly the
same as a well-known one in acoustics in which α∗

p is called
the angle of intromission (e.g., see [4], p. 158). As noted in
[4], this angle can exist only under two circumstances:
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1. ri < rt and V0i < V0t ,
2. ri > rt and V0i > V0t .

Given the system parameters (ηa, ξi , αi ) defined in
Sect. 2.2, equation (16) can be solved for αp, giving two
values for αp. The geometry of the system boundary will
determine which solution appears for the corresponding RSP.
Only one solution can occur for a given set of parameters, so
it follows more generally that the RSP is not robust; it occurs
as the separating condition between either a regular, such as
RRR � RRE, or an irregular system, such as RRR � PCMR.

3 The classification of shock pair refractions

3.1 The all-supersonic case M1i > 1 and M1t > 1

A diagram of the all-supersonic case is shown in Fig. 4 and
two shock polars illustrating this case are shown in Fig. 5.
This case has been discussed in previous papers (e.g., [2]).
It lies on the transition between a shock refraction with a
reflected shock (RRR) and one with a reflected expansion
(RRE). In other words, the shock pair occurs at the transition
RRR � RRE, where the reflected wave (r or e) degenerates
to a Mach line and equations (11) to (15) are satisfied. A
computation of this transition for the CO2/CH4 slow–fast gas
combination is shown in Fig. 4b of [2] and for the Air/CO2

fast–slow gas combination in Fig. 3c of [3].
The flow fields are everywhere supersonic and uniform

in a neighborhood of the refraction node R, so this system
is a regular refraction. However, any infinitesimal variation
in one or more of the system parameters (ηa, ξi , αi ) will, in
general, cause the shock pair system to change into one of
the adjacent two wave systems, RRR or RRE. In this respect
it may be noted that the polar for the reflected shock in an
RRR and the characteristic for the reflected expansion in an
RRE form non-trivial polar intersections once i moves away
from the intersection point of the M0i and M0t polars.

In our earlier paper [2] we showed that RRR and RRE
occupy a subspace of finite volume in the parameter space
Ω , while the wave pair refraction lies only on the boundary
between these two subspaces. Therefore, it occupies zero vol-
ume. Furthermore, the subsets ΩR ⊂ Ω and ΩE ⊂ Ω occu-
pied by RRR and RRE are open subsets of Ω in the sense that
about each point (ηa, ξi , αi ) ∈ ΩR or (ηa, ξi , αi ) ∈ ΩE

one can construct an open neighborhood contained entirely
within ΩR or ΩE . Therefore, an RRR or an RRE will survive
any infinitesimal perturbation of its state. Such systems are
called generic or robust [19]. On the other hand, since the set
of all shock pair refractions satisfying M1i > 1 and M1t > 1
lies on the boundary between ΩR and ΩE , every open neigh-
borhood of a point in this set will also contain points in ΩR

and ΩE . Hence, this shock pair refraction is not generic or

robust. Physically, the shock pair can only exist fleetingly
under variations of the system parameters.

3.2 The mixed supersonic–subsonic case M1i > 1
and M1t < 1 or M1i < 1 and M1t > 1

The mixed shock pair can occur in at least two situations,
either as an i − t pair similar to Figs. 4 and 5 except that now
M1i < 1 with a corresponding change in the polar intersec-
tion (e.g., see Figs. 23, 24), or as part of a MRR in which the
Mach shock n refracts to produce the t shock with M1n < 1
and M1t > 1 as shown in the diagram in Fig. 8. Two shock
polars illustrating this latter case are shown in Fig. 9. Since
M1n < 1 there can be no reflected wave at the node R on the
interface. Consequently, there is no reflected shock polar or
isentrope to represent a reflected shock or expansion wave.
Furthermore, so long as M1n < 1 this conclusion will still
apply, and the two-shock refraction will therefore survive
infinitesimal variations in the system parameters. Thus, in
this case it is generic. Systems of this type were detected
in the experiments of Abd-el-Fattah and Henderson [5] with
shocks being refracted by the Air/SF6 gas combination. A
schlieren photograph from [5] for this gas combination for
ξi = 0.25 and αi = 58◦ is shown in Figs. 10 and 11.2

3.3 The all subsonic case M1i < 1 and M1t < 1

A diagram of a shock pair t −s with M0t < 1 and M0s < 1 is
illustrated in Fig. 11. Two shock polars illustrating this case
are shown in Fig. 13. Once again there can be no reflected
wave from the interface. The t and s polars intersect on the
subsonic parts of both polars. By arguments similar to the
previous case the t − s pair is generic. The appearance of a
t − s shock pair in a PreCursor-Mach-refraction (PCMR) is
discussed in Sect. 7.2.2. It has been detected during experi-
ments with the Air/CH4 gas combination [17] (see Plate 6,
Fig. 14c and Plate 12, Fig. 18).

3.4 The shock polar analysis of irregular shock pairs

Regular refractions can be regarded as solutions to Riemann
problems for steady supersonic flows, and as such can be
interpreted using shock polars. Irregular refractions on the
other hand are not steady, but only pseudo-steady or self-
similar (scale invariant) as solutions to two-dimensional Rie-
mann problems for time dependent flows.

