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Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive
property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin
of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly
discontinuous. While there are different methods for tracking rock composition in numerical simulations
of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of
implementation when choosing an appropriate method. Existing methods can be computationally expen-
sive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple
compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter
(abbreviated as DG-BP) using a second order Runge–Kutta, strong stability-preserving time discretization
method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a
point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adap-
tive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved
during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demon-
strated using the falling box problem. We find that the DG-BP method maintains sharper compositional
boundaries (3–5 elements) as compared to an artificial entropy-viscosity method (6–15 elements),
although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in
fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discon-
tinuity. However, using Taylor–Hood elements and a uniform mesh there is an over-/undershoot error on
the order of 0.0001%, but this error increases to 0.01–0.10% when using AMR. Therefore, for research
problems in which a continuous field method is desired the DG-BP method can provide improved track-
ing of sharp compositional boundaries. For applications in which strict bound-preserving behavior is
desired, use of an element that provides a divergence-free condition on the weak formulation (e.g.,
Raviart–Thomas) and an improved mesh coarsening scheme for the AMR are required.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Study of the deformation and evolution of the solid Earth relies
on computational geodynamics to explore a range of scientific
questions from the origin of tectonic plates (Tackley, 2000) and
large low seismic velocity provinces imaged in the lower mantle
(Karason and van der Hilst, 2000; McNamara and Zhong, 2004),
to the processes governing subduction dynamics (Gurnis and
Hager, 1988; Christensen, 1996), spreading at mid-ocean ridges
(Gerya, 2010), and long term mixing of geochemical signatures in
the deep mantle (Christensen, 1989; Kellogg, 1991; Kellogg et al.,
1999). Because compositionally-distinct regions exist within both
tectonic plates and the mantle, the importance of modeling the
complete thermo-chemical evolution of these systems has long
been recognized and incorporated into computational studies
(e.g., Davies, 1977; Hoffman and McKenzie, 1985). However, mod-
eling the time evolution of compositional fields is challenging
because these fields are non-diffusive, and thus require methods
that can track sharp boundaries. In addition, while there are finite
element methods that are well suited for solving the advection–
diffusion equation for the diffusive temperature field, these same
methods can be unstable or lead to unwanted smearing of bound-
aries when applied to a non-diffusive variable (Zhong et al., 2007).

Several approaches employed by the solid Earth geodynamics
community to address the computational challenges of advecting
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a non-diffusive compositional field include (Zhong et al., 2007): (1)
a small, but non-zero artificial diffusivity used to stabilize the stan-
dard methods (Kellogg, 1991; Kellogg and King, 1993), (2) a non-
linear shock capture technique used to remove over/under-
shoots and sharpen the compositional boundary (Lenardic and
Kaula, 1993), and (3) tracer particles used instead of a continuous
field (Christensen, 1989; Tackley and King, 2003; Gerya and Yuen,
2003a; McNamara and Zhong, 2004; Moresi et al., 2003). Each of
these approaches has benefits and costs, most notably that field-
based methods (i.e., a continuous variable similar to temperature)
tend to smooth sharp boundaries, while active tracer methods
require additional software infrastructure to implement and can
be more expensive computationally. Before describing these meth-
ods and considering their strengths and weaknesses, it is useful
first to consider two examples of how compositionally distinct
regions enter into geodynamic simulations.
1.1. Non-diffusive fields in the geodynamical simulations

Two examples of geodynamic processes are illustrated in Fig. 1:
subduction of a tectonic plate and upwelling of a compositional
pile at the base of the mantle. In both cases there are composition-
ally distinct regions (i.e., layers, blobs) and the properties of these
materials (e.g., density, viscosity, radiogenic heating) may depend
on the composition. Therefore, any approximations or errors in
the advection of the compositional field will contribute to approx-
imations or errors in the solution of the Stokes and the thermal
advection–diffusion equations.

Subduction Zone In the case of subduction, the main composi-
tional structure is that of layering within the tectonic plates includ-
ing sediments, crust, a residuum left-over after melting and the
mantle (Fig. 1a). The subducting plate forms at a spreading center
due to melting of the mantle with an approximately pyrolitic com-
position. Melting creates a thin crustal layer (5–10 km) overlying a
residuum layer (15–25 km thick) composed of primarily olivine
(e.g., harzburgite composition; Oxburgh and Parmentier (1977)).
The boundary between the crust and residuum layer is sharp (a
few hundred meters), while the boundary between the residuum
and the pyrolitic mantle is gradational over tens of kilometers
(Fischer et al., 2010). Similarly, the continental or overriding plate
has a thicker crust (30–70 km) and residuum layer (up to
�150 km), and the composition of these layers differ from each
other and from these same layers in the oceanic plate.

While the mantle below tectonic plates does have hetero-
geneities in composition or geochemical signatures, these are not
Fig. 1. Illustration of compositional variability in (A) an upper mantle subduction zone, an
layers with both sharp (crust/lithosphere) and gradational (lithosphere/mantle) bounda
stretched, broken, mixed and entrained by mantle flow. Multiple distinct compositional ty
references to colour in this figure legend, the reader is referred to the web version of th
usually of primary interest for these types of subduction studies
and therefore this layer is treated as compositionally homoge-
neous. One exception is the tracking of composition related to
movement of volatile components, which can cause changes in
the mineralogy and melting within the mantle wedge (Gerya and
Yuen, 2003b). For this system, tracking of composition includes
tracking all the layers within the tectonic plates, as well as the
entrainment and mixing of material into the mantle wedge above
the subducting plate.

Compositional Piles Large regions with low seismic velocity in
the lower mantle have been interpreted as irregular layers of com-
positionally distinct material (e.g., Kellogg et al., 1999; Zhao et al.,
2015). Simulations involving this kind of compositionally-distinct
region often include modeling the evolution of the whole mantle
over the age of the Earth. In these simulations the focus is on
how piles are moved around and deformed through interaction
with the large-scale mantle flow as well as entrainment of parts
of this layer into rising thermal plumes that form on or near the
piles (Kellogg et al., 1999; McNamara and Zhong, 2005; Lin and
van Keken, 2005; Tackley, 2012). Entrainment of this material into
hot rising plumes is inferred from the geochemical signatures mea-
sured in rocks erupted at the Earth’s surface (e.g., Hofmann, 1997).
Seismic observations suggest that the boundaries of these piles are
sharp in some regions (e.g., Garnero and McNamara, 2008). In addi-
tion the possible preservation of these regions over >4.0 billion
years suggest that sharp boundaries are maintained by distinct
material properties.
1.2. Previous methods for tracking non-diffusive fields

The examples described above illustrate that for a range of geo-
dynamical studies it is necessary to accurately track large continu-
ous regions with sharp boundaries, as well as, properly treat the
entrainment and mixing of these components over long time-
scales. In the geodynamics literature two approaches have been
used to track compositional variations within mantle convection
simulations: field methods and tracer methods. Field methods
commonly implement the Stream-line Upwind Petrov–Galerkin
method (SUPG; Brooks and Hughes (1982)), which is also com-
monly used to solve the energy equation (e.g., ConMAN, King
et al., 1990; Citcom, Moresi and Solomatov (1995), Zhong et al.
(2000)). However, for non-diffusive fields, the SUPG method will
lead to overshoots/undershoots of the composition. In early mod-
els, overshoots/undershoots were addressed by adding a small arti-
ficial diffusivity characterized by the Lewis number (Le ¼ 1=j,
d (B) the lower mantle near a compositional pile. Compositional variability exists as
ries within the tectonic plates and at the base of the mantle, but these layers are
pes need to be accurately tracked throughout this process. (For interpretation of the
is article.)
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where j is the diffusivity; Kellogg (1991); Kellogg and King (1993);
Christensen (1989)). The use of a compositional field (rather than
tracers) has the advantage of using the same solver method as that
used for the thermal field and, depending on details of the imple-
mentation, using less memory to attain the same level of accuracy.
For these early models, resolution was severely limited by compu-
tational resources, so this approximation was reasonable. How-
ever, as computational power increased and understanding
related to compositional structures in the mantle improved, so
too has the need for more accurate modeling of truly non-
diffusive fields.

