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We present a coupled level set/volume-of-fluid (CLSVOF) method for computing
3D and axisymmetric incompressible two-phase flows. This method combines some
of the advantages of the volume-of-fluid method with the level set method to ob-
tain a method which is generally superior to either method alone. We present direct
comparisons between computations made with the CLSVOF method and computa-
tions made with the level set method, the volume-of-fluid method, and the boundary
integral method. We also compare our computations to the exact solution for an oscil-
lating ellipse due to Lamb and experimental results obtained for a rising gas bubble
in liquid obtained by Hnat and Buckmaster. Our computational examples focus on
flows in which surface tension forces and changes in topology are dominant features
of the flow. © 2000 Academic Press
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1. INTRODUCTION

In this work we present a coupled level set and volume-of-fluid method (CLSVOF
for computing 3D and axisymmetric incompressible two-phase flows, with and witho
viscosity. Incompressible two-phase flow is often difficult to model computationally, sinc
the density ratio at the free-surface between the gas and liquid can be 1000:1 (e.g.,
water) or more. Furthermore, complications may arise when surface tension is pres
and/or when a change of topology occurs. An example of the flows we compute is sho
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in Fig. 15 in Section 6 where we show the results of a 4-mm air bubble rising to the surfa
of an air/water interface and then bursting due to stiff surface tension effects. The jet tf
breaks up due to capillary instabilities, emitting satellite drops.

Our development of the CLSVOF method has been partially motivated by our desi
to model microscale jetting devices, such as ink-jet print heads. In a typical microsc:
jetting device, a liquid is ejected from a nozzle which has a characteristic length of 1—
microns. The liquid typically forms into a lead drop which is roughly spherical, followec
by a long, thin cylindrical tail. Due to the length scales in the problem, surface tension
the dominant force affecting the dynamics of this lead drop/tail system. In particular, tl
tail usually separates from the lead drop and undergoes a Rayleigh capillary instabil
breaking into two or more smaller “satellite drops;” e.g., see Fig. 4 in Section 4. Therefol
it is of critical importance to model surface tension accurately, if one wishes to correct
model this problem.

Throughout this paper, we will primarily compare the CLSVOF method to either the levi
set (LS) method as described in [29] or the volume-of-fluid (VOF) method as described
[22]. We also make a comparison with results computed with the boundary integral metf
described in [32]. We note, that although we have focused on these three methods, tl
are a variety of other numerical models proposed for solving incompressible free-surf
problems such as boundary integral methods [8, 9, 20], front tracking methods [35], a
particle-in-cell methods [25].

In the LS method [17, 21, 29, 32, 33], a smooth functipm, z, t)—called thelevel
set function—is used to represent the free surface. Liquid regions are regions in wh
¢ (r, z,t) >0 while gas regions are regions in whigir, z,t) <0. The free-surface is
implicitly represented by the set of points in whigkr, z, t) = 0. One of the advantages of
the LS method is its simplicity, especially when computing the curvataighe interface.
Typically the level set functior (r, z, t) is maintained as the signed distance to the free
surface; i.e.¢(r, z,t) = —d in the gas an@d(r, z, t) = +d in the liquid whered = d(t) is
the shortest distance from the point z) to the free-surface at time e.g., see Sussman
et al.[33]. From such a representation of the free-surface, the unit normal ventwmal
and mean curvature are simply

)
= —, 1
"= Vel @)
and
Vo
=V.—, 2
‘ Vol @

respectively. In particular, note that whgng| = 1, the discretization for in 2 reduces to
a discrete Laplacian a@f. On the other hand, the LS method has the disadvantage that t
discretization of the equation to advect the level set function,

¢t + U + v, =0, (3

where(u, v) is the underlying velocity field, is prone to more numerical error than front:
tracking methods or VOF methods when the interface experiences severe stretchin
tearing. A common symptom is loss/gain of mass. We remark that in an incompressi
flow V - U =0 and hence (3) is equivalent to the conservation law

ot + (UP)r + (vg), = 0. (4)
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However, althoughy can be discretely conserved via (4), the mass enclosed by the ze
level set ofp is not conserved. Other related problems, reported by Rider and Kothe [2-
can occur if the interface undergoes severe stretching and tearing.

One motivation for developing the CLSVOF method is this loss of mass problem; f
example, computing a three dimensional ink-jet problem, we are limited to relatively coal
computational grids. On a coarse grid, a LS method will tend to lose so much mass t
the tail disappears before it breaks up into satellite drops. Prior to developing the CLSV!
method, we tried computing with the velocity field on a coarse grid and the level set functi
on a fine grid. Unfortunately, this is an inefficient idea since the redistance step would he
to be done on the fine grid and the surface tension time step constraint would have tc
derived relative to the mesh size on the fine grid.

Besides the LS approach, we have considered the volume-of-fluid method (VOF). In
volume-of-fluid method (VOF) [1, 11, 23], the volume fractiBii2, t) is used to represent
the free surface. Typicallf represents acomputational c@l| ; .9.,Qij ={(r,2) |rj <r <
riq1andzj <z<zj.q}. If F(Q,t) =1, then the regio® is all liquid. If F (2, t) =0, then
the region<2 is all gas. If O< F (2, t) < 1, then2 contains both gas and liquid. One can
define the volume fraction functioR (€2, t) in terms of the level set functioa(r, z, t).
Since we have > 0 in the liquid andp < 0 in the gas, one can defifg 2, t) as

F(Q,t) = &/ﬂ H(o(r,z t))rdrdz, (5)

whereH is the Heaviside function,

)1 if¢p >0
H(©®) = {O otherwise. ©)

Anadvantage of representing the free surface as volume fractions is the fact that one can\
accurate algorithms for advecting the volume fraction function so that mass is consen
while still maintaining a sharp representation of the interface. For example, Pilliod al
Puckett [22] developed second order volume-of-fluid advection methods which accurat
compute the rotation of a notched disk while maintaining mass conservation. Howeve
disadvantage of the VOF method is the fact that it is difficult to compute accurate loc
curvatures from volume fractions. This is because the volume fractions transition sharpl
regions of the free surface. Standard VOF methods compute the curvature by first mollify
the volume fractions in a special way (see [1, 11]). We have experienced difficulty with th
approach. If one does not smooth enough, then the curvature for even a circle will be hig
oscillatory. This would spell disaster for the “stationary bubble test.”

If one smooths too much then the numerical algorithm will not “see” changes in curvatt
along the free surface (since too much smoothing has the effect of making the curvat
constant along the free surface). This can spell disaster for dynamic problems such as
zero gravity drop oscillation problem (see Subsection 6.2). In the CLSVOF method, we
not smooth the curvature at all; instead the curvature is obtained via finite differences of
level set function which in turn is derived from the level set function and volume-of-flui
function at the previous time step.

In this work, we couple the LS method with the volume-of-fluid method; early work alon
these lines was done by Bourlioux [10]. However, our approach to coupling the LS meth
with the volume-of-fluid method differs from Bourlioux’s. In addition, we also combine &
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coupled level set/volume-of-fluid advection method with the equations for incompressit
two-phase flow.

We show that we have comparable mass conservation properties as with other sec
order volume-of-fluid advection methods [22] and we also show that we can accurats
compute surface tension driven flows by coupling the LS method with the volume-of-flu
method.