2 In the schlieren photograph in Figs. 10 and 11 the feature that appears
as a straight black line inclined at an angle of αi = 58◦ to the vertical is
the edge of the wire frame used to hold the thin polymer membrane that
initially separated the two gases. See [6] for details of the experimental
setup.
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So for example, consider the MRR system in Figs 8, 9,
10 and 11, where the n-shock refracts into the t-shock. If
one assumes the Mach node (i.e., the triple point) follows a
straight path beginning at O , then the von Neumann theory
agrees quite well with experiment. The n-shock has its end
points on that path and on the plane surface at the n−t node R
on the gas interface. Consequently, this shock is self-similar,
both in the coordinate system with the origin at the Mach node
(triple point) and in the coordinate system with the origin at
R. In either frame of reference it can be treated as pseudo-
stationary. Similarly, in the coordinate frame with the origin
at R the t-shock is also self-similar in a neighborhood of R.
Thus, the flow in a neighborhood of R is pseudo-stationary
in the coordinate frame centered on R, and one can use shock
polars such as the one in Fig. 9 to analyze the MRR systems
as we have done in Sect. 3.2.

There are numerous schlieren photos of PCMR systems
in [2,7] and [17] that contain t−s wave pairs. They have been
extensively studied numerically in [2]. The photos in [7] and
[2] clearly show the systems are self-similar in the coordinate
systems mentioned above. One can similarly justify the use
of shock polars such as the one shown in Fig. 13 to analyze
PCMR systems as we have done in Sect. 3.3 by noting that
the flow is pseudo-stationary in the coordinate frame with its
origin at the point R shown in Fig. 11.

4 The principle of shock reciprocity

Each wave in a shock pair such as i − t , n − t , or t − s
maps into the same polar intersection point (t = i , t = n, or
s = t) as shown in Figs. 5, 9, 13, so it is impossible to deter-
mine from the polar plane which is the incident and which is
the transmitted shock. This suggests the Principle of Shock
Reciprocity, similar to the one for acoustic reciprocity [4].
Namely, it makes no difference to the refraction if a shock
passes from the first material into the second or vice versa.
Although this is correct for the polar plane some difficulty
can arise in the physical plane. In order to understand it we
review an idea used by von Neumann, and also by Glimm et
al. in [19], called wave direction.

4.1 The wave direction

Referring now to Fig. 2 one can resolve the flow vector q0 =
q0n + q0t upstream of, and in coordinates relative to, the
i shock (say) into component vectors q0n and q0t that are
perpendicular and parallel, respectively, to the shock, and
similarly for the downstream flow vector, q1 = q1n + q1t . In
this way one can unambiguously define the shock direction to
be the same direction as the parallel vector components q0t =
q1t . By this means it may be said that a wave arrives at a shock
intersection point (i.e., node) R if the vector components

q0t = q1t point towards R, but the wave leaves R if q0t = q1t

point away from the it. (Our definition of the term arrives is
equivalent to the definition of the term incoming used by
Glimm et al. in [19]). Evidently a refracting shock can only
arrive at a node R on an interface if its wave angle α with
respect to the undisturbed interface mu is acute, α < π/2.
For example, compare Fig. 8 where n arrives and t leaves R,
with Fig. 11 where t arrives and s leaves R.

4.2 Wave direction and the principle of shock reciprocity

Consider two materials Mi and Mt , each with a convex equa-
tion of state, which are initially in contact along a plane sur-
face and in equilibrium under uniform compressive pressure.
Now suppose a shock i , with shock strength ξi ≡ P0/P1, is
started in the incident material Mi at a predetermined angle
of incidence αi , where αi is chosen so that sin2 αi = x and
x is a solution of (16), so the resulting refraction will be a
regular shock pair system. When the incident shock i strikes
the undisturbed material interface mu it refracts into a trans-
mitted shock t with refraction angle αt and also deflects the
undisturbed interface by an angle δ down and away from
itself. Note that this in the same direction as the wave direc-
tion of the incident shock (e.g., see Fig. 4). The three angles
αi , αt and δ define the geometry of the regular shock pair
system. Furthermore, note that the angle θ at R between the
undisturbed material interface mu and the disturbed material
interface md measured in the incident material Mi or, equiv-
alently, on the side of the interface with the incident shock i ,
is θ ≡ π + δ > π radians.

The shock pair system is now in the self-similar configura-
tion shown in Fig. 4.3 Taking coordinates fixed with respect
to the refraction node R, let q0 denote the velocity approach-
ing R (i.e., −q0 is the velocity of R in the laboratory frame).
The vector component of q0 parallel to the i-shock points
towards R, so the i-shock arrives at R, while the analogous
component for the t-shock points away from R, so the t-shock
leaves R as shown in Fig. 4.

Now consider the reciprocal refraction, which we denote
by i ′, t ′, αi ′ and αt ′ . In the reciprocal refraction the two mate-
rials are exchanged, so the original transmission material Mt

is now the new incident material Mi ′ and vice versa. The
polar diagram does not change under this exchange, so both
shocks have the same inverse incident shock strength ξi ′ = ξi

and the same deflection angle δ as before. An incident shock
i ′ is now started in the new incident material Mi ′ = Mt at
the angle of incidence αi ′ = αt with shock strength ξi ′ = ξi