One of the first improvements was to adapt a two-step, nonlin-
ear shock capture method to mantle convection problems
(Lenardic and Kaula, 1993). This method removes dispersion errors
by applying a global filter to remove any values that are above or
below the defined minimum and maximum of the field. This
method has been applied within several computational codes
using advection of compositional fields (e.g., Farnetani and
Richards (1995); Moresi and Lenardic (1997); Tackley and King
(2003)). More recently Kronbichler et al. (2012) implemented the
entropy-viscosity (mk) stabilization scheme originally proposed in
Guermond et al. (2011) to obtain correct solutions to problems
with high Péclet number, such as mantle convection. In these prob-
lems, the standard finite element discretizations introduce spuri-
ous oscillations around steep gradients (Donea and Huerta,
2005). The entropy-viscosity stabilization removes such oscilla-
tions, but tends to smooth and broaden initially sharp boundaries.

The use of tracer particles to track compositional fields in geo-
dynamical simulations began with applying the marker chain
method to track the boundary between two compositions (e.g.,
Woidt, 1978; Christensen, 1982). In two dimensional (2-D) simula-
tions, this results in a chain of roughly evenly-spaced particles, and
is a cost effective tracer method as it uses few tracers to track only
the boundary at high resolution. However, the number of tracers
can quickly increase for models with fine grids, or with mixing of
the material, which can lead to exponential growth in the length
of the boundary (van Keken et al., 1997). It is also difficult to
extend the marker chain method to three dimensional (3-D)
models.

More recently, the level set method has been applied in geody-
namical problems to track the interface between two compositions
(Suckale et al., 2010; Samuel and Evonuk, 2010). Unlike the
marker-chain method, which tracks the boundary between two
compositions, the level-set method tracks a surface whose zero
contour is the boundary between the two compositions. Level set
methods have the advantage of working well in both 2-D and 3-
D, and easily tracking surfaces that fold and break apart. One chal-
lenge in implementing level-set method is tracking multiple (> 2)
compositional fields.

More general tracer methods have become a popular approach
for including multiple compositional fields into geodynamical
solutions, and offer the unique advantage of being able to track
the history of strain of a volume of material, which can be related
to observable seismic properties (e.g., seismic anisotropy). Tracer
particles have been added to existing eulerian, finite element
method (FEM) and finite difference (FD) simulation codes
(McNamara and Zhong, 2004; Tackley and King, 2003; Gerya and
Yuen, 2003a) or more explicitly included through Lagrangian
particle-in-cell (PIC) methods, in which the tracers become the
integration points within an element on the Eulerian grid (O’Neill
et al., 2006).

One advantage of using tracers rather than a field is that there is
no explicit diffusion or dispersion at the boundary between two
compositional fields. Instead, the solution to the incompressible
Stokes equations is applied to advect the tracers, and then the tra-
cer properties are used to update the material properties for the
next time step. However, this last step can effectively lead to
smoothing of sharp boundaries due to interpolation from the trac-
ers to the grid. Lagrangian PIC methods avoid this smoothing by
making the tracers the integration points. The main limitations of
tracers are the increased computational overhead and need to sup-
port an additional computational scheme.

1.3. Discontinuous Galerkin (DG) method with a bound preserving
limiter

To improve the solution for the advection of non-diffusive fields
in geodynamics applications, we look to other disciplines for pos-
sible methods. The aim is to find a stable, efficient approach to
accurately advect compositional fields while preserving the sharp
discountinuities that exist in these problems. One such approach
is the Discontinous Galerkin method, which by-passes the contin-
uous shape functions used to represent quantities in the FEM to
allow for discontinuities. Here, we present a new method of
addressing the stability of the non-diffusive field advection prob-
lem in geodynamics simulations. Specifically, we apply a Discon-
tinuous Galerkin (DG) method (Cockburn and Shu, 1998), which
stabilizes the advection equation by a monotone upwind flux and
a bound preserving (BP) limiter (Zhang and Shu, 2010b; Zhang
et al., 2013).

The DG method was first introduced to solve the hyperbolic
neutron transport equation (Reed and Hill, 1973). Later, Runge–
Kutta Discontinuous Galerkin (RKDG) methods were developed
for hyperbolic conservation laws (Cockburn and Shu, 1989;
Cockburn et al., 1990; Cockburn and Shu, 1998). More recently, a
uniformly high order accurate DG scheme, which preserves posi-
tivity of density and pressure for the compressible Euler equations
of the gas dynamics was constructed (Zhang and Shu, 2010b). Sub-
sequently, a second order accurate DG scheme was designed,
which satisfies a strict maximum principle for general nonlinear
convection diffusion equations on unstructured triangular meshes
(Zhang et al., 2013).

The potential for the DG method to be a good alternative
approach to solving the energy equation for mantle convection
was first suggested (but not implemented) by Burstedde et al.
(2013). The DG method has also recently been applied to simula-
tions of mantle convection using the FEniCS framework to study
the time-dependent isothermal compositional convection (Ray-
leigh–Taylor instability) benchmark problem (Vynnytska et al.,
2013). In that study, the incompressible Stokes equations are dis-
cretized using standard finite element method with Taylor–Hood
elements (Taylor and Hood, 1973). The discretization of the com-
positional equation is carried out by an implicit Euler scheme in
time, the DGmethod in space, and a shock capture filtering method
is used to correct for numerical dispersion (Lenardic and Kaula,
1993). Their numerical examples demonstrate that the discontinu-
ous Galerkin scheme is an effective alternative for tracking compo-
sitional interfaces without significant numerical diffusion or
dispersion errors. However, as can be seen in the figures presented
on that study, the shock-capture filtering method does not pre-
serve any bound property and significant errors in the composi-
tional field still exist near the boundaries.

1.4. Overview of work presented

We first present the DGmethod with a bound preserving limiter
(BP limiter) to solve the compositional equation for a given static
circular flow centered in a square box. Then we apply the same
approach to the falling box problem, and compare our numerical
results with a FEM approach using entropy viscosity stabilization.
The aim of the work presented here is not only tracking composi-
tional interfaces without significant numerical diffusion or disper-
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sion errors, but also to preserve the global bound of the composi-
tion. The global bound on the composition is an important physical
property, as any overshoot or undershoot of the composition will
be strongly amplified by the compositionally-dependent viscosity
or density and will therefore directly impact the solution to the
Stokes problem.

To the best of our knowledge, there is no related work on DG,
RKDG or Local Discontinuous Galerkin (LDG) methods applied to
solid Earth geodynamics modeling problems with the BP limiter,
and in particular as to the equations of mantle convection. There-
fore, we present the computational scheme required for applying
of the DG method with BP limiter within a FEM mantle convection
simulation code. Specifically, we first describe the governing equa-
tions for our model problem and formulate its weak form after we
use the IMPES (implicit pressure explicit saturation) approach to
solve the nonlinear problem between the incompressible Stokes
equations and compositional equation (Section 2.1). Next, we
briefly discuss the spatial discretization by the FEM for the Stokes
Problem (Section 2.2). Then, we present the FEM and the DG dis-
cretization for the composition problem (Sections 2.3 and 2.4),
and the BP limiter used to stabilize the DG scheme (Section 2.5).
Finally, we review the Adaptive mesh refinement (AMR) technique
used in the work (Section 2.6).