2. GOVERNING EQUATIONS

The equations of motion for incompressible two-phase flow can be written as

vVp 1 1
Uuy+U.vU=—-——-+4+ —V.(2 D) — VH F 7
t+ p(¢)+p(¢) (2u(¢)D) p(¢)yk(¢) (@) + (7)
V.-U=0, (8)
and
o +U-Vp =0. )

¢ is the level set function which is positive in the liquid and negative in the gas. Th
governing equation for the level set function (9) states ¢hemains constant on particle
paths; i.e., if the zero level set is initialized as the free-surface between the liquid and ¢
then the zero level set will always represent the free-surface. From the level set functi
one can derive the density(¢), viscosityu(¢), and curvature (¢). Density and viscosity
are written as

p(9) = pg(1—H(@) + pH (@) (10)
w(@) = pug(l—H(®) + mH(@), (11)

where H (¢) is the Heaviside function defined by (6). The local mean curvature can &
written as

Vo
K@) =V ——. 12
¢ Vol (12)
D is defined as the rate of deformation tensor,
D= (VU)+ (VU)". (13)

F is a body force; in our implementatioris represents the force due to gravity= (0, g).
Pgs P15 g, i1, andy are defined to be the gas density, liquid density, gas viscosity, liqui
viscosity, and surface tension coefficient, respectively.

The fact that the surface tension force,

1
VH 14
p(¢)7//<(¢) (@), (14)

can be cast as a body force is due to the work of Brackbdl.[11] and more recently, for
the LS method, due to the work of [12].
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We remark that when we discretize the level set equation (9), we shall simultaneou
solve the following equation for the volume-of-fluid functién

Fi+ V- (UF)=0. (15)
At t =0, F will be initialized in each computational cell;;,
Qj=@2|r<r<rg and z <z<Z, (16)

to be

1
Fij = ArAz/Q H(gp(r,z 0)rdrdz (17)

ij
Here,Ar andAz are defined ag,; —r; andz 1 — 7, respectively.

2.1. Projection methodology.The method used to solve for velocity and pressure is ¢
variable density approximate projection method described by [4, 23]. We rewrite (7) as

1
Ui+ —=Vp=V(U,0¢). 18
gy PV (18)

We then take the divergence of both sides of (18) and use the fac¥ tHaf =0 in order
to reduce (7) and (8) into a single equation for pressure,

V~EVp=V-V. (19)
0

After solving (19) forV p the updated value fdd; is
U=V —Vp/p. (20)
For future reference, we define the projection operBtas
Uy = P(V). (21)
Combining (21) and (20) yields

Vp/p =V —U =V —PV) = (I — P)V). (22)

3. THE CLSVOF ADVECTION ALGORITHM

In this section, we describe how to advance the free surface using the coupled le
set volume-of-fluid (CLSVOF) advection algorithm. We shall describe the details for tf
axisymmetric case. The 3D algorithm follows analogously. We shall discretize our variab
on a uniform grid with grid spacing ohr = Az. The discrete level set functiogf’; and
discrete volume fractiofr"; are located at cell centers. The motion of the free surface i
determined by the velocity field derived from the equations for incompressible two-pha
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Physical boundary

Gas or Liquid
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Vi1.J-5[2 Vi T 5/2 Uii1,J-5

2

FIG. 1. Diagram of where the discretely divergence-free edge velocity 061", level set functionp, and
volume-of-fluid functionF are located in relation to the computational grid and the physical boundary.

flow. The discrete velocity field is defined at cell edges; > ; andv; j;1,2, and satisfies
the discrete divergence free condition,

DMACU —

(ru)i+%,j - (ru)if%,j

Vijj+1

— Y-}

ri Ar

Az

(23)

A diagram of where the discrete variables are located in relation to the computational gric
shown in Fig. 1.J represents the index of the computational cell closest to the top physic

boundary.

The equations governing the interface motion are

and

¢ +V-(Ugp)=0

Fi+V-(UF)=0.

(24)

(25)

Remark. The conservative formulation of the level set equation (24) is equivalent to (-

sinceV - U=0.

We shall assume that the level set functj&ﬁrﬂ is initialized as the signed normal distance
from the initial position of the free surface. The volume fraction funclfgﬁp shall be
initialized as the fraction of liquid fluid contained in céll j). In other words,

where

Qjj =2 | =<r=<rpn

0

T ATAZ

and

/ H(p(r,z 0))rdrdz,
Qi

Zj) = Z=1Zj41.

(26)

(27)
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Given o' i i J, andU, we use a “coupled” second order conservative operator spl
advection scheme in order to fqut#‘“ and F”+1 For axisymmetric flows, the operator
split algorithm for a general scalarfollows as

- S + (At/rAr) (ri21/2Gi—1/2,j — li+1/2Gi+1/2,])
— (At/riAr) (riga2Uizay2 — Mio1/2Ui—1/2,)

_(/J

: (28)

. At ~ ~ ~
ST =80+ 55 (G2 = Gijsa) + 8 (W12 = vijoag2), (29)
whereGi 12 j =S11/2,jUi+1/2,j denotes the flux of across the right edge of thg j)th
cell andG; j;1/2=Si j+1/2vi,j+1/2 denotes the flux across the top edge ofhg)th cell.
For 3D flows, the operator split algorithm for a general scafatlows as

- S’f,-,k + (At/AX) (Gi—1/2,k — Git1/2,j.k)

Sk = 30
b — (At/AX) (Uis1/2,jk — Ui—1/2,j.) (30)

& L= § 1 K+ (At/Ay)(G. i—1/2k— Gij+1/2, k) (31)
b — (At/AY) (vij+1/2.k — Vi, j-1/2.k)

5 k= § 1 K+ (At/AZ)(Gl jk—1/2 — Gi Jjk+1/2) (32)

— (At/AZ) (Wi jkr1/2 — Wijk-1/2)

M+l _ = S,jk
S.jk (Ax (Uit1/2,jk — Ui-1/2,j.k)
+ S (Vi,j+1/2.k — Vij-1/2.k) + S (Wi} k12 — Wi jk-1/2) |- (33)
Ay Az

Remarks.

e Although (28) and (29) are not in conservation form, the scalarstill conserved
sinceu; 1/2; andv; j11,» satisfy (23). The form that we use to difference the fluxes in (28
and (29) was used by [23]. The 3D analogue represented by (30) thru (33) reduces to
two dimensional case when any one of the discrete derivatives,, or w; is zero.

e The operator split procedure described above is made second order accurate b
ternating the starting sweep direction at each time step, i.e., by employing “Strang splittir
[28].