(Fig. 14). In a neighborhood of the refraction node R the

3 One can instead consider the system shown in Fig. 4, but without
the bottom boundary, so the i and t shocks and the undisturbed and
disturbed material interfaces mu , md are rays that originate at R and
extend to infinity in each of their respective directions.
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Fig. 14 Regular-shock-pair refraction (RSP) (i ′ − t ′) that is reciprocal
to the RSP in Fig. 4; the materials Mt , Mt and the angles αi , αt and δ

are the same as in Fig. 4; note that the angle θ is measured in radians

geometry of the reciprocal system is identical to the origi-
nal system except for one detail. The angle between the new
incident and transmitted shocks i ′ and t ′ is the same as the
angle between the original incident and transmitted shocks
i and t , and the deflection angle δ is the same. However, in
the reciprocal system the disturbed material interface md is
downstream of the new incident shock i ′, which has angle of
incidence αi ′ = αt , whereas in the original system the dis-
turbed material interface md is downstream of the original
incident shock i , which has angle of incidence αi (Fig. 4),
where, in general, αi �= αt = αi ′ . Thus, in general, a
photograph of a regular shock pair system and its reciprocal
system would not be geometrically identical. This difference
allows us to identify which of the two shocks in the system is
the incident shock. Namely, the incident shock i (or i ′) is the
shock on the side of the interface where the angle between the
undisturbed, mu , and the disturbed, md , material interfaces
is θ = π + δ > π radians as shown in Fig. 14. Inspection
of the diagram in Fig. 14 of the system that is reciprocal to
the system in Fig. 4 now reveals that the new incident shock
i ′ arrives at R and the new transmitted shock t ′ leaves R.

From equation (3) we have sin αi = η sin αt , where η is
the refractive index defined in (2). Exchanging the materials
changes η to η′ = 1/η and hence, η′ sin αi = sin αt . But the
t-shock is now the new i-shock, namely i ′, and vice versa;
so in exchanging the subscripts we recover equation (3) for
the reciprocal system sin αi ′ = η′ sin αt ′ . Furthermore, since
η < 1 implies η′ = 1/η > 1, if the original system is
a slow–fast refraction, then the reciprocal system must be
fast–slow refraction and vice versa. More formally, we have
the following.

Fig. 15 Comparison of the approximate theory sin αi ≈ Ui /Um to
experimental and numerical data; Ui is the speed of the incident shock
i ; Um is the speed of the node R along the undisturbed material interface;
square, triangle, circle, experimental, computational and approximate
theory data points, respectively

The principle of shock reciprocity Suppose that two
materials, each with a convex equation of state, initially meet
at a plane boundary and are everywhere under uniform com-
pression. Then, if the two materials are interchanged, the
polar diagram of a regular shock pair refraction, the angle
between the two shocks, and the streamline deflection angle
will be invariant. However, the two rays emanating from
the refraction node R, which comprise the disturbed and
undisturbed material interfaces in the original system, are
reflected through R in the reciprocal system in such a way
that the angle between the undisturbed and disturbed mater-
ial interface, as measured in the incident material, is always
θ = π + δ > π radians. This is equivalent to the require-
ment that the incident shock is always the one that arrives
at R.

Finally, both the refraction law (1) and the equality of
impedance condition (11) are symmetrical for reciprocal
shock pairs. It is concluded that the principal of shock reci-
procity can be applied to regular shock pair systems provided
we are always careful to identify the incident shock as the
one that arrives at the refraction node R on the interface.

5 The experiments

The schlieren photographs and experimental data presented
here were obtained from Abd-el-Fattah and Henderson [5].
We made additional measurements from their schlieren pho-
tographs, so the data presented in Figs. 15, 16, 17 and 18 has
not been previously published. The experiments were done
by setting up a delicate polymer membrane, with an areal
density of about 5 × 10−6 gcm−2, in a shock tube. Then
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Fig. 16 Comparison of the shock pair theory to experimental and
numerical data for αn , the wave angle for the Mach shock n at R; square,
triangle, circle, experimental, computational and shock pair theory data
points, respectively

Fig. 17 Comparison of the shock pair theory to experimental and
numerical data for αt , the wave angle of the transmitted shock t at
R; square, triangle, circle, experimental, computational and shock pair
theory data points, respectively

air was introduced on one side of it and SF6 on the other.
The membrane defined the boundary between the gases as
a plane surface. A plane shock wave was initiated in the air
and arranged to strike the membrane (interface) at a pre-
determined angle of incidence αi . The shock shattered the
membrane and refracted as it entered the SF6. This refrac-
tion is fast–slow because η > 1. A detailed description of
the experimental apparatus and its operation may be found
in [6], while a detailed description of the experiments from
which the data presented here was obtained may be found
in [5].

Some data with ξi held constant at ξi = 0.25 are pre-
sented in Figs. 15, 16, 17 and 18. These are for the MRR

Fig. 18 Comparison of the shock pair theory to experimental and
numerical data for the streamline deflection angles δn,t , these are the
same as the deflection angle δ of the material interface at R; square,
triangle, circle, experimental, computational and shock pair theory data
points, respectively; NB the vertical lines are not error bars, but are the
measured angular width of the disturbed interface due to the gas mixing;
e.g., see Fig. 11

type of refraction, a diagram of which is depicted in Fig. 8. A
schlieren photograph of a MRR refraction appears in Fig. 10
and an enlargement of this photograph about the Mach stem
appears in 11. In this system the shock pair is an n − t shock
pair in which the Mach shock n refracts and forms t . For all
of these experiments the flow downstream of, and relative to,
n is subsonic, while the flow downstream of, and relative to,
t is supersonic.

