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1. Introduction10

Numerical modeling is a essential component of our understanding of convection in the Earth’s

mantle [1] as it allows geodynamicists to test hypotheses and build ever more refined models of12

mantellic processes. Given the vastly different time scales of the dynamics of the core from that of

the mantle and the vast differences between the rheologies of these two regions, rather than using14

computer models in spheres researchers have developed two dimensional models of the Earth’s mantle

in annuli [2, 3, 4, 5, 6, 7, 8, 9] and three dimensional models in spherical shells [10, 11, 12, 13, 14,16

15, 16].

While there are only a few analytical and numerical benchmarks in 3D spherical shells [12, 14, 17]18

there a great many on rectangular grids in rectangular, two-dimensional Cartesian domains [18, 19,

20, 21, 22]. However, to our knowledge, there are no non-trivial, incompressible, isoviscous, and20

isothermal benchmarks that involve an exact solution of the incompressible Stokes equations in a

two-dimensional annulus.22

We have developed such a benchmark for an isoviscous, isothermal solution of the incompressible

Stokes equations for which simple kinematic boundary conditions lead to structures that are serve24

as a model of “convection cells”, where the number of these cells is determined by a single param-

eter k. These cells are kinematic, isothermal counterparts of those found in full mantle convection26

experiments and computations.

In Section 2 we present the derivation of our analytical solution to the isoviscous, isothermal in-28

compressible Stokes equations in an annulus and in Section 3 we compare our numerical computations

of these solutions with the exact analytical solution.30

2. Derivation of the Exact Solution

We seek an exact solution to the incompressible Stokes equations for an isoviscous, isothermal32

fluid in an annulus. Given the geometry of the problem, we work in polar coordinates. We denote

the orthonormal basis vectors by er and eθ, the inner radius of the annulus by R1 and the outer34

radius by R2. Further, we assume that the viscosity µ is constant, which we set to µ = 1 we set the

gravity vector to g = −gr er with gr = 1.36

Given these assumptions, the incompressible Stokes equations in the annulus are [23]
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Equations (1) and (2) are the momentum equations in polar coordinates while Equation (3) is the38

incompressibility constraint.

We now postulate the θ-component of velocity vector can be written as40

vθ(r, θ) = f(r) cos(kθ) (4)

where the function f(r) will be specified later. From Equation (3) we can write

∂(rvr)

∂r
= −∂vθ

∂θ
= kf(r) sin(kθ) (5)

leading to42

vr(r, θ) = g(r)k sin(kθ) (6)

where

g(r) =
1

r

∫
f(r)dr (7)

Since the velocity is tangential to both boundaries we have44

vr(r = R1, θ) = vr(r = R2, θ) = 0 (8)

for all θ ∈ [0, 2π]. By taking f(r) = Ar + B/r, (e.g., see the solution of the Laplace equation in an

annulus in [24] for n = 0, 1) one obtains46

g(r) =
A

2
r +

B

r
ln r +

C

r
(9)

where C is a non-zero constant of integration. Given the boundary conditions in Equation (8) we

find that48

A = −C 2(lnR1 − lnR2)
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Thus,
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so that Equation (2) simplifies to50
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which leads to

p(r, θ) = kh(r) sin(kθ) + l(r) (14)
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where l(r) comes from integration with respect to θ and h(r) = (2g(r) − f(r))/r. We now insert52

Equation (14) into Equation (1) to obtain
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∂2vr
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+
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where54

M(r) = g′′ − g′

r
− g

r2
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f
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f ′

r
. (16)

Taking k = 0 yields ρ(r, θ) = −l′(r), so we choose l′(r) = −ρ0. In this case,

p(r, θ)|k=0 = l(r) = ρ0gr(R2 − r) (17)

where we have imposed p(r, θ) = 0 at the outer radius r = R2.56

Equations (4), (6), and (14) are a solution of the incompressible Stokes equations. In Figure 1

we present the velocity and pressure fields for k = 0, 1, 2, and 4 and ρ0 = 0. For k = 0 the velocity58

is tangential to both the inner and outer boundaries: it is clockwise on the inner boundary r = R1

and counterclockwise on the outer boundary, r = R2. thereby imposing a shear flow in the annulus.60

The density is purely radial as is the pressure. When k > 0 there are k cells or ‘lobes’ with positive

density values and k lobes with negative values, yielding 2 k convection cells.62

2.1. Average Benchmark Quantities

Benchmark publications often focus on scalar quantities that represent the solution in an average64

sense [18, 25]. Often these quantities are velocity averages or root mean square velocities. Since we

have an exact expression for the velocity field, we can compute the exact analytical value of these66

averages.