To verify our numerical schemes and to demonstrate their effi-
ciency and stability we present some numerical results using a
problem called the falling box (Gerya and Yuen, 2003a) described
in Section 3.2. We chose the falling box problem because we
require a test problem that reproduces the dynamic conditions
under which other advection schemes commonly fail – that is,
strongly advection-dominated flow within a mantle convection
simulation. Second, we require a problem that provides physical
structures that will test our ability to capture and resolve the
deforming compositional boundary interface. A box, with sharp
corners (rather than a sphere) provides a quite challenging test
case, in particular (as will be shown), with the development of
long, thin tails from the top two corners in the isoviscous case.
We compare the results and performance of the DG-BP method
with a FEM using a viscosity-entropy scheme (Section 3.4) for solv-
ing the compositional advection equation. We find that the DG
method with a BP limiter provides stable solutions with sharper
compositional boundaries and is computationally more efficient
(i.e., fewer degrees of freedom). We also show that choice of time
integration scheme is key to obtaining non-oscillatory results with
the BP limiter.
2. Methods

The model problem we consider is described by the equations
of conservation of linear momentum and mass – the incompress-
ible Stokes equations, and the advection of a non-diffusive quan-
tity, C:

�r � ð2gðCÞ�ðuÞÞ þ rp ¼ qðCÞg;
r � u ¼ 0;
@C
@t

þ u � rC ¼ 0;

where u is the velocity, p is the pressure, C is the composition,

�ðuÞ ¼ 1
2 ðruþ ðruÞTÞ is the strain-rate tensor,

qðCÞ ¼ q0 þ ðq1 � q0ÞC is the composition-dependent density, and

gðCÞ ¼ ðg1g0Þ
Cg0 the composition-dependent viscosity with positive

constant reference densities (q0 6 q1) and viscosities (g0 6 g1).
These equations are solved with no-flux boundary conditions:
u � n ¼ 0.

One should notice that Eqs. (1b), (1c) imply
@C
@t

þr � ðuCÞ ¼ 0: ð2Þ

which is the conservative form of the equation for advection of the
compositional field C and is the preferred form to use with the DG
method.

2.1. Nonlinear decoupling and time discretization

The incompressible Stokes equations can be considered as a
constraint on the compositional equation at any given time. It
makes the system highly nonlinear. To solve this nonlinear system,
we apply the IMPES approach to decouple the incompressible
Stokes equations and compositional equation, which leads to two
linear equations (the Stokes equations and the compositional
equation) and they can be solved easily and efficiently. Specifically,
given the initial time t0, time-step size Mt and the initial composi-
tion field C0, at current time tk ¼ t0 þ k � Mt, we solve for current
velocity uk and pressure pk from the incompressible Stokes Eqs.

(3a), (3b) using the composition field Ck from the current time-
step k ¼ 0;1; � � �, as shown below

�r � ð2gðCkÞ�ðukÞÞ þ rpk ¼ qðCkÞg; ð3aÞ
r � uk ¼ 0: ð3bÞ

Then we solve the next time step composition filed Ckþ1 but,
with the velocity field from the previous time steps. The choice
of time discretization scheme depends on the method used for
the spatial discretization. For the case when the FEM is used for
the spatial discretization, we use the same semi-implicit BDF2
scheme as shown in Kronbichler et al. (2012) except we fix the
time-step size Mt for simplicity. However, if the DGmethod is used,
then a Strong Stability-Preserving (SSP) high order time discretiza-
tion method (Gottlieb, 2005; Gottlieb et al., 2001) is applied in
order to maintain the bound preserving property from the limiter.

If the forward Euler method is stable under the time constric-
tion Mt < L, then the SSP high order time discretization method
satisfies the same stability under the time step restriction with a
constant coefficient c given by Mt < cL. A simple optimal second
order two stage SSP Runge–Kutta (RK) method with a constant
c ¼ 1 is given by:

Ckþ1=2 ¼ Ck þ Mtr � ð�ukCkÞ; ð4aÞ

Ckþ1 ¼ 1
2
Ck þ 1

2
Ckþ1=2 þ 1

2
Mtr � ð�ukþ1

2;�Ckþ1=2Þ; ð4bÞ

where ukþ1
2;� can be obtained either by solving Eqs. (3a) and (3b)

with Ckþ1=2 or extrapolation by using numerical solutions at previ-
ous time steps.

Alternatively, one can use the second order SSP three-step
method with a constant c ¼ 1

2 given by:

Ckþ1 ¼ 3
4
Ck þ 3

2
Mtr � ð�ukCkÞ þ 1

4
Ck�2: ð5Þ

One should be aware that the given second order SSP three-step
method (5) assumes that the time step size is a constant in time.
However, the second order two stage SSP Runge–Kutta (RK)
method (4a) and (4b) can still be applicable for variable time step
size. We will show results for the DG method using both the RK
and three-step time discretization schemes.

2.2. Spatial discretization for the Stokes problem

For the spatial discretization, the FEM is the only method
applied for Eqs. (3a) and (3b), where we need to solve a discrete
saddle point Stokes problem. For the composition advection prob-
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lem both the FEM and DG method are applied separately with the
FEM Stokes solver in order to compare their performance. Because
the one focus of this paper is the comparison between the FEM and
DG-BP method for solving the compositional advection equation,
for the spatial discretization of the incompressible Stokes
Eqs. (3a) and (3b) we used the same FEM approach as discussed
in Kronbichler et al. (2012). Therefore, we refer the interested
reader to Kronbichler et al. (2012) for a more detailed discussion
of the spatial discretization and the choices of Stokes
preconditioner.

2.3. FEM stabilization of the composition advection problem

For the purposes of testing and comparing the DG method
developed here we also compute solutions using an FEM with
entropy-viscosity stabilization (Kronbichler et al., 2012) for the
composition advection equation. In this case the resulting matrix
system is

MCkþ1 ¼ 1
3
Mð4Ck � Ck�1Þ þ 2

3
Mt � Gk ð6Þ

where fwjg are the set of basis functions of the finite element space,
M is the mass matrix with entries ðMÞij ¼ ðwj;wiÞX, and the inner
product ð ; ÞX for any two given functions w and / is defined as
below

ðw;/ÞX ¼
Z
X
wðxÞ/ðxÞdx: ð7Þ

The right hand side vector Gk is calculated using two previous

time-step solutions Ck; Ck�1 and uk; uk�1 by the formula

Gk
j ¼ �ðu�;krC�;k;wjÞX � ðmkhrC�;k;rwjÞX ð8Þ

where mkh is the entropy viscosity function defined in Kronbichler
et al. (2012). The entropy-viscosity function is constant within a
cell, and only adds artificial diffusion where the local Péclet number
is large and the solution is non-smooth. The extrapolated values for
velocity and composition are defined as

u�;k ¼ 2uk � uk�1 and C�;k ¼ 2Ck � Ck�1: ð9Þ
2.4. DG discretization of the composition advection problem

For the DG method the spatial discretization is different from
the FEM because it must allow for discontinuities between ele-
ments. We first consider the theoretical basis for this method
and then explain how it is implemented.

We denote our computational domain as X ¼ [E
e¼1X

e, where Xe

represents non-overlapping body-conforming quadrilateral ele-
ments. We consider a local approximate solution ueðx; yÞ that has
the local nodal representation

ueðx; yÞ ¼
XN
i;j¼0

ue
ijw

e
ijðnðxÞ;gðyÞÞ; ð10Þ

where fðxi; yjÞgNi;j¼0
denotes the set of grid points on Xe. The basis

coefficients ue
ij are the nodal values ueðxi; yjÞ on Xe, and the basis

wijðn;gÞ ¼ ‘iðnÞ‘jðgÞ, or simply wij, has a tensor product form of
multi-dimensional Nth-order Lagrange interpolation polynomials
based on N þ 1 grid points in each direction. Grid points can be
equidistant (FEM), or Gauss–Legendre-Lobatto (GLL) quadrature
grid points (i.e., the Spectral Element Method).