6 The computations

6.1 The numerical method

In this work we used a second-order accurate finite difference
method on a square grid (i.e., x = y) covering a rectan-
gular, two-dimensional domain to approximate solutions of
the time-dependent compressible Euler equations in which
two gases are present. The boundary conditions consisted
of reflecting boundary conditions on the left, top and bot-
tom sides of the computational domain and inflow boundary
conditions on the right-hand side of the domain; i.e., bound-
ary cells on the right-hand side of the computational domain
were set to the post-shock state for the incident shock i .

The basis of our numerical method is the numerical inte-
gration of the compressible Euler equations for a single
gas with an operator split version of a second-order accu-
rate Godunov method of the type originally proposed in
[25,26] and [27]. This methodology is second-order accurate
in regions of smooth flow and captures shocks with a min-
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imum of numerical overshoot and dissipation. This second-
order Godunov methodology for a single gas has been used
extensively to compute unsteady shock reflections in gases
and has a demonstrated ability to resolve complex interac-
tions of waves and discontinuities that is in excellent agree-
ment with experiment; e.g., see [28].

Our approach to modeling grid cells that contain more
than one gas is based on an (unpublished) algorithm for
modeling two gases in a single grid cell originally proposed
by Colella, Glaz, Ferguson and Puckett. Although this algo-
rithm is unpublished, it is a straightforward matter to mod-
ify the algorithm described in [29] for modeling cells that
contain more than one material, each of which obeys a Mie–
Grüneisen equation of state with a linear Hugoniot, to obtain
the algorithm we used here for modeling cells that contain
two perfect gases; one simply replaces the Mie–Grüneisen
equation of state for each material with the ideal gas equation
of state for each gas.

In our numerical method the interface between each gas
is tracked using the “Least squares volume-of-fluid interface
reconstruction algorithm” coupled to an operator split advec-
tion algorithm as described in [30]. In grid cells that contain
two gases the equations of motion for a single gas are sup-
plemented with evolution equations for the volume fraction,
total energy and mass density of each gas. The resulting sys-
tem of conservation laws is of hyperbolic type, and thus can
be solved using a straightforward extension of the underly-
ing second-order accurate Godunov method for a single gas.
This formulation of the equations of motion accounts for
the thermodynamic properties of each gas separately, while
modeling the pressure and velocity in each grid cell, includ-
ing those that contain more than one gas, as single-valued
quantities. In particular, given a single uniform pressure act-
ing on a grid cell containing two gases, this algorithm will
correctly account for the compression or expansion that each
gas undergoes as a result of that pressure.

We coupled this algorithm for approximating the solu-
tion of the compressible Euler equations with two gases to
the adaptive mesh refinement algorithm described in [31].
In [2] we used this numerical method to model the wave
interactions that occur when a shock wave strikes a slow–
fast gas interface. Our results are in excellent agreement with
the slow–fast shock refraction experiments reported in [6,7]
and [17].

A detailed description of all aspects of the numerical
method we used in the work described here may be found
in [29]; the only difference being that in the work described
here we used an ideal gas equation of state while in [29] the
authors used a Mie–Grüneisen equation of state with a linear
Hugoniot. However, as mentioned above, it is a straightfor-
ward procedure to covert the algorithm described in [29] into
one in which the computational grid cells contain one or two
gases, each of which obeys an ideal gas equation of state.

Table 1 Gas properties used in the computations

Gas Air CO2 CH4 SF6

γ 1.4 1.288 1.303 1.093

μ 28.966 44.01 16.04 146.0544

6.1.1 Self-similar solutions of the compressible euler
equations

Note that in Fig. 10 the t-shock undergoes a local Mach
reflection at the bottom boundary and the reflected shock
associated with this Mach reflection deflects the gas disturbed
gas interface to the right, in a region close to the bottom
boundary. In Samtaney and Pullin [32] and Samtaney [33]
the authors introduce a numerical method for approximat-
ing solutions of the (steady) self-similar compressible Euler
equations and use it to study the instability and subsequent
roll-up of the gas interface in a fast–slow refraction at a den-
sity jump in a perfect gas (air). This is analogous to the exper-
iment shown in Fig. 10. Their computations appear to cor-
rectly resolve the Mach reflection of the t-shock at the bottom
boundary and the subsequent deflection of the gas interface
by the reflected shock. In references [32] and [33] the authors
present an interesting study that addresses the question of
how accurately a numerical method can compute the roll-up
of the fluid interface. (An example of such a roll-up can be
seen in the contour plot of log ρ in Fig. 25.)

6.2 Plan of the numerical work

Our computations were planned as though we were doing
a series of experiments in a shock tube. For a particular
sequence the values of αi were selected to cover the phenom-
ena of interest, while the other parameters (γi , γt , μi , μt , ξi ),
or equivalently, (a0i , a0t , ξi ), or (ηa, ξi ) were held constant.
The gas properties we used in our computations are listed in
Table 1.

We non-dimensionalized the problem and computed the
numerical results shown in Figs. 24 and 25 on a domain of
(non-dimensional) size 1.00 × 0.72. We computed all of the
other numerical results (i.e., those shown in Figs. 19, 20, 21,
22 and 23 and Figs. 26, 27) on a domain of size 1.12 × 0.72.