The scalar fluxs 11,2 ; is computed differently depending on whetlserepresents the
level set functionp or the volume fraction functiofr. For the case whesrepresents the
level set functiorp we have the following representation ®x1,2 j whenui,1,2j > 0,

Ar Sy — St
St12j) =) + 7(1 Uivi/2) 5 ) +1'Ar = (34)

and wheruj 12 <0,

Ar 2 — 5]
S+1/2) = Shaj — > (1—|—u|+1/21A )%

The above discretization is motivated by the predictor corrector method described in
and the references therein. The scalar 8ux,, ; is obtained by extrapolatingin both
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space and time. Below, we show an example for the case whep j > 0,

Ar At
5 S + —sij- (35)

S+1/2j ~S,j+ >

For an operator split algorithm we only solve for one direction at a time. This means, f
example, that we are solving

s +us =0.
We can substitutg, jj = —us ;; into (35) in order to obtain
N Ar At
S+1/2j * S, + > 1- UE S.ij -

If we replaceu with uj1,2; ands j; with ($n+1,j - s“_l.j)/Ar, then we recover (34).
For the case whea represents the volume-of-fluid functidh we have the following
representation fo 1,2 ; whenuj 12 >0,

Zjt1/2 lit1)2 n,R
S (fzjjjl/z ri++1/2*Ui+1/2AJ aH (¢i~1 r, Z))r dr dZ) (36)
A +1/2,] —
2 (ris12 — (1/2)Ui1y2, ) At)Uisy2 j AtAZ
and wheru; 112 ; <0,
(s o™ M (g ¢ 2)r dr da) -

(fisrz — (1/2Uip1/2, At) |Uig1j2 | AtAZ

The terrmb{f'jR(r, z)foundin (36) and (37) represents the linear reconstruction of the interfac
incell @, j). In other words¢i'f’jR(r, 2) has the form

D =ar —r) +bi(z-2z)+a,. (38)

The coefficients; j, b j, andc; ; are first chosen so that (38) represents the best fit line fo
the piece of the zero level set passing thru @elj). In other wordsa, b, andc minimize
the error

liy1/2 Ziy1/2
Eij Z/ / H'(p) (@ —a jr —r) —bijz—2z)—Gj)> (39)

li-1/2 Zi-1/2
In order to solve fom, b, andc, we minimize the discretized error,

i+1  j+1
EN =Y > wisijojH (@) (@) — a0 — 1) — b j(z) — z) —ci )% (40)

ir=i—1j=j-1

The discrete weightsy, s are chosen so that (40) is an approximation to (39). For the
computations we show, we haug s =16 forr =s=0 andw, s=1forr 20 ors=0. We
have tried other values fas, s with little effect on the accuracy of the computatidty.(¢)
represents the smoothed delta function with thickre$s our computations, we always
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havee = v/2Ar. The resulting equations far, b, ¢ as a result of minimizing (40) are a
3 x 3 linear system.

Theintercept; j is corrected so that the line represented by (38) cuts out the same volul
incell (i, j) as specified by"; . In other words, the following equation is solved oy,

Zit12 fligay2
/ / / / H(@ jr —r)+bij(z—2z)+cprdrdz=F. (41)
Zi-1/2 li-1/2

SinceH is a Heaviside function defined &s(¢) =1 if ¢ > 0 andH (¢) = 0 otherwise, we
solve (41) by use of the Newton iteration method. We remark that the algorithm is simplifi
by first rotating the grid axis so that the normal represented; byandb; ; points away
from the lower left hand corner of th@, j) computational cell. The coefficients, b; ,
andc; ; are also rescaled so tl'lii?cj + bﬁj =1 and the new intercept represents the norma
distance to the lower left hand corner of the computational cell.

The integrals in (36) and (37) are evaluated by finding the volume cut out of the regi
of integration by the line represented by (38).

Remarks.

e In comparison to setting

1

g = m(tﬁiﬂ,j —di-1j) (42)
1

b= TAZ(¢i,j+1_¢i,j+l)» (43)

the minimization procedure described above proved to be more accurate for simple t
such as the translation of a circle or Zalesak’s problem.

e In our numerical procedure, we disallow partial volume fractions in cells in whicl
|¢| > Ar. This guarantees that we only reconstruct the interface in cells in idjch Ar ;
thus the linear system that results from minimizing (40) will always have a solution.

The scalar fluxg ;1,2 is computed in the same mannersas » ;. For the case whes
represents the level set functignwe have the following representation &r; 1,» when

vi,j+1/2> 0,

- - Az At §j11—-§8j1
T S et (DL : 44
Sit2=Sj+ < vu,1+1/2Az) Az (44)
and whenv; j41/2 <0,
N N Az At é’j_i'_z —é,j
Sit12=841) — (1+ vi’j+l/2Az> A7 (45)

For the case whes represents the volume-of-fluid functidh we have the following
representation fa§ 11> whenuv; ji1/2 >0,

(fzzi+l/2 frri”/z H ((;lR] (r, Z))r dr dZ)

i+1/2— Vi j+1/2At Jri_12

(46)

§j+12=
I+ rivi,j+12AtAr
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and wher; 41,2 <0,

Zi 12— Vi j+1/2A0 Jrica2

( A+ Ji2H (quFfj (r, 2))r dr dz)

§jri2= 47)

I |Ui’j+1/2’AtAr
The linear reconstructiogai'?j (r, z) found in (46) and (47) has an analogous form as (38),
¢ =& —r)+bjz-2)+8,. (48)

After ¢"*! and F"*! have been updated according to (28) and (29) we “couple” thi
level set function to the volume fractions by assigning the level set fungtibhto be the
exactsigned normal distance to the reconstructed interface. The algorithm to find the sigr
normal distance in a strip df cells about the reconstructed interface is as follows:

1. Truncate the volume fractions,
H 1 1
0 ifRY <0 or ¢t <-—Ar

Fiit=241 ifENE>1 or @it > Ar (49)

F' otherwise.

2. Tag all computational cellg, j).
3. In each computational cdfl, j), check to see if

ool <0 (50)
for some|i —i’| <1,|j — j'| <1, if there is a(i’, j’) such that (50) is satisfied, then
perform the following steps:

(a) If
0<F't<1 (51)
and
oMol Hg0Y) <0 forsomeli —i'| <1 ]j—j1<1 (52

then construct the linear reconstructiﬁfl’R(r, 2) (38),
qbi'?}“l'R(r, 2)=a (r —ri)+bi,- (z—-17z5) +¢c . (53)

If (51) or (52) is not satisfied then mark all of céll] j) face centroids and corners
as either “positive” or “negative” depending on the sigrqz&@fl. If both (51) and
(52) are satisfied, mark all of celi, j) face centroids and corners according to
the sign of¢>i’?j+1’R(r, z) evaluated at the face centroids and corners.
(b) For each cell(i’, ), ('—1)?+(j'=)?<K? and (iI'—i)?>+(j' —j)?<
(|¢N |/ Ar +2)? do the following steps; we refer the reader to the diagram ir

|
Fig. 3 in Section 4.
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(i) Determine the closest point on the boundary of gelj) to (ri, zj:) (this point
will always either be at the corner or face centroid of the cell boundary). |
the sign of the level set function at the closest poirdppositeof ¢|”+1 then
setd, the shortest distance associated with c@ll$) and {’, j’), equal to the
distance from(r;,, z;) to the closest point on the boundary of agll}). If the
sign of the level set function at the closest point iss*.taua’nea&;b,"*]/l and (51),
(52) are both satisfied, then kete the shortest distance betwegn ¢;-) and
the line segment representedgfyi (r, 2).

(i) Updateg/’*" usingd:

AV

. {3|gn(¢“+l) if d < |¢/)| orcell(i’, j') is tagged
é

ot otherwise.