• θ-average of radial velocity component vr,68

< vr(r) >=
1

2π

∫ 2π

0

vr(r, θ)dθ = 0 (18)

• θ-average of the velocity component vθ,

< vθ(r) >=
1

2π

∫ 2π

0

vθ(r, θ)dθ = 0 (19)
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Figure 1: From left to right, increasing values of k. From top to bottom, density given by Equation (15), velocity

vectors and magnitude given by Equations (4) and (6), and pressure given by Equation (14).

5



• θ-root mean square average of the velocity component vr70

< vr(r) >rms=

√
1
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0
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2
(20)

• θ-root mean square average of the velocity component vθ
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2
(21)

• Root mean square velocity vrms72

vrms =

√
1

V

∫
V

(v2r + v2θ)dV (22)

where V is the volume (area) of the annulus. When k = 0, the root mean square velocity is

given by:74
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When k = 1, the root mean square velocity is given by:
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3. Numerical Results76

The solution to the incompressible Stokes equations that we derived in Section 2 above is intended

to be a numerical benchmark. In this case, the velocity is only prescribed on the inner and outer78

boundaries r = R1, R2 and in what follows we have set ρ0 = 0.
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The density is then given by Equation (15), the gravity vector is g = −er, and we set C = −1,80

R1 = 1, and R2 = 2.

We used two different computer codes to compute the following results.82

• ELEFANT2 is a FEM code [17, 26, 27] that is a successor to the FANTOM code [28], but which

also has a number of improvements as compared to its predecessor. It is a finite element code84

that supports both triangular and quadrilateral elements. In this work we used the Q1 × P0

element combination.86

• ASPECT 3 (Advanced Solver for Problems in Earths ConvecTion) is an open source finite

element code [29, 30, 31]. It is built upon deal.II [32], which is a general-purpose FEM library,88

TRILINOS [33], which provides scalable and parallel solvers, and p4est [34], which builds

distributed, parallelized, adaptive meshes. ASPECT relies on the use of modern numerical90

methods, such as adaptive mesh refinement, linear and nonlinear solvers, and stabilization of

transport-dominated processes. These modern methods, together with high-order elements,92

ensure highly accurate solutions and excellent parallel scaling that has been demonstrated for

up to several thousand processors. For the benchmark problems presented in this paper we94

used the Q2 ×Q1 element combination in ASPECT on uniform grids. The present benchmark

is implemented in ASPECT 2.0 and is referenced in the ASPECT users’ manual [35].96

In our computations, the finite element grids contain nel = nr∗nt elements where nr is the number

of elements in the radial direction and nt is the number of elements in the θ direction. One can check98

the correctness of our implementation by examining the computed pressure on the two boundaries

in Figure 2, which shows both the computed and true pressures for k = 1, 2, and 4. One can see100

that there is excellent agreement between the computed values and the analytical values. The error

in the computed pressure field is further documented in Figure 5.102

In Figures 3 we show the computed values of the average velocities for various values of k, where

the true values are from Equations (18) and (19). Note that the difference between the computed and104

exact values are on the order of machine precision µ = 10−16. In Figure 4a,b we show the computed

radial and tangential root mean square velocities as compared to the true values in Equations (20)106

and (21). The computed and analytical profiles are indistinguishable in this Figure. We computed

the root mean square velocity for various values of k and various resolutions. The values we obtained108

with ASPECT and ELEFANT are reported in Table 1. It is apparent that the measured values

2http://cedricthieulot.net/elefant.html
3https://aspect.geodynamics.org/
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Figure 2: The pressure on a) the inner boundary r = R1; b) the outer boundary r = R2 obtained with ELEFANT.