Our block structured adaptive mesh refinement algorithm
starts with a uniform ‘level 0’ grid covering the entire domain
and then automatically places blocks of finer grids in regions
of the computed flow field that satisfy certain predefined grid
refinement criteria. In our computations the level 0 grid had
a (non-dimensional) value of x0 = y0 = 0.01, where
the superscript ‘0’ indicates that these are the values for the
level 0 grid. In other words, the level 0 grid on the 1.00×0.72
domains consisted of 100 × 72 square cells and the level 0
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Fig. 19 Contour plot of log P for a MRR in Air/SF6 with ξi = 0.25
and αi = 58◦; this is a computation of the experiment shown in Fig. 10

Fig. 20 Enlargement of Fig. 19 about the node R; compare with Fig 11

grid on the 1.12×0.72 domains consisted of 112×72 square
cells.

The number of levels of refined grids and the amount by
which they are refined from the level 0 grid are predefined
computational parameters. The algorithm that determines
when to refine a particular region of the grid is designed to
automatically place finer grids in ‘regions of interest’, such
as regions containing a portion of a shock wave or a por-
tion of the gas interface. In particular, this algorithm has the
property that the gas interface and all shock waves will be
covered with blocks of the finest grid.

In computing all of the numerical results shown here we
set the grid refinement parameters so there were at most two
levels of grid refinement, each with a refinement factor of
four. Thus, in addition to the level 0 grid some regions of
the flow field were covered with blocks of a level 1 grid
with x1 = x0/4 = 0.0025 and, additionally, some of the

Fig. 21 Contour plot of log ρ for an ISP in Air/SF6 with ξi = 0.25
and αi = 70◦

Fig. 22 Enlargement of Fig. 21 about the refraction node R

Fig. 23 Contour plot of log P for a RSP in Air/SF6 with ξi = 0.25
and αi = 77.65◦, the angle at which αi = αp; note there is no reflected
wave

regions of the flow field covered by the level 1 grid were also
covered with blocks of level 2 grids with x2 = x1/4 =
0.000625. So, for example, if one of the 1.00 × 0.72 domains
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Fig. 24 Contour plot of log P for a RSP in Air/CO2 with ξi = 0.10
and αi = 70.2135◦, the angle at which αi = αp; note there is no
reflected wave

Fig. 25 Contour plot of log ρ for an ISP in Air/CO2 with ξi = 0.10
and αi = 85◦

had been uniformly covered with cells at the finest level of
grid refinement, it would have been covered with 1,600 ×
1,152 square grid cells.

We chose these values for the input parameters that con-
trolled the formation of the computational grid so that fur-
ther refinement of the grid did not change the wave angles
and other features of the refracting wave systems in any
way we could measure. We also checked our computa-
tional results by computing each of the problems with a uni-
form square grid at the finest level of refinement (i.e., with
x = y = 0.000625) and found no measurable difference
in the wave angles and other features of the refracting wave
systems that appear in the contour plots in Figs. 19, 20, 21,
22, 23, 24, 25, 26 and 27.

We employed two-grid refinement criteria. First, all ‘mul-
tifluid’ cells (i.e., cells that contained both gases) were refined
to the maximum extent. The second grid refinement criterion
was designed to reduce the local truncation error in the com-
puted values of the density ρ, where the local truncation error
is estimated using a method based on Richardson extrapola-
tion. Details of the error estimation algorithm may be found
in [31] and [29].

Note that this algorithm is adaptive in the sense that as
the flow field evolves in time it detects the location of both
shock waves and the gas interface, even if they are moving,

Fig. 26 Contour plot of log ρ for a PCMR in Air/CH4 with ξi = 0.30
and αi = 55◦

Fig. 27 Enlargement of the PCMR in Fig. 26 about the node R

and automatically places blocks of the level 1 and level 2 grids
in a neighborhood of these features and removes blocks of
these grids if these features leave the region (i.e., if the grid
refinement criteria mentioned above ceases to hold). For a
more detailed account of the block structured adaptive mesh
refinement algorithm see references [31] and [29]. Each of
these references contain figures showing the automatic place-
ment of the refined block grid structure over regions of the
computed flow field with moving shock waves and, in [29],
the interface between two materials.

The vertical lines in Fig. 18 accompanying the experimen-
tal data for δt = δn indicate the measured angular width of
the disturbed gas interface (e.g., see Figs. 10, 11), they are
not error bars.

7 Discussion

7.1 Comparison with experiment

In Figs. 15, 16, 17 and 18 we compare experimental data
and data we obtained from our numerical computations to
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data we calculated with the regular shock pair theory. As we
mentioned in the last paragraph of Sect. 5, the experimental
data is from experiments in which the refraction was of the
MRR type, a diagram of which appears in Fig. 8. With regards
to the accuracy of the experimental data, the speed Um of the
n − t node along the undisturbed gas interface and the angle
of incidence αi could both be measured to about 3 significant
figures from the schlieren photographs of the experiments.
We consider the Ui/Um versus αi data shown in Fig. 15 to be
our most accurate and reliable results. The other experimental
data presented here, which are all angles, are less accurate
and are typically no better than ±2◦. An exception is the
αn

4 versus αi data shown in Fig. 16, which was difficult to
measure accurately for all but the largest values of αi because
of the relatively short length of the n-shock.