We map each physical coordinate ðx; yÞ 2 Xe onto the reference

domain ðn;gÞ 2 I ¼ ½�1;1�2 through the affine mapping and formu-
late the computational scheme on the reference domain. Let us
define a finite-dimensional approximation space VN � H1ðXÞ such
that VN ¼ spanfwe

ijðn;gÞgN;N;Ei¼0;j¼0;e¼1
. With this approximation space,

one can represent the global solution as the direct sum of local
piecewise polynomials

uðx; yÞ ’ uhðx; yÞ ¼ a
E

e¼1
ue
hðx; yÞ; ð11Þ

where ue
hðx; yÞ is defined on each element Xe by Eq. (10). At the

overlapping interfaces the DG space functions do not require any
continuity, which is the main difference compared with the contin-
uous Galerkin approach.

When the DG method is applied after the spatial discretization
of Eq. (4a) and (4b), for the weak formulation one must find

Ckþ1 2 VN such that

ðCkþ1=2;wÞXe
¼ ðCk;wÞXe

þ MtðCkuk;rwÞXe
� Mtðuk � nCk;�;wÞ@Xe

;

ð12Þ

ðCkþ1; sÞXe
¼ 1

2
ðCk þ Ckþ1

2; sÞXe
þ 1
2
MtðCkþ1

2ukþ1
2;rsÞXe

� 1
2
Mtðukþ1

2;�Ckþ1
2; sÞ@Xe

; ð13Þ

for any w; s 2 VN . An upwind flux is used for Cj;� where
j ¼ k; kþ 1=2 (Cockburn and Shu, 1998; Hesthaven et al., 2008)
and is defined as

Cj;� ¼ Cj;�; if u j � n > 0
Cj;þ; if u j � n < 0

(
ð14Þ

where Cj;� is the local/interior solution on Xe, and Cj;þ is the neigh-
bor/exterior solution of Xe. Although, Eqs. (12) and (13) appears to
be only defined locally on each element Xe, it actually also depends

on the adjacent solutions through the flux term Cj;�, which is
defined at each element interface using two side values. Generally,

the flux term Cj;� is the most difficult part to determine when one
wants to design a DG scheme, as it is the key point used to ensure
the scheme’s stability.

If we consider the following DG numerical expansions in VN

Ck̂1 ðx; yÞ ¼ a
E

e¼1

XN
i;j¼0

Ck̂1 ;e
ij we

ijðnðxÞ;gðyÞÞ; k̂1 ¼ kþ 1; kþ 1=2; k ð15Þ

uk̂2 ðx; yÞ ¼ a
E

e¼1

XN
i;j¼0

uk̂2 ;e
ij we

ijðnðxÞ;gðyÞÞ; k̂2 ¼ kþ 1=2; k ð16Þ

and the mass matrix �M ¼ diagðM1; � � � ;MEÞ where

ðMe Þ̂îj;ij ¼ ðwe
ijðnðxÞ;gðyÞÞ;we

î̂jðnðxÞ;gðyÞÞÞXe e ¼ 1; � � � ; E; ð17Þ

the inner product ð ; ÞXe
for any two given functions w and / on a

cell Xe is defined as below

ðw;/ÞXe
¼

Z
Xe

wðxÞ/ðxÞdx: ð18Þ

and the right hand side vector Gk̂;� ¼ ðGk̂;1; � � � ;Gk̂;EÞ
T
; k̂ ¼ k; kþ 1=2,

where

ðGk̂;e Þ̂îj ¼ ðCk̂uk̂;rwe
î̂jðnðxÞ;gðyÞÞÞXe

� ðuk̂ � nCk̂;�;we
î̂jðnðxÞ;gðyÞÞÞ@Xe

ð19Þ

then the matrix system of equation is given by

MCkþ1=2 ¼ MCk þ Mt � Gk;�; ð20Þ

MCkþ1 ¼ 1
2
MCk þ 1

2
MCkþ1=2 þ 1

2
Mt � Gkþ1=2;�: ð21Þ
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2.5. Adding a Bound-Preserving (BP) Limiter

Following an idea similar to that presented by Zhang and Shu
(2010b), after each time-step a BP limiter is applied to the newly

obtained numerical solution Ckþ1 in a post-processing procedure.
Therefore, we modify the scheme in Eqs. (20) and (21)as follows

MCkþ1=2 ¼ M~Ck þ Mt � Gk;�; ð22aÞ
~Ckþ1=2 ¼ BPLimiterðCkþ1=2Þ; ð22bÞ

MCkþ1 ¼ 1
2
M~Ck þ 1

2
M~Ckþ1=2 þ 1

2
Mt � Gkþ1=2;�; ð22cÞ

~Ckþ1 ¼ BPLimiterðCkþ1Þ ð22dÞ
where BPLimiterð�Þ represents the BP limiter applied to the DG solu-
tion of (22a) or (22c). At time step k, if the DG solution is bounded

by Cm 6 Ck 6 CM , then after applying the limiter, the solution Ckþ1 is
guaranteed to satisfy the same upper and lower bounds

Cm 6 Ckþ1 6 CM .
In previous studies three key ingredients required for construct-

ing a high order maximum-principle-satisfying DG scheme were
introduced (Zhang and Shu, 2010b; Zhang et al., 2013):

1. The composition cell average at the next time step by forward
Euler time discretization scheme is a monotone function with
respect to certain point values (Gauss–Lobatto points for the
one-dimensional case), under a suitable CFL condition.

2. A simple scaling limiter modifies the DG polynomial pðxÞ on cell
Ie into ~pðxÞ such that ~pðxÞ 2 ½Cm;CM � at these special points with-
out changing its cell average. Moreover, it can be proven that
the modified polynomial ~pðxÞ is also a high order approximation
just as pðxÞ. Thus we have �Ckþ1 2 ½Cm;CM � if all the degrees of
freedom at time level k in the right hand side of Eq. (20) are
replaced by using those of modified polynomials ~pðxÞ.

3. The forward Euler method is replaced by a strong stability pre-
serving (SSP) high order time discretization scheme, which is a
convex combination of forward Euler and thus, will preserve
the bounds.

In our work, we follow these steps to post-process the numeri-

cal solution Ckþj; j ¼ 1=2;1 in (22a/22c) in order to obtain a modi-

fied solution ~Ckþj such that its DG polynomials at certain special
points (see Zhang and Shu (2010a)) are bound preserved and ]
the cell average satisfies

�eCkþj ¼ �Ckþj 2 ½Cm;CM�; j ¼ 1=2;1; ð23Þ
which is then used again in the next time step to ensure the cell
average �Ckþ2 is also bound preserved.

In addition, in Zhang and Shu (2010a) Section 4 ‘‘Application to
Two dimensional Incompressible Flows”, the authors discuss how
to take advantage of maximum-principle-satisfying high order
schemes for scalar conservation laws to construct schemes for pas-
sive convection equations with a divergence free velocity field. In
particular, they prove that a point-wise divergence free velocity
field is a sufficient condition for the limiter to strictly preserve
the bound: i.e. Eq. (23). In this work, we also studied our DG-BP
method with and without a divergence free velocity field. This will
be discussed in the section on numerical results.

2.6. Adaptive mesh refinement

Adaptive Mesh Refinement (AMR) is an algorithm for refining or
coarsening the grid subject to a user defined criteria such as the
temperature or strain-rate gradient across a cell (Berger and
Oliger, 1984; Verfürth, 1996). AMR has been broadly applied in
the area of scientific computing and, in particular, in the field of
computational geodynamics and mantle convection (Kronbichler
et al., 2012), since generally the goal is to make well-refined 3D
computations. The advantage of AMR is that it provides the same
overall accuracy as a uniformly refined grid with the same, given
minimum grid size, but the numerical cost is significantly reduced
by coarsening the grid in regions where a less refined grid is suffi-
ciently accurate. In our numerical computations in which we use
AMR, we use the Kelly error indicator (Kelly et al., 1983) applied
to the compositional field to determine when to refine or coarsen
the mesh.