(i) Untag cell(i’, j’).
4. For cells(i, j) which are still tagged, we have

¢n+l —

i (54)

—KAr — Ar if gt <0
KAr + Ar if ¢ > 0.

Remarks.

e The coupling between the level set functipand the volume-of-fluid functiok oc-
curs when computing the normal of the reconstructed interface (38) and also when assig!
the level set function with the exact signed normal distance to the reconstructed interfa

e In order to find the shortest distance between the cell centey’) and the line
segment represented W*l R(r, 2) (53), one first re-scales (53) so thagt; + b2, =1.
The distance is thed = qb““ R(rir, zj). The pointx® = (ri/, zj) — dV¢" LR is the point
where the normal extension fro(i, j) to ¢"/ % (r, 2) intersectsp" R (r, 2). If x° falls
outside of cell(i, j), then the shortest d|stance betwe@h j’) and qb““ R(r Z) must
be the distance fronti’, j’) to one of the end points of the Ilrﬁegmemrepresented
by qﬁ““ R(r, 2). In three dimensions, it becomes only slightly more complicated. Th
step for finding the normal distance to the plane representeg|’ ‘pﬁ/R(x Yy, 2) is sim-
plyd= qﬁ{‘ﬁ Rixiv, Yi', Zw) (assuming the coefficients are appropriately scaled). As for th
axisymmetric casex® = (X', Yy, zw) — dV¢"1R. The only added complication in three
dimensions is finding the shortest distance to the end points of the reconstructed plane.
this can be handled by projecting the poixt,(y;, z<) onto the plane that coincides with
each of cell(i, j, k)'s faces and then finding the distance from the projected point to th
intersection between the reconstructed plane and the cell face. The procedure in this
reduces to the procedure for the 2d case.

e One difference between our algorithm and the one presented by Bourlioux [10] f
couplinge to F is in how the new level set functiap"* is reinitialized using the volume-
of-fluid function F"+1, In [10], the level set functiop"+* is modified to be the intercept
G, (38) of the reconstructed interfadéf’jR(r, 2) in cells that contain a piecewise linear
reconstruction. For cells that do not contain the piecewise linear reconstruction, Bourlic
used the redistance iteration proposed by [33]. In our computations we have tried b
approaches and found more accurate results when assigfifigo be theexactdistance
from the reconstructed interface. In our implementation, we only pé&tito be the exact
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distance withinK cells whereK <5 (K is dependent on the “interface thickness,” see
Section 5). The speed for our algorithm is tideK >N) whereN is the number of compu-
tational cells that contain a volume-of-fluid reconstruction. This is the same speed estim
as for a redistance iteration within a tulecells thick about the zero level set.

o In the previous remark, it was recommended that one find the exact distance to
reconstructed interface when implementing the CLSVOF algorithmntiisecommended
that one reconstruct the interface if one is only using the LS approach for moving the ft
surface. In this case, the redistance iteration [30, 31] is recommended since interface re
structions using only the level set function without the aid of volume fractions will incu
considerably more error than the iteration approach outlined in [30, 31].

4. TEMPORAL DISCRETIZATION

Our discretization procedure for approximating (7) is based on the variable density proje
tion method described by Badt al.[5], Bell and Marcus [7], Aimgreet al.[4], and Puckett
et al.[23]. The discrete velocity f|elthn level set function’;, and volume fraction§;";
are located at cell centers. The pressq’i‘ﬂel/2 j+1/2 IS located at cell corners. A dlagram
of where the discrete variables are located in relation to the computational grid is showr
Fig. 2.J represents the index of the computational cell closest to the top physical bounde

The time stepping procedure is based on the Crank—Nicholson method. At the beginn
of each time step, we are given the velodity, level set functio”, and volume fractions
F"attimet". We are also given the lagged pressure gragignt/?. The density" = p (¢"),
viscosity u" = u(¢"), and Heaviside functioil" = H (¢") are given at timé" since they
are functions op".

We discretize (7) and (9) in time using the steps below; for details of the spatial di
cretization of the nonlinear terms, viscous terms, surface tension terms, and projection s
see the Appendix (Section 9).

Physical boundary

Gas or Liquid
.¢, F & F .¢, F
Ui1s Uis Uit,g

Di-3/2,J-1/2 Pi-1/2,0-1/2 Pi41/2,0-1/2

¢, F' ¢, F ¢, F

L] L ] *

Uicis-h Uiia Ui
Pi-3/2,J-3/2 Pi—1/2,J~3/2 Pi+1/2,0-3/2

¢, F @, F' &, F

. L) L4

Uis1,5-p Uij-a Uin1,5-p
Pi-3/2,J~5/2 Pi—1/2,J~5/2 Pi+1/2,J-5/2

FIG. 2. Diagram of where the discrete variabldsp, ¢, andF are located in relation to the computational
grid and the physical boundary.
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$ije1 >0 Bir1,j41 > 0

A F

C
L] L] *
P
i1 <0
E
L] * L]

FIG.3. The distanced assigned to pointé, F, andE respectively ar¢AB|, [FG|, and|EH].

1. Predict the edge based velocity fiel 1\//,;}1/2 and vijJ\r/'lr}erl/z using an explicit

predictor-corrector scheme. The edge based velocity field shall be discretely diverger
free; i.e., they satisfy (23). A description of hayly7 /2 andvT};75 "% are formed is
described in the Appendix (Subsection 9.1).

2. Giveng", F", andUAPV:"1/2 apply the CLSVOF advection algorithm described
in Section 3 in order to determig*+* and F"+,

Once¢"t! is obtained, the following quantities are updated,

¢n+1/2 — %((pn 4 ¢n+1) (55)
pn+l/2 — p(¢n+1/2) (56)
Mn+1/2 — M(¢n+1/2). (57)

£=62 microseconds

BSilEenmee SEEEN

t=55 microseconds

P

t=39 microseconds

]

t=23 microseconds

(=il |

t=0 microseconds

FIG. 4. Axisymmetric jetting of ink.p,, / pa =816, w, /1. = 64. Effective fine grid resolution is 64 1024.
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3. Semi-implicit viscous solve for the intermediate velodiky,

u*—un Gpi L[4 L] n+1/2
A YRR Y) LIS S A e M — +F. (58)
At Pl 20M+3 PL:

L is a second-order finite difference approximatiorvto (2 (¢)D), M is a finite differ-
ence approximation tpx (¢)VH, andGp is an approximation t&/ p. In the Appendix
(Subsection 9.2) we give a description®p, £, and M. The nonlinear advection term
[(U - V)U]"*Y/2 s evaluated using an explicit predictor-corrector scheme and requires or
the available data &t. In the Appendix (Subsection 9.1), we give a description of hduw[
V)U]™1/2is discretized. The densigy, viscosityu, Heaviside functiord, and curvature
are constructed from the level set function calculated attith€? in the level set advection
step (55). The lagged pressure gradiémt'—Y/2 and forceF are treated as source terms.

Equation (58) when discretized results in a coupled parabolic solve for all velocity cor
ponents ofJ*. We use multigrid as an iteration method for solving (58).

4. Projection step fo"*?,

urtt—yn u* —u"
- —_pl ==
At At

Gp™z + (I _73)<U_U>.