The numerical data5 is in excellent agreement with the
experimental data for Ui/Um in Fig. 15, and in agreement
with the experimental angle data in Figs. 17 and 18 granted
the uncertainties in the measurements taken from the experi-
ments and the numerics. In general, for αi < 65◦ the numer-
ical data for αn shown in Fig. 16 does not agree well with
the experimental data. We attribute this to the difficulty we
had in measuring αn for αi < 65◦ in both the experiments
and the computations. This difficulty is due to the fact that
for αi < 65◦ the n-shock is quite short; significantly shorter
than the t-shock and both the undisturbed and disturbed gas
interfaces. As a consequence, for αi < 65◦ we were unable
to establish a line tangent to n at R that was accurate to within
±2◦. We consider the αn versus αi data for αi < 65◦ to be
our most unreliable data.

It is important to note that the strength of the n − t shock
pair is not known from the experiments and therefore, the
shock pair theory as given in equations (16) and (18) can-
not be used. Furthermore, in the derivation of the shock pair
theory [i.e., equations (16)–(18)] we assume that the refrac-
tion is a regular shock pair, which, in the case of each of the
experiments for which data is presented in Figs. 16, 17 and
18, is not necessarily true. In short, the data represented as
circles in Figs. 16, 17 and 18 and labeled ‘Shock pair theory’
is based on our calculation of the angles αn , αt and δn,t versus
αi under the (possibly untrue) assumption the refraction is a
regular shock pair. We calculated this data in the following
manner.

Given the values of the sound speeds a0i and a0t ahead
of the incident and transmitted shocks and the value of the

4 The Mach shock wave angle αn and the side shock wave angle αs are
measured with respect to the upstream undisturbed interface mu ; i.e.,
in the same way the incident shock wave angle αi is measured (Fig. 1).
5 Throughout this article the words ‘numerical’, ‘computation’ and
their variants always refer to results obtained from computations made
with the numerical method described in Sect. 6.1, while the word ‘cal-
culate’ and its variants always refer to results obtained ‘by hand’ or with
a calculator.

inverse incident shock strength ξi = 0.25, each of which is
known a priori, together with the measured value of the speed
Um of the n − t node from each experiment, we calculated
the undisturbed free stream shock Mach numbers upstream
of, and relative to the n and t shocks: M0n = Um/a0i and
M0t = Um/a0t (e.g., see Fig. 2). Using M0n and the ratio of
specific heats γi for the incident gas (air) we then formed the
shock polar for the n shock. Similarly, we used M0t and γt

to form the shock polar for the t shock in the transmitted gas
(SF6). Given the shock polars for the n and t shocks we used
Newton’s method to find their intersection (δ, ln(P1/P0)). At
this point of intersection equation (13) holds, P1n = P1t , and
similarly for the streamline deflection angle δn = δt across
the n and t shocks. We plot this latter quantity against αi in
Fig. 18. Furthermore, now that we know P1n and P1t , we can
determine the shock speeds Un and Ut for the n and t shocks.
These quantities, together with Um , give us αn and αt from
the identities sin αn = Un/Um and sin αt = Ut/Um . We plot
αn and αt against αi in Figs. 16 and 17, respectively. Actu-
ally, using the refraction law (1) one obtains the very good
approximation Un/Um ≈ sin αi , as shown by the circles in
Fig. 15. This equation becomes strictly correct if the MRR
transits to a regular refraction: MRR → RRR, in which case
the normal shock n disappears and the incident shock i meets
the transmitted shock t at the node R.

Our reason for presenting the ‘Shock Pair Theory’ data in
Figs. 16, 17 and 18, calculated in the manner just described,
is to show the agreement between the data from the regular
shock pair theory and the experimental and computational
data increases as αi increases, until there is complete agree-
ment between the regular shock pair theory and our computa-
tions at αi = αp = 77.65◦. This is the angle at which the reg-
ular shock pair theory predicts there will be a regular shock
pair for the Air/SF6 gas combination with ξi = 0.25. This
prediction is confirmed by the contour plot in Fig. 23. Unfor-
tunately, we have no experimental data for αi = 77.65◦. This
is the reason αi = 70◦ is the upper limit for the horizontal
axis in Figs. 15, 16, 17 and 18.

In summary, for αi < 77.65◦ there are discrepancies
between the experimental data and the data calculated from
the regular shock pair theory as described above. Thus,
although the n and t shocks form a shock pair for αi <

77.65◦, this shock pair system is not regular (uniform) and
therefore it must instead be an irregular shock pair system
(non-uniform). We shall present numerical evidence to sup-
port this hypothesis in Sect. 7.2. However, before presenting
this evidence, we first explore the implications of our obser-
vations concerning the data in Figs. 16, 17 and 18 by briefly
re-examining the shock pair theory.

The shock pair theory for the refraction of the i − t ,
n − t , and t − s pairs involves both the refraction law (1)
and the equality of impedance condition (11), where the
subscript i is replaced by n for the n − t pair and, sim-
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ilarly, the subscripts i and t are replaced by t and s for
the t − s pair. The refraction law must be correct, other-
wise one shock would move along the interface faster than
the other and the system would disintegrate. The equality
of impedance condition requires the von Neumann bound-
ary conditions to be satisfied everywhere along the interface;
that is, the component of the velocity of both materials nor-
mal to the interface must be equal at any point on it, and
so also must be the pressure. The validity of these condi-
tions has been well established by innumerable experiments,
not only in the references cited but in many other papers on
Mach reflections and shock interactions. The von Neumann
conditions can therefore also be accepted with confidence.
Now the equality of impedance condition (11) is obtained
essentially by taking the ratio of these conditions [1], so
it must also be correct. However, the regular shock pair
theory also uses a third equation, namely (13), and both
experiments and computations indicate it is not correct in a
neighborhood of the refraction node R in the event subsonic
non-uniformities are present. Hence, the refraction becomes
irregular.