The grid resolution is nr = 128 elements in the radial direction and nt = 1024 elements in the tangential direction.
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Figure 3: Computed radial averages of the (a) radial and (b) tangential velocity components as a function of r for

k = 1, 2, 3, 4, and 8 versus the true values from Equations (18) and (19). Results obtained with ELEFANT.
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Results obtained with ELEFANT. .
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nr ∗ nt k=0 k=1 k=2 k=3 k=4 k=8

ELEFANT

8x128 1.16053 0.83943 0.89217 0.97388 1.07810 1.61846

16x256 1.15957 0.83883 0.89280 0.97618 1.08222 1.63256

32x512 1.15932 0.83868 0.89295 0.97674 1.08322 1.63609

64x1024 1.15926 0.83864 0.89299 0.97688 1.08347 1.63697

128x2048 1.15924 0.83863 0.89300 0.97692 1.08353 1.63719

256x4096 1.15924 0.83863 0.89300 0.97693 1.08355 1.63724

ASPECT

4× 48 1.157773 0.8377398 0.89250634 0.9769904 1.0842358 1.638336

8× 96 1.158835 0.8383679 0.89280005 0.9768007 1.0835105 1.637383

16× 192 1.159134 0.8385620 0.89294820 0.9768854 1.0835267 1.637273

32× 384 1.159211 0.8386131 0.89299078 0.9769167 1.0835465 1.637261

64× 768 1.159230 0.8386260 0.8930018 0.9769253 1.0835525 1.637260

128× 1536 1.159235 0.8386293 0.8930046 0.9769275 1.0835540 1.637259

Analytical 1.159236712 0.8386303476 0.8930054915 0.9769282067 1.083554613 1.637259224

Table 1: Root mean square velocity values for various values of k and grid resolutions for both ELEFANT and

ASPECT.
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converge to the analytical one as the mesh size h = (R2 −R1)/nr is decreased.110

Finally, we investigate how the error in the computed solution diminishes with an increase of

resolution. We then compute the L2-norm of the error [36] for both velocity and pressure and plot112

these as a function of resolution and for various values of k. The resolution varied from 8 × 128 to

512× 8192. We see that the velocity error converges like O(hn+1) while the pressure error converges114

like O(hn) for Qn × Qn−1 elements as shown in Figure 5. We also computed this test in ASPECT

with Q2 × P−1 elements with nearly identical results. All error measurement values are available in116

Appendix A.

4. Conclusions118

We have derived a family of analytical solutions to the incompressible Stokes equations for an

isoviscous, isothermal fluid in an annulus These solutions were implemented in two geodynamic codes,120

ASPECT and ELEFANT, and the accuracy of the computed solutions was checked for three finite

elements combinations: Q1 × P0, Q2 × Q1, and Q3 × Q2. The convergence rates were shown to be122

as expected from the theory of finite element methods for te incompressible Stokes equations. WE

also derived several velocity field averages analytically and demonstrated that the computed values124

were in excellent agreement with the analytical values. Given the nature of the flow, which made

up of multiple convection cells with tangential flow on the boundaries, we expect that this family of126

analytical solutions will become a standard benchmark for advection methods in annular geometries.
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Appendix A. TABLES OF ERRORS

In the following tables the velocity and pressure errors of Fig. (5) are reported as well as the

corresponding convergence rates which are defined as:

rate = log2

(
err(h = 2n−1)

err(h = 2n)

)
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[35] W. Bangerth, J. Dannberg, R. Gassmöller, T. Heister, et al., ASPECT: Advanced Solver for226

Problems in Earth’s ConvecTion, User ManualDoi:10.6084/m9.figshare.4865333. doi:10.6084/

m9.figshare.4865333.228

URL https://doi.org/10.6084/m9.figshare.4865333

[36] M. Thielmann, D. May, B. Kaus, Discretization errors in the Hybrid Finite Element Particle-230

In-Cell Method, Pure and Applied Geophysics.

20

https://doi.org/10.6084/m9.figshare.4865333
https://doi.org/10.6084/m9.figshare.4865333
https://doi.org/10.6084/m9.figshare.4865333
http://dx.doi.org/10.6084/m9.figshare.4865333
http://dx.doi.org/10.6084/m9.figshare.4865333
http://dx.doi.org/10.6084/m9.figshare.4865333
https://doi.org/10.6084/m9.figshare.4865333

	Introduction
	Derivation of the Exact Solution
	Average Benchmark Quantities

	Numerical Results
	Conclusions
	 TABLES OF ERRORS