(59)

pn+%
Pt ot At
‘P represents the discretization of the projection operator (21). In the Append
(Subsection 9.3) we give a description/df

4.1. Time step. The time stepAt at timet" is determined by restrictions due to the CFL
condition, gravity, viscosity, and surface tension [11, 33],

3 p"Ar2 Ar 2Ar
At < min( JPLFPD ppz 3 PTATT AT ’
i 8y 14 pn U™ jun) + /|un2 + 4FNAr

where

G -1/2 Ln Mn
- pnn +——-—+F.
P P P
The last time step constraint is justified through the following simplified analysis. If w
consider the simplified equation,

-

u=F
u(th) = un
then the solution at, 1 is
U(th+1) = Up + AtF.
We require a “CFL” type condition,
U(ths1) At < Ar.
The resulting equation foit is

(Uun + AtF)At < Ar.
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5. INTERFACE THICKNESS

We shall give the interface a numerical thickness as was done in [33, 35]. Numerically,
substitute the smoothed Heaviside functlés(¢) for the sharp Heaviside functid (¢).
The smoothed Heaviside function is defined as

0 if p < —e€
Hep) ={ 3[1+ 2+ Lsin(rg/e)  if gl <e (60)
1 if p > e.

Assume thap represents the signed normal distance to the free surface. By giving the int
face a thickness of 2&e eliminate problems when solving (91) and also when discretizin
the surface tension term

k(P)VH ()
ple)

In our algorithm, the front will have a uniform thickness since the level set fungtion
always represents the signed distance to the free surface due to our CLSVOF advec
algorithm (see Section 3).

6. RESULTS

In this section we test the CLSVOF method on 3D and axisymmetric problems in whi
surface tension effects and changes in topology are present. We compare the CLS)
method with the LS method [32, 33], the VOF method [1, 22], and the boundary integt
method [32]. We shall show that our coupled level set volume-of-fluid method (CLSVOI
has comparable accuracy to the LS method for computing most surface tension driven flc
We also show that our CLSVOF method conserves mass to within a fraction of a perc
for all of our test cases.

6.1. Validation of the CLSVOF advection algorithmiWe consider two problems in this
section; the translation of a circle in a periodic domain and the rotation of a notched d
(Zalesak’s problem [36]). These problems are 2D problems and not axisymmetric problel

For the translation of a circle, we have & 4} periodic domain and a unit circle initialized
atthe center of the domain. The constant velocity field is givanbyl andv = 0. In Tables |
and Il, we display the error &t= 4 for grid resolutions ranging from 32 32 to 256x 256.

TABLE |
The Error E(t=1) after Translating a Unit Circle
One Unitin Time with CFL Number 1

AX CLSVOF ELVIRA
1/8 0.000523 0.000610
1/16 0.000128 0.000160
1/32 0.000031 0.000040

1/64 0.000008 0.000010
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TABLE Il
The Error E(t=1) after Translating a Unit Circle
One Unit in Time with CFL Number 1/ 32

AX CLSVOF ELVIRA
1/8 0.001110 0.001380
1/16 0.000327 0.000437
1/32 0.000097 0.000125
1/64 0.000029 0.000038

These errors are compared to the errors reported in [22] when using the ELVIRA volun
of-fluid interface reconstruction algorithm. We measured the error in the following way

1
E() = T Z/Q |H (¢e(t)) — H(gc(1))] dX, (61)
i

wheregg is the level set function representing the exact solution gnid the level set
function representing the computed solutibris the perimeter of the interface. The integral
in (61) is approximated by partitionir@;; into 128x 128 rectangles and then applying the
midpoint rule. The values afe and¢. at the midpoint of each rectangle are obtained via
bilinear interpolation.

In spite of the fact that we truncate the volume fractions which are farther Ahan
from the zero level set, the maximum mass fluctuation for the translating circle problem
1.0E — 9. The mass is measured as

V() =) FjArAz (62)
i
For the rotation of a notched disc, we have:a 1 periodic domain and a notched circle

of radius 0.15 units positioned at (0.5, 0.75). The width of the notch is 0.05 units and t
height of the notch is 0.25 units. The (stationary) velocity field is given by

T
b/
v= g, (x—05). (64)

In Table Il we display the erroE(628) for grid resolutions ranging from 160100 to
400x 400. These errors are compared to the errors reported in [22] when using the ELVIF
method for volume-of-fluid reconstruction. In Fig. 5 we display the interface profile for th
100x 100 computation.

TABLE IlI
The Error E(628.0) for Zalesak’s Test Problem

AX CLSVOF ELVIRA
1/16 0.00572 0.00567
1/32 0.00252 0.00262

1/64 0.00106 0.00121
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t=628 100x100

FIG. 5. Comparison with expected answer for Zalesak’s problem after one full revolution of notched dis
Grid resolution is 106 100.

6.2. Zero-gravity drop oscillation. We compute axisymmetric zero-gravity drop dy-
namics using the CLSVOF method and compare our results to those using the LS mett
According to the linearized results derived by Lamb [19, Sect. 275], the position of the dr
interface is

R(0,1) = a+ eP,(cos(®))sin(ant),

where

,  n-Hn+DH(n+2)
"= T@p(+ 1)+ pg)

and P, is the Legendre polynomial of order. 6 runs between 0 andr2where6 =0
corresponds to =0 andz = a. If viscosity is present, Lamb [19, Sect. 355] found that the
amplitude is proportional te~!/*, where

L= ap,
T m@n+H(n-1)

We compute the evolution of a drop with=1,9=0, s =1/200, 14 /g =100, y=

1/2, p=1, andp /py =100. The initial interface is given bR(4, =/2), with e =0.05
and n=2. With these parameters we firg =2.00 andr =38.3. The fluid domain is
Q={(r,2)|0<r <1.5and0< z< 1.5}and we compute on grid sizes ranging from332

to 128x 128. Symmetric boundary conditions are imposed-a0 andz = 0. The interfacial
thickness parameteris two grid cells. The results of our computations using the CLSVOF
method are compared to those of the LS method in Fig. 6 where we display the perturba
in the major axis on a 128 128 grid. The period is 3.17 and the expected linearized perio
ism. In Table IV, we display the relative error between succeeding resolutions for the ma
amplitude of the droplet. The major amplitude for a grid cell §iz&, (7 /2,t), is measured
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0.025 T T T T T T

0.02 "levelset" ----- |

0.015 - o

0.01 - ]

0.005

major amplitude

-0.015

-0.02

-0.025

-0.03 1 ! 1 1 1 !

time

FIG. 6. perturbation in major amplitude for zero gravity drop oscillatigns= 1/200, y=1/2, density ratio
100: 1, viscosity ratio 100: 1. Comparison of coupled LS method (CLSVOF) with the LS method.

by constructing a piecewise linear interpolant of the level set function along the horizon
axis and determining the position of the zero crossing of the piecewise linear interpola
Then we define thé?! error by

e = [ IRu(r/2.0) = Ra(r/2.0)1
0
and theL* error by
eIy = 0mtax [Rh(/2,1) — Ron(r/2,1)].