To summarize, consider an irregular shock pair, say a t −s
pair. At the refraction node R of the t −s pair their respective
impedances must be equal Zt = Zs for the reasons stated
above. However, as one moves away from R along either
the t or s-shock there are subsonic non-uniformities in the
pressure field downstream of each shock and hence, also in
the velocity field, causing the impedances Zt and Zs to differ
from one another in an immediate neighborhood of R. The
changes in the pressure in an immediate neighborhood of R
downstream from each shock also cause the shock to curve
as one moves away from R. This is particularly evident in the
computation of the PCMR in Air/CH4 in Figs. 26 and 27.
Some additional numerical evidence for uniform and non-
uniform flows will be presented in the next section.

However, before proceeding we would like to emphasize
that one can apply the regular shock pair theory without a pri-
ori knowledge of a system parameter that must be obtained
from experiment or computation. The reason it was neces-
sary for us to use the experimental value of the speed Um to
calculate αn , αt and δ = δn = δt from the regular shock pair
theory as described above was because we wanted to com-
pare the theory with experimental data to determine if the
n − t shock pairs were regular. In general, however, one can
use the regular shock pair theory to predict the angle αi = αp

at which a regular shock pair will occur when a planar shock
with incident shock strength ξi refracts at a planar interface
between two materials. For example, in [3] we used the reg-
ular shock pair theory in this manner to study anomalous
refraction at an Air / CO2 gas interface. All of our compu-
tations, including the ones shown in Figs. 23 and 24, have
agreed with the predictions made by the regular shock pair
theory when we have used it this way.

7.2 The computational results

7.2.1 Supersonic–subsonic

In Figs. 19, 20, 21, 22 and 23 we present computational
results6 for the gas combination Air / SF6 with ξi = 0.25 and
αi in the range 58◦ ≤ αi ≤ αp = 77.65◦. In Fig. 19 there
are closely spaced pressure contours near the n − t node;
this is clearer in the enlargement in Fig. 20. Therefore, we
conclude that the flow is non-uniform and the n − t refrac-
tion is irregular. Figs. 16, 17 and 18 show that the regular
shock pair theory differs significantly from experiment for
αi = 58◦. However, the computational wave angle data in
Figs. 17 and 18, which make no assumption about regular-
ity (uniformity), agrees to within ±2◦ with the experimental
wave angle data at αi = 58◦, which is within the accuracy
with which the experimental and computational wave angle
data in these figures could be measured. One can also see the
degree to which the computation agrees with the experiment
by comparing the schlieren photographs in Figs. 10 and 11
with the contour plots in Figs. 19 and 20.

As we continuously increase αi it eventually approaches
the regular shock pair condition at αi = αp = 77.65◦,
where Zt = Zi . During this process the contours become
increasingly sparse near R and the local flow correspond-
ingly more uniform. For example, compare Figs. 21 and 22
where αi = 70◦ with Figs. 19 and 20. Inspection of Figs. 15,
16, 17 and 18 shows the agreement between the RSP theory
and experimental data increases steadily with increasing αi .
At αi = 70◦ the values for Ui/Um from the regular shock
pair theory and the experimental data are indistinguishable in
Fig. 15 while the angle data in Figs. 17 and 18 is within ±2◦,
which is the limit of the accuracy with which the computa-
tional and experimental wave angle data could be measured.
However, both the data for αn in Fig. 16 (which for αi = 70◦
can be measured as accurately as the other wave angle data)
and the contour plots in Figs. 21 and 22 show the refrac-
tion at αi = 70◦ is not yet a regular shock pair. We have no
experimental data at the regular conditionαi = αp = 77.65◦.
However, the regular theory is in excellent agreement with the
numerical results at this condition as shown in Fig. 23. Phys-
ically the reflected shock has now vanished Zr = 0 and the i
and n shocks have become indistinguishable, Zt = Zn = Zi .

By comparing the regular shock pair theory, the numerical
and the experimental results we conclude that both regular
(uniform) and irregular (non-uniform) shock pair refractions
exist. In particular, the irregular refractions include rapid

6 In each of Figs. 19, 20, 21, 22, 23, 24, 25, 26 and 27 we have drawn a
straight line at the angle αi to the vertical in order to indicate the initial
position of the gas interface. This line is in the same location as the edge
of the wire frame that holds the thin polymer membrane that initially
separates the two gases in the experiments, and is visible in Figs. 10
and 11.
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changes in the pressure in a subsonic flow field about the
refraction node. If the node becomes a source/sink of con-
tours, then the non-uniformity becomes a subsonic pressure
discontinuity at that point.

Other examples are presented in Figs. 24 and 25; these
are for Air/CO2 with ξi = 0.10. In Fig. 24 αi = αp =
70.2135◦ and the refraction is regular. The i- and t-shocks
are perfectly straight in a neighborhood of their intersection
at the refraction node R on the gas interface and there are no
reflected waves. Hence, the regular shock pair theory is again
in excellent agreement with the numerical results. In Fig. 25
αi = 85◦ and the refraction is irregular. In this case the i-
shock is curved in a neighborhood of its intersection with the
t-shock and there is a reflected wave in a neighborhood this
intersection. Consequently, the regular shock pair theory is
not in good agreement with the numerical results. Since the
refraction is irregular this is to be expected. For all of these
examples the flow is subsonic downstream of the Mach shock
n, and supersonic downstream of the transmitted shock t .