Given a polynomial basis of a fixed degree the accuracy of the
DG and FEM methods is primarily determined by the overall min-
imum grid size. However, with a uniformly refined grid, the total
degrees of freedom for the DG method is greater than that for
the FEM, since the DG method requires extra degrees of freedom
at the element boundaries. On the other hand, if we use AMR, it
is no longer necessarily true that the DG method requires more
degrees of freedom than FEM, since a greater number of FEM ele-
ments are typically required to resolve the compositional bound-
ary, which is smeared out over more elements. Indeed, our
numerical results show that for problems with a discontinuity,
with AMR the cost of in terms of the total number of degrees of
freedom for the DG method is less than that for FEM.
3. Numerical results

3.1. Advection in a 2D circular flow

In our first computation we study the movement of a
0:25� 0:25 square in a two dimensional steady flow, u ¼ ð�y; xÞ,
defining a circular flow about the center of a box. This flow is an
exact solution of the incompressible Stokes equations and is there-
fore pointwise divergence-free. Initially the center of the box is
placed at the point ð0:5;0Þ inside a square domain with dimensions
of ½�1;1� � ½�1;1� as shown in Fig. 2 (A). In this computation, since
the velocity field is known, we are only computing the solution of
advection equation for the composition field. We ran this compu-
tation using a second order DG element and a time-step size of
Mt ¼ 0:00025 for three different meshes:

B) A uniform mesh with 256 � 256 cells;
C) An AMR mesh with a minimum global mesh size of
h ¼ 1=128, allowing coarsening and refinement of the mesh;
D) An AMR mesh with a minimum global mesh size of
h ¼ 1=128, but only allowing refinement of the mesh (no
coarsening).

The results of this computation after the compositionally-
defined square has returned to its initial position at
t ¼ 6:283 � 2p are displayed in Fig. 2(B)–(D) and quantitatively
summarized in Table 1. Note that in all three computations the
amount of overshoot and undershoot is Oð10�10Þ for the final time,
which is well within the expected accuracy of the numerical solu-
tion of the advection equation.

The maximum value of the composition for three different grids
with h ¼ 1=128 are displayed as a function of the model time in
Fig. 3. On a uniform mesh, we find that there is no over-/under-
shoot (Fig. 3(B)). This example confirms that for the case of a
divergence-free flow, the DG-BP method is indeed bound-
preserving. For the case using AMR with both refinement and
coarsening, overshoot occurs at the start of the computation, and
then decreases with time (Fig. 3(A)). The maximum composition
spikes again as the direction of the motion changes at every p=2
rotation of the square (t ¼ ð0;p=2;p;3p=2Þ). In order to determine



Fig. 2. A 2D Circular Flow. (A) Initial position of the compositionally-defined red square. (B) The numerical result after a rotation of 2p on a uniform mesh with 256 � 256
cells. (C) The numerical result after a rotation of 2p on an AMR mesh allowing both coarsening and refinement of the mesh (with a minimum global mesh size of h ¼ 1=128).
(D) The numerical result after a rotation of 2p on an AMR mesh only allowing refinement of the mesh (minimum global mesh size of h ¼ 1=128). All three computational
results are shown at the final time t ¼ 6:283 � 2p.

Table 1
2D Circular Flow Results. Values listed are after one rotation of the square; i.e., at t ¼ 6:283 � 2p. All computations have a minimum grid size of h ¼ 1=128. For the case with
refinement only, the overshoot only occurs at times from t = 0.0335 to 0.03725.

Final Time t ¼ 6:283 � 2p All Times

Grid # Cells # DOFs (C) Max(C) Min(C) Max(C) Time
Uniform Mesh 65536 589824 1.0 �9.85052e�11 1.0
AMR (refine and coarsen) 1192 10728 1 + O(10�11) �8.07723e�11 1.022 t ¼ 0:0245

AMR (refinement only) 17554 157,986 1 + O(10�11) �9.46702e�11 1.00038 t ¼ 0:03475
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the source of this error, we ran a third case in which we allow only
refinement of the mesh (Fig. 3(C)). In this case, there is a small
spike in the maximum of composition value near the start of the
computation, but afterwards the maximum value remains at 1.0.
These two computations demonstrate that there is an error intro-
duced in the AMR coarsening algorithm. This error occurs because
the cell average of the composition field is not preserved during the
coarsening operation. It is likely this algorithm can be modified so
that the cell average of the composition field is conserved. How-
ever, this is a part of the deal.II library and will require the cooper-
ation of the individuals who maintain it http://dealii.org/. While
the computation on the uniform mesh produces no overshoot or
undershoot, it does require significantly more grid cells and thus
more degrees of freedom than either of the two computations with
AMR (Table 1).

To quantify the sharpness of the compositional boundary, we
measure the jump of the interface along the x-axis near the point
(0.375, 0) at the final time t ¼ 6:283. First, we find that all three dif-
ferent grids produce nearly identical profiles along the x-axis. The
jump at the composition interface near the point x ¼ 0:375 occurs
between the points x ¼ 0:356 and x ¼ 0:392, and the correspond-
ing composition values are 0:00338162 and 0:994706, which is
within three digits of accuracy (less than the mesh width h) of
the target values of 0.0 and 1.0. The distance between the two
points is 0:036 � 4:608h, which is less than the width of five cells
with h ¼ 1=128. Next, we re-ran all three tests with a larger mesh
size h ¼ 1=64. At the final time t ¼ 6:283 with a second order DG
element and time-step size Mt ¼ 0:0005 the jump at the composi-
tion interface near the point x ¼ 0:375 occurs between the points
x ¼ 0:34 and x ¼ 0:408, and the corresponding composition values
are 0:00413818 and 0:987505, again within at least two digits of
accuracy, which, again, is less than h ¼ 1=64. The distance between
the two points is 0:068 � 4:352h < 5h; still less than the width of
five cells with h ¼ 1=64. Therefore, these two tests demonstrate
that in the absence of other sources of error one can expect to
resolve a compositional discontinuity to within less than five
elements.
3.2. The computation of a falling box

In this section, we apply the DG-BP method to the sinking box
problem first presented in Gerya and Yuen (2003a) in order to
demonstrate the capabilities of a code designed around a
characteristics-based, marker-in-cell method. Their problem is
defined on a 2-D Cartesian domain that is 500 km � 500 km. A

http://dealii.org/


Fig. 3. 2D Circular Flow: the maximum composition with respect to time. The main figure is for an AMR mesh with coarsening and refinement of the mesh. Note the
overshoot of the compositional field at the start of the computation and as the box shifts direction after every rotation of p=2. The errors occur because the AMR coarsening
algorithm does not preserve the cell average of the composition. Inset (a) shows the same result, but for a uniform mesh – there is no overshoot. Inset (b) shows the same
result, but for AMR allowing only refinement of the grid. A small overshoot occurs, but only for times from t = 0.0355 to 0.03725.
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small block (100 km � 100 km) is placed with its top edge at 50 km
below the top of the domain and centered horizontally (Fig. 4-a).
The viscosity contrast between the box is varied as a way of testing
the accuracy and stability of the numerical solution when there is a
sharp contrast in material properties; specifically, density and
viscosity.

We present numerical results for two of their examples. In both
examples the following parameters are held fixed:

g0 ¼ ð0;9:8Þm=s2; acceleration due to gravity
~a ¼ 500 km domain height and width
g0 ¼ 1021 Pa s background viscosity
q0 ¼ 3200 kg=m3; background density
q1 ¼ 3300 kg=m3; small box density

ð24Þ

while the viscosity of the small box, g1, is increased from 1021 Pa�s
to 1022 Pa�s for each test; i.e., the viscosity contrast between the
small block and the surrounding material is increased from 1 to
10. The initial location and dimension of the small box is defined
using the composition field,

C0ðx;0Þ ¼ 1; if ðx; yÞ 2 ½38 ~a; 58 ~a� � ½58 ~a; 78 ~a�
0; otherwise

:

(
ð25Þ
Fig. 4. Numerical results of the falling box from Gerya and Yuen (2003a). Black and white
resolution of this model is 51 � 51 nodes, 22,500 markers. (A) Initial set-up, (B) Case g1=

in this study is identical to that shown in (A) except for a slightly different initial positi
In our work, we solve a dimensionless problem by rescaling the
physical domain into a unit square and scaling the background vis-
cosity and background density so as to have a constant value of 1.
Using these values we have the following scaling for time

~t ¼ g0
~a jg j q0

¼ 6:377551� 1010 s ¼ 2:022308� 10�3Myr:

The mesh size and time step size referred to below are all based
on the dimensionless problem values. Unless stated otherwise, in
all of the following computations we use the same maximum
refinement level l ¼ 10. Therefore, the global minimum mesh size

is h ¼
ffiffiffi
2

p
ð12Þ

l�1 ¼
ffiffi
2

p
512. In order to compare the numerical results at

the same final time, the time-step size is determined by the num-
bers Mt ¼ c500h where c ¼ 1 or 1:5 for the viscosity ratio 1 or 10,
respectively. We chose the fixed time-step size after experiment-
ing with several different values of Mt.