In order to compute the error numerically, we subdivide the time intervalrirgqually
spaced intervals whereis the number of time steps at the fine grid resolution specified b
h. The values on the coarse grid are interpolated in time and then compared with that
the fine grid.

TABLE IV
Convergence Study Using the CLSVOF Algorithm for Zero
Gravity Drop Oscillations ~ =12, p =1/200, p/pg=100,
pilpg =100, anda =2

Ar L, Lo period
3/64 N/A N/A 3.18
3/128 0.00029 0.00066 3.17

3/256 0.00012 0.00032 3.17
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t=0.008 t=0.024 t=0.031 t=0.035 £=0.037 t=0.042

FIG. 7. Falling 1-mm 2D water drop in air; density ratio 816: 1, viscosity ratio 64 : 1, number of grid cell
32x128.

6.3. Drop impacting solid wall. Here we test the CLSVOF method on the 2D falling
drop problem. The parameters are the same as that computed by Aleinov and Pucket
except that we compute with a density ratio of 816 : 1 as opposed to a density ratio of 10
Also, the viscosity ratio in our computations is 64:1 as opposed to constant viscosi
The radius of the falling drop is 0.1 cm. Other relevant parameterg ar680 cm/$,

o0 =73.29/%, ng=1.78E — 4 g/(cms),u; = 1.137E — 2 g/(cms),og = 0.001225 g/cr,
andp; = 1.0 g/cn?. The dimension of our domain is 0.25 by 1.0 cm. In Fig. 7 we show th
evolution of the drop as it hits the bottom of our domain (mesh size 328).

In Table V, we show the relative errors in the position of the interface and the veloci
(t =0.025) for grid resolutions ranging from 2664 to 64x 256. The error for the position
of the interface is measured similarly as in (61) except that we measure the relative e
between succeeding grid resolutions since we do not know the exact solution for t
problem,

Et =) / IH (@1 (1) — H(ge(t))] dx. (65)
ij Ui
Here,¢. is the level set function from a coarser computation@pds the level set function

TABLE V
Convergence Study at = 0.025 for Falling 2D Drop of Water in Air

AX E(0.025) Centerof mass  E,;1(0.025) Ey.max(0.025)
1cm/64 N/A 0.4372 N/A N/A
1cm/128 0.00202 0.4382 5.34 2.40
1cmy/256 0.00058 0.4379 2.76 1.72

Note.Radius of drop is 0.1 cm. The density ratio is 816 : 1 and the viscosity ratio
is 64 : 1. Results computed using the CLSVOF mettied?2.
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from the refined computation. The relative error for the velocity is measured by the equatic

EyL1(t) = Z \/(Uf,ij — Ucij)? + (viij — veij)2AXAY (66)
i

Eumax(t) = ng?x\/(uf.ij — Ucij)? + (viij — veij)? (67)

In Table V, we also display the position of the center of mass-a0.025.

6.4. Capillary instability. As mentioned previously, one motivation for our develop-
ment of the CLSVOF method stems from the modeling of micro-scale jetting devices (e.
see [2, 16]). Typically, when a fluid is ejected from such a device, a long tail of liquid form
behind a roughly spherical drop. Typically this tail undergoes a capillary instability whic
causes it to break up into droplets. The ability to accurately model surface tension is cr
cally important in order to accurately model the dynamics of this process on a micro-sce
In this section, we test the CLSVOF method on the classical Rayleigh capillary instabili
problem in which a slightly perturbed cylindrical column of liquid is driven to break up intc
droplets by surface tension (capillary) effects. In this test problem we use parameters |
are comparable to those found in problems involving micro-scale jetting devices.

We consider an initially perturbed cylindrical column of water in air. The shape of th
initial interface is

r(z) =ro+ € cos(2nz/1). (68)

We compute on an axisymmetric doma&n={(r,z) |0 <r <A/4 and 0< z< 1/2}. Sym-
metric boundary conditions are enforcedrat 0,z=0, andz=A/2. Outflow boundary
conditions are enforced at= 1 /4. The relevant dimensional parameters for this test prob
lem arero=6.52 micronse = 1.3 microns,» =60 microns,u; = 1.138x 102 g/(cms),
prg=177x10"*g/(cms),; =1.0 g/cnt, pg=0.001225 g/crh, andy = 72.8 dynes/cm.

In our computations we use the following dimensionless parameters: the Reynolds num
R=p LU/ =7.5, the Weber numbéW = p LU?/y =11, L =1 micron,U =8.53 m/s,
and the density and viscosity ratios are 816 and 64, respectively.

In Fig. 8, we display the results of our computations using the CLSVOF method for t
capillary jet as it breaks up. As a comparison, we have also displayed computations us
the LS approach (see Fig. 9). In Tables VI and VII, we measure the relative errors for t
interface and velocity field for grid resolutions ranging from>384 to 128x 256. The
relative error for the interface is measured by (65). The relative error for the velocity
measured by the equations

EuL1(t) = Z \/(Uf,ij — Ucij)? + (vgij — veij)?ri Ar AZ (69)
i

Eumax(t) = r‘ril?x\/(u fij — Ucij)? + (veij — veij)? (70)

As shown in the tables, we obtain about first order accuracy before and after pinch ¢
We suspect that we have only first order accuracy for this problem because the density
viscosity jump across the interface. We recomputed the capillary jet problem with constz
densityp = pg = 1.0 g/cn¥ and constant viscosify; = uq = 1.138x 102 g/(cms) and the
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TABLE VI
The Convergence of the Numerical Solution Obtained with
the CLSVOF Algorithm to the Rayleigh Capillary Instability
Problem with a Jump in Density and Viscosity i/ g = 64 and

pil pg =816 at Timet=80

Grid E(SO) Eu.L1(80) Eu.max(so)
16x 32 N/A N/A N/A
32x 64 36.88 268.7 0.064
64 x 128 21.13 167.5 0.050

128x 256 8.14 94.2 0.034

Note.This isbeforethe interface has broken up into droplets and the rate
of convergence is roughly first-order, except in the sup (i.e., max) norm
which does not appear to decrease with decreasig Ay.

t=111.3

£=102.7

t=80.0

-

t=51.1

FIG. 8. Capillary instability.p,, /0 = 816, w, /s = 64. Grid resolution is 64 128.
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TABLE VII
The Convergence of the Numerical Solution Obtained
with the CLSVOF Algorithm to the Rayleigh Capillary
Instability Problem with a Jump in Density and Viscosity
il g =64 andp/py =816 at Timet =120

Grid E(120) E,11(120) Eymax(120)
16x 32 N/A N/A N/A
32x 64 318.9 936.2 0.90
64x 128 182.9 599.3 1.32

128x 256 76.8 150.6 0.53

Note.This isafter the interface has broken up into droplets yet the
rate of convergence is still roughly first-order, except in the sup (i.e.,
max) norm.

t=111.3

t=102.7

£=80.0

-

t=51.1

FIG. 9. Capillary instability; LS methodp,, /p. =816, 1, /1. = 64. Grid resolution is 64 128.
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TABLE VI
The Convergence of the Numerical Solution Obtained with
the CLSVOF Algorithm to the Rayleigh Capillary Instability
Problem with No Jump in the Density or Viscosity at the Inter-
face/pg=1, p/pg=1at Timet=120

Grid E(120) E,11(120) Ey max(120)
16x 32 N/A N/A N/A
32x 64 52.76 68.55 0.1535
64x 128 11.23 16.17 0.0339

128x 256 2.82 4.24 0.0091

Note.Now the rate of convergence is roughly second-order, except for the
error in the sup (i.e., max) norm which now exhibits a first-order decrease.

relative errors for the recomputed problem are shown in Tables VIII and IX. The interfa
profiles for the constant density case are shown in Fig. 10.