7.2.2 Shock pairs in PCMR systems

Two interferograms of PreCursor-Mach-refraction (PCMR)
systems for the Air/CH4 gas combination with ξi = 0.3 were
published by Jahn; namely, Fig. 14c, Plate 6 and Fig. 18,
Plate 12 of [17]. Our numerical results for the Air/CH4 gas
combination with ξi = 0.3 and αi = 55◦ are presented
in Figs. 26 and 27. The non-uniformity about the (t − s)
node is clear. Superficially the wave system resembles the
Mach-reflection–refraction (MRR) shown in Fig. 10. How-
ever, there is the important difference that the t-shock is now
forward leaning, αt > π/2, so it arrives at the refraction node
R rather than leaves it. The t-shock transmits a wave called
the side shock s back into the initial material and s leaves the
node R. Thus t −s form a precursor pair of shocks in which t
is driven from its rear by disturbances that arise in the initial
material, such as for example by the bursting of a shock tube
diaphragm. Subsequently s interacts with i to produce the
Mach shock n and the reflected shock r . The shocks n and s
meet at the point N where they are both normal shocks. The
r shock leaves the triple shock node (i, n, r) in the usual way
as shown in Fig. 11.

We have called system shown in Fig. 11 a PreCursor-
Mach-refraction (PCMR). It is evident that a PCMR system is
separated from an MRR system by the condition that n, s, and
t are all perpendicular to the interface αt = αs = αn = π/2
and hence, Zt = ∞. This means x = 1 in (16) and the
coefficients of equations (17) and (18) satisfy

A2 + A1 + A0 = 0,

B2 + B1 + B0 = 0,

respectively.

In [2], we present detailed numerical and shock polar stud-
ies of different types of PCMR systems. This work includes
schlieren photographs of several different t − s shock pairs
in PCMR systems from the experiments of Abd-el-Fattah
and Henderson [7]. For example, we present an experiment
(a schlieren photograph), color and contour plots from our
numerical computations, and the polar diagram of a t − s
shock pair, which we refer to as a Twin-Mach-reflection
refraction (TMR) in Figs. 8d, e, 9a–c and 10e of [2]. We refer
the reader interested in PCMR systems to references [2,6,7],
and [17].

8 Conclusions

We have presented experimental and computational evidence
to support our claim that there are two distinct classes of
shock pair refractions. A shock pair refraction may be either
a regular-shock-pair refraction (RSP) or an irregular-shock-
pair refraction (ISP). We have developed a theory for RSP
systems for materials with convex equations of state and pre-
sented a method for classifying the different types of ISP
systems.

In our theory for RSP refractions we assume the pressure
jumps P1i/P0 = P1t/P0 and streamline deflection angles
δi = δt or, equivalently, the shock wave impedance across
the incident i and transmitted t shocks are equal Zi = Zt .
This will be true if the flow fields are uniform in a neighbor-
hood of the refraction node R. We have derived an equation,
namely, equation (16), one can use to predict the angle of inci-
dence αi = αp at which an RSP will occur. At this angle of
incidence there will be no reflected wave at R, only the inci-
dent and transmitted shocks are there and hence, there will be
total transmission of the incident shock into the transmission
material.

Equation (16) depends only on the initial and receiving
materials’ equations of state, their initial (undisturbed) ther-
modynamic states, and the incident shock strength ξi . The
only restriction on the initial and receiving materials is that
the fundamental derivative G of each material must be posi-
tive, G > 0. We show that an RSP is not robust and appears
as a separating condition between regular or irregular refrac-
tions or as the limit of a continuum of ISP refractions. We
have derived formulas for the coefficients of (16) for this
most general case, and also for the specific case in which the
two materials are perfect gases. We have presented compu-
tational results for this latter case, where the two materials
are both perfect gases, that verifies (16) correctly predicts the
value of αi = αp.

We also show an RSP obeys the Principle of Shock Wave
Reciprocity, which is analogous to the Principle of Reci-
procity in acoustics [4]. Namely, if the two materials are
exchanged then the polar diagram, the angle between the
two shocks and the deflection angle of the material interface
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remain the same. In this event we have shown how to use the
wave direction of each member of the shock pair to determine
which is the incident and which is the transmitted shock.

An ISP will have at least one non-uniform flow field about
the refraction node R; that is, there will be significant changes
in the flow properties, such as the pressure, in every open
neighborhood of R. The more rapid the changes the more
severe will be the nonuniformity and in the most severe case
the node will be a singular source/sink of contours that may
correspond to a subsonic pressure discontinuity at the node.

We have also categorized irregular shock pair refractions
according to whether the flow Mach number downstream
and relative to each shock in the pair is either supersonic
or subsonic, and presented experimental and computational
evidence for the existence of these systems. In particular,
we have identified two such systems, which we refer to as a
Mach-reflection–refraction (MRR) and a PreCursor-Mach-
refraction (PCMR), and shown that equation (16) takes on
a special form at the point of transition MRR � PCMR
between a MRR and a PCMR.

In future work, we plan to use the theory presented here,
together with other ideas, to develop a more general theory to
deal as fully as possible with the larger group of phenomena
that comprise anomalous shock refraction.
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