In order to stabilize the numerical method, the DG method uses
an upwind flux and the BP limiter, as well as the SSP time dis-
cretization scheme discussed in Section 2.1. For comparison we
also run this falling box problem using FEM with the entropy-
viscosity stabilization of the composition advection equation with
an implicit-explicit BDF2 time discretization scheme. All tests are
implemented using the deal.II C++ open source library (Bangerth
dots represent positions of markers for the block and the medium, respectively. Grid
g0 ¼ 1 after 9.886 Myr, (C) Case g1=g0 ¼ 10 after 15.446 Myr. The initial set-up used
on and we use a compositional field instead of tracer particles.
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et al., 2015). In these computations, we use the Taylor–Hood (or
Hood-Taylor) elements for the numerical solution of the Stokes
equations. Specifically, we use a second-order spatial element basis
for the velocity field and a first-order spacial element basis for the
pressure (in short, ðQ2;Q1Þ elements for FEM velocity and pres-
sure), a second order spatial element basis (i.e., a Q2 element) for
the FEM composition field, and a second order discontinuous spa-
tial element basis (i.e., a Q�2 element) for the DG composition field.

The falling box problem is a good test case for our DG-BP
method for several reasons. First, it is a simple model problem to
implement. Second, it has a strong discontinuity in viscosity, which
makes the numerical computation more challenging than for a
constant viscosity ratio. (We have made computations up to a vis-
cosity ratio of 106.) Third, the deformation of the box differs for dif-
ferent viscosity ratios, providing us with the opportunity to
examine how the method performs for different shapes of compo-
sitional variation. For comparison, the numerical results for the
same problem studied in Gerya and Yuen (2003a) are shown in
Fig. 4. It is important to note that these figures only show the final
positions of the tracer particles. In order to obtain a composition
field such as the viscosity, one needs to perform a linear interpola-
tion from the tracer particles onto the mesh. This sinking box prob-
lem has also been used to test other geodynamics codes (e.g.,
Thielulot (2011)).
3.3. Comparison of DG with and without a BP limiter

The DG and FVM methods have been shown to have better
numerical stability and numerical convergence than the FEM
method for problems that involve the advection of a conserved
quantity. A first-order FVM such as the upwind method will main-
tain the upper and lower bounds of the analytic solution but is too
diffusive to be effective in practice. However, in the absence of a
limiter, the DG method will not satisfy the maximal principle or
the bound preserving property.

In order to illustrate the importance of the BP limiter, we dis-
play the numerical results for the DG case using the second order
SSP Runge–Kutta time discretization algorithm with and without
a BP limiter in Fig. 5. For this test, we consider the viscosity varia-
tion to be constant; i.e., g1=g0 ¼ 1. Thus, only the composition field
and density have a discontinuity. For the AMR algorithm at time-

step 2500 with h ¼
ffiffi
2

p
512 and time-step size Mt ¼ 1:38107, the DG

method needs more refinement near the discontinuous interface
without applying the BP limiter (Fig. 5(A) left, # cells: 7465) than
that with applying a BP limiter (Fig. 5(A) right, # cells: 6169).
We zoom in on the compositional field in the top and bottom parts
of the inner box in Fig. 5(B). The DG without the BP limiter results
show a broad numerical boundary layer. Furthermore, the over-
shoot and undershoot without the BP limiter is over 24% and
Fig. 5. Comparison of the DG method with and without the BP limiter. (A) Composition
limiter (left) and with the limiter (right), (B) An enlarged-view comparison of the compo
of this profile is shown by the horizontal white line in (B).
16%, respectively. A horizontal profile (Fig. 5(C)) across the top part
of the inner box confirms that the DG-BP method is much better at
preserving a sharp compositional boundary. Therefore, for the
remainder of the tests in this article, we always include the BP lim-
iter to the DG method.

3.4. Comparison of the FEM and DG methods

To compare the numerical performance of the FEM with the DG
method, we take two examples with the parameters given in (24)
and the initial condition given in (25), but with each test using a
different viscosity ratio; g1 =g0 ¼ 1 or 10.

3.4.1. Uniform grid
Since we use ðQ2;Q1Þ Taylor–Hood elements for our numerical

solution of the Stokes problem, the numerical velocity does not
satisfy a point-wise divergence free condition. In order to study
how such a non-divergence free velocity field can affect the perfor-
mance of the DG-BP method, we first compute the problem with a
unit viscosity ratio on a uniform grid with a mesh size of
h ¼ 1

128

ffiffiffi
2

p
~a km as shown in Fig. 6. Using a uniform mesh, the

DG-BP results only show an overshoot of 0:001% and no under-
shoot to within an accuracy of Oð10�11Þ. However, the FEM results
show a significantly larger overshoot and undershoot of 0:087%
and 0:249%, respectively.

Next, we measure the jump in the composition field along the
vertical line x ¼ 0:415~a ¼ 207:5 km at the final computational
time t ¼ 8:089 Myrs (Fig. 6; Table 3). For the DG-BP method, the
width of the jump at the head (bottom) is less than 5 h, which is
similar to that found in our point-wise divergence-free circular-
flow computation above. However, the jump on the tail side is
3:5 times wider; this larger error is a result of not meeting the
pointwise divergence free requirement. In the FEM computation
the width in the composition jump is 25–38% wider than in the
DG-BP computation of the same problem and has a much shal-
lower slope over the full width as compared to the DG-BP profile
(see Fig. 6). Furthermore it is apparent from the inset in Fig. 6 that
in the FEM computation the jump at the tail is smeared over signif-
icantly larger region, with a consequent loss of the fine scale reso-
lution of the jump itself. (See also Fig. 10 below.).

3.4.2. AMR grid
Calculations using AMR use fewer elements than uniform mesh

calculations, therefore we next explore the effect of combining
AMR with the DG-BP method for the falling box problem. As we
can see from the figures of the composition field, the DG-BP
method and FEM achieve similar accuracy and preserve the bound
(between 0 and 1) within an accuracy of less than 0:1% (Fig. Figs. 7
and 8; Table 2). However, the DG-BP method uses fewer cells and
shown on and AMR grid at time-step 2500 (or t = 6.982 Myr) for DG without the
sitional field of the falling box, (C) The horizontal profile across the top. The location



Fig. 6. Comparison of the compositional field for g1=g0 ¼ 1. Composition shown for a uniform mesh with h ¼ 1
128

ffiffiffi
2

p
~a km and fixed time-step size Mt ¼ 2~t, at time-step 2000

(i.e., t ¼ 4000~t ¼ 8:089 Myr). Vertical profiles are located at x = 207.5 km (see inset). Note that the computation made with the FEM is extremely diffusive. This is partly due to
the use of an ‘artificial diffusivity’ to stabilize the advection algorithm.

Fig. 7. Comparison of Compositional Field for Case g1=g0 ¼ 1. Composition shown on AMR mesh at time t = 6.982 Myr, (A) FEM and (C) DG method with BP limiter. (B)
Compositional field at initial time (top) and time t = 6.982 Myr (bottom) for FEM (left) and DG-BP (right).