6.5. Inviscid gas bubble.We consider the rise of an inviscid axisymmetric gas bubble
in liquid. Here, the dimensionless parameterskare 1 andWe= 200. The density ratio is
1:816. We compute on an axisymmetric dom@ig- {(r, 2) |0 <r <3 and 0<z<6}. The
interfacial thickness spreading parameteis 3 grid cells. In Fig. 11, we display results
computed using the CLSVOF method (thin lines) and compare them with the bound:
integral method [32] (thick lines). As a note, in the boundary integral method, the dens
in the gas is assumed zero and the domain of computation is assumed to have infinite e
whereas in the CLSVOF method, the density ratio is 1: 816 and we use far-field bound
condition; i.e., the pressure on the wallgpis= z/Fr. The grid resolution for the CLSVOF
results is 128« 256 whereas 240 points are used to discretize the interface for the bound
integral method.

In Table X we display the relative errors for the inviscid rising bubble problem when tt
grid is successively refined. The error is computeid-atl..3, when the jet is about ready to
break through the top of the bubble.

TABLE IX
The Convergence of the Numerical Solution Obtained with the
CLSVOF Algorithm to the Rayleigh Capillary Instability Problem
with No Jump in the Density or Viscosity at the Interfaceu/ g = 1,
pilpg=1at Timet=160

Grid E(lGO) EuALl(lGO) Eu,max(leo)
16x 32 N/A N/A N/A
32x 64 78.3 125.3 0.143
64 x 128 15.3 47.6 0.177

128x 256 3.0 12.9 0.090

Note. This is after interface undergoes a topological change and breaks up
into droplets, and the rate of convergence still appears to be second-order in
E(t) andE, 1 (160)butE, nax(t) No longer appears to decrease with decreasing
Ax=Ay.
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t=160.0

t=120.0

—

t=78.6

-

t=29.9

FIG. 10. Capillary instability.p,,/pa =1, i, /1ta = 1. Grid resolution is 64 128.

t=0 128x256 t=1.2 128x256 t=1.3 128x256

FIG.11. Spherical gas bubble in liquid. Density ratio 816 : 1, ¥200. Results computed using the volume-
of-fluid method (thin contour) are compared to results computed using the boundary integral method (th
contour).
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TABLE X
Convergence Study (CLSVOF) for Axisymmetric Inviscid
Rising Air Bubble in Water

AX E13) Eu1(1.3) Eumad(1.3)
32x 64 N/A N/A N/A
64 x 128 0.167 3.39 2.09

128x 256 0.049 2.06 2.34
256x 512 0.016 1.19 3.76

Note.The density ratio is 1: 816 = 1, We= 200.

In Fig. 12, we overlay results using the LS method (thick line) with those of the CLSVO
method (thin lines) att=1.3. Here, the results are almost identical.

We have also compared the amount of CPU time each method needs to update
location of the interface in this problem. In the LS computation it took about 3% of th
total CPU time to advect the level set functigrwhereas in the CLSVOF computation it
took approximately 10% of the total CPU time for the operator split advection. Howeve
in the LS computation the redistance procedure required 9% of the total CPU time wher
in the CLSVOF computation the redistance procedure only took 2.5% of the total CF
time. Therefore the overall cost to update the location of the interface is comparable.

6.6. Steady rising gas bubbleWe compute the steady rise of an axisymmetric gas
bubble rising in a viscous liquid. For this problem, the density ratio is 714:1 and tt
viscosity ratio is 6667 : 1. The relevant (dimensionless) parameters for this problem

t=1.3 128x256

FIG.12. Spherical gas bubble in liquid. Density ratio 816 : 1, ¥200. Results computed using the volume-
of-fluid method (thin contour) are compared to results computed using the LS method (thick contour).
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,,,,,,,

t=3.6 t=T7.2 t=10.0

FIG. 13. Rise of an initially spherical gas bubble in viscous liquid. Results computed using the CLSVO
method. Density ratio 714 : 1, viscosity ratio 6667 Re=9.7, We= 7.6, Fr = 0.78.

Fr=0.78,Re=9.7, w/ug = 6667, g/pg =714, andWe=7.6. These parameters corre-
spond to those used in bubble experiments by Hnat and Buckmaster [18] and used in st
bubble computations by Ryskin and Leal [26, 27]. Our computational domair B%Gand

we use a far-field boundary condition (pressure on the wafisisz/Fr). We discretize our
domain with 64x 256 grid cells. The interfacial thickness parametés two grid cells. In
Fig. 13, we show the results using the CLSVOF method. In Fig. 14, we plot the position

14 T T T T
"position”
1.00348"x+3.792564---

position

0 2 4 6 8 10
time
FIG. 14. Comparison of position of center of mass of rising viscous gas bubble in liquid to “best fit” straigh
line of the position. Expected slope as predicted by experiments is 1. Results computed using the CLSVOF met
Density ratio 714 : 1, viscosity ratio 6667 :Re=9.7, We= 7.6, Fr =0.78.
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£=0.039 t=0.312 t=0.725 t=1.04 t=1.39

FIG. 15. Evolution of 4-mm air bubble rising to an air/water interfage./;.q =100, p /o4 = 1000,
Fr=0.64,Re=474, andNe= 1.0. Results computed using CLSVOF method.

the center of mass versus time. Also plotted is the best fit line fot 2 10. The expected
slope as seen experimentally by Hnat and Buckmaster [18] is 1 and the computed slope
is 1.003. The maximum volume fluctuation of the gas bubble using the CLSVOF meth
is 0.0009%. The maximum volume fluctuation using the LS method with redistancing a
comparable resolution is about 20% (see [29]).

6.7. Gas bubble bursting at a free surfacédere, we compute the problem of a gas
bubble rising to the free surface of a liquid. When the bubble breaks through the surfa
large surface tension forces are produced which ultimately cause a jet of liquid to be ejec
This jet of liquid can subsequently break up into drops.

This problem was studied by Boulton-Stone and Blake [9] using the boundary integ
method and by Sussman and Smereka [32] using the LS method. In our CLSVOF cc
putation, we consider a spherical 4-mm air bubble released just below the surface.
domain (axisymmetric geometry)$={(x, y) |0 <r <3 and O< z< 12}and the mesh is
48 x 192. Forthese computations the density ratiois 1000 : 1 and the viscosity ratiois 100
The relevant (dimensionless) parameters for this problemRaxe 474, 1y /g =100,
o1/pg=1000,Fr=0.64, andWe= 1.0. The interfacial thickness parameterepresents
two grid cells. In Fig. 15 we show the evolution of the air bubble rising to the surface ¢
the air/water interface and then bursting due to stiff surface tension effects. The jet tt
breaks up due to capillary instabilities, emitting satellite drops. The maximum volun
fluctuation of the water for this problem is 0.007% even through the complex changes
topology.