Fig. 8. Comparison of Compositional Field for Case g1=g0 ¼ 10. Composition shown on AMR mesh at time t = 10.474 Myr for, (A) FEM and (C) DG method with BP limiter. (B)
Compositional field at initial time (top) and time t = 10.474 Myr (bottom) for FEM (left) and DG-BP (right).
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therefore, fewer degrees of freedom for the Stokes solver (see also
Table 2).

We zoom in on the compositional field in the top part of the
inner box in Fig. 9. The FEM results show a smooth, broad (smeared
out) numerical boundary layer. The smoothing effect extends into
the tails forming above the deformed corners of the box in the case
with g1=g0 ¼ 1 and has the effect of truncating the length of the
full compositional anomaly and smearing the tails together
(Fig. 10). The DG-BP method preserves much sharper boundaries
between the tails and shows that the full compositional anomaly
extends to the narrow tip of the tail.

Finally, the importance of using a second order SSP time dis-
cretization scheme is demonstrated by comparing to the results
for the DGmethod using a first order forward Euler time discretiza-
tion scheme (Fig. 10 C, F). The lower order time discretization
scheme causes the boundary layer to smear out and causes oscilla-
tions within this smeared boundary layer. Therefore, the second
order SSP Runge–Kutta time discretization scheme is necessary
to preserve sharp, non-oscillatory compositional boundary when
applying the DG method with the BP limiter.
4. Discussion

Our numerical results demonstrate the capabilities and limita-
tions of the DG-BP method. For the circular flow problem, which
is point-wise divergence free, on a uniform mesh there is no over-
shoot or undershoot to within the expected precision of the com-



Table 2
Comparison of Numerical Test Results for the Falling Box Problem: This data is at the final time t ¼ 6:982 Myr, t ¼ 10:474 Myr for viscosity ratio = 1, 10, respectively. For each
viscosity ratio, we list the number cells in the AMR grid, the number of degrees of freedom for the Stokes system (uþ p) and the advection solver (C), and the over-/undershoot
error in the compositional field C as a percentage. Mesh size, hmin , is in units of

ffiffiffi
2

p
~a km. For the DG-BP with SSP RK2, the difference in the error for the uniform versus AMR grid

represents the error due to the grid coarsening algorithm and the difference in minimum mesh size for these two cases.

g1=g0 Mesh hmin # Cells # DOFs ðuþ p;CÞ Under C Over C

FEM
1 Uniform 1=128 16,384 (148,739, 66,049) 0.249% 0.087%
1 AMR 1=512 20,272 (189,353, 84,147) 0.094% 0.021%
10 AMR 1=512 16,840 (157,495, 69,989) 0.041% 0.028%

DG-BP with SSP and RK2
1 Uniform 1=128 16,384 (148,739, 147,456) 0.000% 0.001%
1 AMR 1=512 6169 (63,020, 55,521) 0.013% 0.025%
10 AMR 1=512 4954 (50,910, 44,586) 0.000% 0.016%

DG-BP with 2nd order multi-step SSP
1 AMR 1=512 6178 (63,110, 55,602) 0.016% 0.010%
10 AMR 1=512 4990 (51,153, 44,910) 0.010% 0.017%

Table 3
Width of the jump in the composition field for the Falling Box Problem for g1=g0 ¼ 1. The values are measured along the vertical line from ymin to ymax at x ¼ 0:415~a km. ‘Head’
refers to the bottom of the falling box. ‘Tail’ refers to the upward-deflected corners at the upper edge of the box.

Method Location ymin ymax CðyminÞ CðymaxÞ Width

FEM Head 0.11 0.168 0.00141761 0.995297 7.424 h
DG-BP Head 0.118 0.15 0.00326439 0.996589 4.096 h

FEM Tail 0.278 0.432 0.996832 0.00450687 19.712 h
DG-BP Tail 0.314 0.424 0.995551 0.0050364 14.08 h

Fig. 9. Profiles of Compositional field across falling block for case with g1=g0 ¼ 10 . (A) Vertical profile bisecting falling block: DG – blue, FEM – red. (B) Horizontal profile
across bottom edge. (C) Horizontal profile across top. Location of profiles are shown in (D) for DG result and (E) for FEM result. Arrows point to locations where the differences
between the two results clearly illustrate the strengths (sharp compositional boundaries for DG method) and weaknesses (significant smoothing for FEM method) of each
method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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putation. Furthermore, the jump in the composition field occurs
over less than five elements independent of mesh size. When we
use AMR the interpolation in the grid coarsening algorithm intro-
duces an over-/undershoot error of about 2%; this error occurs
because the cell average is not preserved during grid coarsening.
When the DG-BP method is applied to a dynamic flow field that
is not pointwise divergence free, the over/ undershoot error is
about 0.001% on a uniform mesh (with h ¼ 1=128), and increases
to 0.013–0.025% using AMR (for h ¼ 1=512). This source of error
can be eliminated by choosing an element type that will give a
point-wise divergence free solution for the Stokes equations (e.g.,
see Raviart and Thomas (1977)). Compared to the FEM solution
with entropy-viscosity stabilization the over-/undershoot values
are similar, but the DG-BP method uses fewer elements and fewer
degrees of freedom. This is because the compositional jump is
sharper, and therefore the AMR algorithm requires a smaller region
for the fully refined grid.

Thus, some of the limitations of DG-BP method shown in the
our article can be remedied because, as is common in mantle con-
vection codes, we use Taylor–Hood elements. For this choice of ele-
ment, the computed velocity is pointwise divergence free. This will
introduce a small error that is OðhÞ. Application of the BP limiter
requires that the flow is point-wise divergence free in order to
maintain the global bounds on the composition field; C 2 ½0;1�.
Because this requirement is violated by the choice of ðQ2;Q1Þ ele-
ments, the BP limiter is unable to maintain a strict bound on the
composition field. One example of an element that is pointwise
divergence free is a Raviart–Thomas element (Raviart and
Thomas, 1977). However, we note that using a different element
type may require more degrees of freedom, and hence, one should
first determine that the underlying goals of the research require
more precise tracking of the compositional boundary. One might
also consider other boundary tracking methods such as particles
and true front tracking.

In addition, as we have shown in the derivation of the DG-BP
method in Section 2.5, the cell average is an important factor in
defining the BP-limiter. The current implementation of the AMR
algorithm provided in the deal.II package does not preserve the cell



Fig. 10. Enlarged-view Comparison of Compositional Field for Top of Falling Box. Case with g1=g0 ¼ 1 with (A) FEM, (B) DG with BP limiter and second order SSP RK2 time-
step algorithm, and (C) DG with BP limiter and 1st order forward Euler algorithm. Case with g1=g0 ¼ 10 with (D) FEM, (E) DG with BP limiter and second order SSP RK2 time-
step algorithm, and (F) DG with BP limiter and 1st order forward Euler algorithm. Arrows point to tail (top) and corner (bottom) features discussed in the text.
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average when the grid is coarsened. In addition, when the AMR
algorithm is coupled with Taylor–Hood elements the error intro-
duced by the element type is magnified. Modifying the AMR algo-
rithm to preserve the cell average should remove this source of
error.

4.1. Implications for geodynamics simulations

As discussed in the introduction, the choice of which method
one uses to track a composition field within a mantle convection
computation depends on many factors, foremost of which is the
problem one wishes to address. Additional factors include the level
of accuracy that is required, subject to the available computational
resources and how the composition field(s) ‘interacts’ with other
essential properties (e.g., density, viscosity) of the computed
solution.

In order to illustrate these considerations for a specific problem
we present some results for an isoviscous Rayleigh–Taylor problem
in a two-dimensional rectangle, in which the buoyant fluid layer
lies beneath a denser layer, with a perturbed interface between
the two layers (van Keken et al., 1997). This problem, often referred
to as the ‘van Keken problem’, has been a widely used by research-
ers in computational geodynamics (e.g., Kronbichler et al. (2012)).

In our computations we have used the same parameter file van-
keken-smooth.prm for the ‘van Keken thermochemical composition
problem’ provided with the open-source mantle convection code
ASPECT (Bangerth and Heister, 2015). Note that in the initial con-
ditions for this particular computation the discontinuous jump is
replaced with a jump that is smoothed (Fig. 11(A)). We refer the
interested reader to van-keken-smooth.prm for the precise formu-
lation of the initial conditions. Also, please note that due to limita-
tions in the current release of ASPECT, the DG-BP limiter has only
been implemented in ASPECT with an implicit backward Euler time
discretization algorithm, not the more effective SSP algorithm.

Fig. 11(A) shows the initial conditions. The final numerical
results at time t ¼ 2000 are shown in Figs. 11(B)–(C). In Fig. 11
(E)–(F) we compare the DG-BP and FEM profiles along the vertical
line at x ¼ 0:45 and the horizontal line at y ¼ 0:85 with two uni-
form refinements of 128� 128 and 256� 256 cells). In addition,
in Fig. 11(D) we have plotted the evolution of the Root Mean
Square (RMS) velocity as a function of time for the two different
of global mesh refinements for both the FEM and DG-BP
computations.

Although the RMS-velocity for the FEM and DG-BP simulations
are almost identical, the FEM results show more smearing of the
interface boundaries. In addition, some features are missing in
the FEM simulation in the less refined mesh, while other features
are much broader than in the DG-BP simulation. Therefore,
depending on the method one uses for this type of problem, one
might draw different conclusions concerning the mixing process;
e.g., the smallest scales of heterogeneity.

Similar considerations are important for the application of any
compositional tracking method to problems of mantle mixing
and entrainment (van Keken et al., 1997; Zhong and Hager, 2003;
Leng and Zhong, 2011). In order to successfully address the
entrainment problem with the DG-BP method presented here it
would most likely be desirable to implement it with a point-wise
divergence free element and with an improved AMR (coarsening)
interpolation algorithm as discussed above.

While we have demonstrated some of the advantages of the
DG-BP, the question remains for what types of problems might this
be the preferred method for mantle convection computations. Here
we address those questions that we consider essential for the kinds
of models described in the introduction.

Advection–diffusion equation Our long-term goal is to extend
the DG-BP method presented here to fields that satisfy advection–
diffusion equation; in particular, the temperature coupled to the
incompressible Stokes equations with a Boussinesq approximation
for the density. The DG-BP method will be particularly important
when one is interested in modeling problems in which the temper-
ature has steep gradients, such as at the tip of a rapidly sinking slab
in the upper mantle, and in which the viscosity depends exponen-
tially on the temperature (Billen and Hirth, 2007; Burkett and
Billen, 2009; Arredondo and Billen, 2016). For problems such as
these, overshoots and undershoots in the temperature lead to
unacceptable errors in the viscosity and a breakdown in the under-
lying accuracy and validity of the computation.

Our (preliminary) comparisons to the default algorithm for
modeling the advection and diffusion of the temperature in
ASPECT clearly show that the entropy-viscosity stabilization algo-
rithm leads to a far too diffuse temperature field. Similar problems
with the use of ‘‘artificial viscosity” in shock dynamics computa-
tions lead to the development of the plethora of slope limiting/
bound preserving algorithms that are now considered state-of-
the art in computational shock physics (Woodward and Colella,
1984). We note that for the same reasons Chi Wang Shu and his
collaborators are now actively adopting these algorithms for use
in FEM codes (Shu, 2016a; Shu, 2016b).

Tracking multiple compositional fields The DG-BP method
presented in this article can also be used to track multiple compo-
sitional fields in the same model without any modifications to the
algorithm. When there are multiple compositions and no reaction
between them, one can still assume that each compositional field is
bounded globally, since each composition satisfies the advection
Eq. (1c) subject to (1b).



Fig. 11. (A) Initial composition on a uniform grid mesh with 256 � 256 cells. (B) DGBP result at final time T = 2000. (C) FEM result at final time T = 2000. (D) The composition
profiles at vertical line x = 0.45. E) The composition profiles at horizontal line y = 0.85. (F) The Root Mean Square (RMS) velocity as a function of time for two different numbers
of global mesh refinements for the FEM and DGBP.
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Long-term stretching, mixing and folding Since the underly-
ing DG discretization of the composition field allows for disconti-
nuities at cell edges, as the composition field is stretched and
breaks up into smaller pieces the boundaries between these fields
will continue to be tracked and remain sharp. However, the accu-
racy of capturing the details of the mixing behavior is limited by
the smallest mesh size, and therefore future work is needed to
determine how the computational cost (as determined by the
number of DOFs) increases as the composition is mixed at finer
scales. The ability to maintain sharp boundaries through time in
a computation is likely to influence conclusions related to the
entrainment of compositional signals from boundary layers into
rising thermal plumes. Our computational results indicate that
coupling the method to AMR will limit the computational cost as
mixing proceeds, at least until the mixing leads to compositional
heterogeneity at all scales.

Use in both 2-D and 3-D simulations The DG-BP method can
be used in both two and three dimensional computations without
any modification.

4.2. Considerations for the optimal performance of the DG-BP method

Our numerical results clearly demonstrate several advantages
when one uses the DG-BP method instead of a second-order accu-
rate FEM advection algorithm with an entropy-viscosity stabiliza-
tion technique. However, we have identified several
requirements that must be met by the underlying FEM code –
and the AMR algorithm if one is being used – in order to take full
advantage of the DG-BP method as presented here. In short, in
order for one to take full advantage of the DG-BP method it is nec-
essary to use a pointwise divergence free element and an AMR
algorithm that preserves the cell average during the coarsening
and refinement step. (The AMR algorithm we used in this work
preserved the cell average only when refining a cell/element.) Nev-
ertheless, even without these additional features in the underly
FEM code, the DG-BP method has over-/undershoot errors that
are comparable to the FEM method with entropy-viscosity stabi-
lization, but it does not smear the boundary or ‘jump’ between
compositions as much as the entropy-viscosity method. Thus,
when combined with an AMR algorithm the DG-BP method as pre-
sented here requires fewer degrees of freedom than an the FEM
advection algorithm with a viscosity-entropy stabilization method.
This is due to the much sharper representation of the steep gradi-
ents in the composition field (e.g., ‘jumps’) and hence the require-
ment for fewer refined cells in a neighborhood of these steep
gradients/ jumps.

Finally, a theoretical consideration. The existence of a bound
preserving limiter for any implicit time discretization scheme with
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a DG method is still an open question. However, numerically one
can attempt to use the bound preserving limiter with an implicit
time discretization scheme and expect improved numerical results.
5. Conclusions

The advection of composition fields is an essential component
of mantle convection computations; often requiring the tracking/-
capturing of sharp boundaries between distinct compositions as
they are subducted, mixed into the mantle, and entrained in
upwellings. However, as discussed in the introduction, there are
trade-offs one must make when using existing methods to model
these problems; they can be computationally expensive, smear
sharp boundaries, or are not easily adapted to computing the
advection of multiple compositional fields. The computations pre-
sented in this article demonstrate that the DG method with a
Bound preserving (BP) limiter is a stable, accurate and cost-
effective approach for computing the advection of a non-diffusive
compositional field in a velocity field given by the incompressible
Stokes equations. In addition, this DG-BP method can be used to
compute the advection of a multiple compositional fields through
all the physical processes expected within the mantle (e.g., subduc-
tion, mixing, stretching, entrainment) in both two and three
dimensions. In summary, it provides researchers in computational
geodynamics with another useful option for modeling the advec-
tion of a compositional field in solid Earth geodynamics problems.

In future work we plan to study other methods for stabilizing
the DG method for the composition advection equation with com-
pressible flow, such as the weighted essentially non-oscillatory
(WENO) scheme (Qiu and Shu, 2005; Zhu et al., 2008) and to apply
the ideas that underlie the DG-BP method to advection–diffusion
equations.
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