7. THREE-DIMENSIONAL RESULTS

In Fig. 16, we show the computation of the rise of a fully three-dimensional invisci
air bubble in water. The density ratio is 816:1 and the dimensionless parameters u
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t=2.0

t=1.47

FIG. 16. Rise of inviscid air bubble in watewe= 200, effective fine grid 64 64 x 128.

for this problem ar&Ve= 200 andrFr = 1. We use the adaptive mesh refinement algorithmm
described in [29] when computing this problem. The dimensions of the domainafe4s

and the mesh size on the finest level of adaptivittis= Ay = Az=1/16. We use far-field
boundary conditions on all sides of the domain. In Fig. 17, we display a cross-section
the bubble at =1.24 andt =1.48 and compare these results with the results compute
using the axisymmetric version of the CLSVOF algorithm with the same fine grid resolutic
Ar =1/16. The maximum mass fluctuation of the gas bubble for this 3D computation
0.01%.

In Fig. 18, we display the interaction of two viscous gas bubbles in liquid. For thi
problem, we start off with two gas bubbles whose centers are offset in the “x” directic
by one bubble radii and offset in the “z” direction by 2.3 radii. The density ratio is 20:
and the viscosity ratio is 26 : 1. The dimensionless parameters we use for this problem
We= 50, Fr = 1, andRe= 50%/%. Except for the initial bubble offsets (not reported by [35])
these parameters correspond to Fig. 12 in [35]. We again use adaptive mesh refiner
when computing this problem. The dimensions of the domain ard 4 8 and the mesh
size on the finest level of adaptivity isx = Ay= Az=1/16. We use free-slip boundary
conditions on all sides of the domain. Our results agree qualitatively with those in [35].
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t=1.24 t=1.24

FIG. 17. Spherical gas bubble in liquid; density ratio 816:1; ¥W200. Left, cross section of three-
dimensional results (3 2, x-z plane), effective fine grid 64 64 x 128, dimensions of domain:»34 x 8. Right,
axisymmetric results, effective fine grid 32128, dimensions of domain:28.

8. CONCLUSIONS

We have developed a coupled level set/volume-of-fluid (CLSVOF) method for represe
ing the free-surface in two-phase flow problems. Our goal in designing this method w
to produce an algorithm that is more accurate then either the level set or volume-of-fli
method alone, especially when computing problems for which surface tension and char
in the topology of the free surface are dominant features of the flow.

We have tested the CLSVOF method on two-dimensional, axisymmetric, and fully thre
dimensional flows. We show that for all of these problems, the CLSVOF method produc
results that are as good as or better than those produced by our comparison methods
example, for the Rayleigh capillary problem (see Subsection 6.4) the CLSVOF meth
and LS method give identical results. On the other hand, for problems in which the int
face develops corners, or there is interfacial merging and pinching, the CLSVOF mett



330 SUSSMAN AND PUCKETT

£=2.7 t=2.9
t=1:2

FIG. 18. Non-axisymmetric merging of two viscous gas bubbles, effective fine grid ®4x 128.

t=2.0

outperforms the LS method, since the CLSVOF method conserves mass to a fraction «
percent while the LS method can lose as much as 20% of mass.

We also demonstrate that on problems such as translating and rotating circles and fal
droplets, the CLSVOF method produces results which are as good as or better than tt
produced with the best VOF methods (e.g., methods which employ piecewise linear int
face construction and second order advection algorithms.) Furthermore, for problems v
surface tension the CLSVOF method is generally superior to these VOF methods, since
computation of the curvature of the interface is easier as it is simply the Laplacian of t
level set functionp.

As mentioned in the Introduction, we were motivated to develop the CLSVOF method
order to improve our computations of micro-scale jetting devices. Based on the examf
presented in Section 6, we believe that we have achieved our goal. For example, we t
shown that the CLSVOF method conserves mass as well as or better than the LS met
while retaining the advantage of the simpler—and probably more accurate—method
computing surface tension that characterize level set methods. In particular, we have L
the CLSVOF method to compute the Rayleigh capillary instability with parameters typic
of a micro-scale jetting problem and shown that the numerical solution converges to fir
order, both before and after the cylindrical tube breaks up into drops (see Subsection 6

9. APPENDIX

9.1. Approximation of the advection termin this section, we describe the discretization
of the advection term,

[(U - V)U]™z. (71)
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In the process of describing the discretization of (71) we shall also describe how the c
cretely divergence free advective edge velocitig$, 5"/ anduf"};75"/%, are formed.

The discretization of (71) in this algorithm is very similar to the discretization used b
[3, 23]. Itis a predictor-corrector method based on the unsplit Godunov method introduc
by Colella [14].

In the predictor we extrapolate the velocityto the cell faces at™*1/2 using a second-
order Taylor series expansion in space and time. The time derilétisegeplaced using (7).

For face (+1/2, j) this gives

121 Ar Ul At At~ At~

Ulliar = U + (7 - ”2 Xij — — WUyij = = WUy

At/ GpYE oo M

+= (—7H'n + -+ F) (72)
Pij i Oij

extrapolated from celli, j), and

12.R Ar Ul At At - At
UMifay = Ul — (2 + % sl — - WUy = — Ui,
At/ GpTY2 oo ML
+<— DAL Dk S F) (73)
2 Pit1,j Pit+1,j Pit1,j

extrapolated from celli + 1, j).
Analogous formulae are used to predict values at each of the other faces of the cell

1/2,T/B
U B, (74)

The first derivative normal to the face,; for the example in (72) and (73), is evaluated
using a monotonicity-limited fourth-order slope approximation [13]. The limiting is done
on each component of the velocitytatindividually.

The transverse derivative term,

vUy,

is evaluated by first extrapolatitto the transverse faces from the cell centers on either sids
using normal derivatives only, and then choosing between these states using the upwin
procedure as described in detail by AlImgedral.[3] and Pucketet al.[23].

Once we have computeﬂill//zz”j” R andv{fﬁﬁg /B, we are in a position to construct the

normal face-centered edge velocities"™dt'/2,

ADV ADV
Uit12js Vij+1/2:

Givenul'/}/21 andu('/1/2", we use an upwinding procedure to choaB& /7,

u- ifut>0 and u-+uR>0
utfiz; =40  ifut<0uR=0 or ut+uR=0 (75)
uR  ifuR<0 and ut+uR<o.
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Here, we suppress the- 1/2, j spatial indices on left and right states and we also suppres
then+ 1/2 temporal index.

We follow a similar procedure as in (75) to construgf,{’,.

These normal velocities on cell faces&t'/?,

n+1/2  n+1/2
Uii12j> Vi j11/2> (76)

are second-order accurate but do not, in general, satisfy the discrete divergence-free cc
tion. In order to make these velocities divergence-free, we apply the MAC projection [¢
The equation

DMAC(lnGMAcpMAC) _ DMAC(UnJr%) (77)
Iy

is solved forpMAC, where

n+3 n+3 n+3 n+3
Mac net  Ti+12Uigap g —Tica2Uiogo) | Vijra2 — Vijl12
DMACYM S — +
ri Ar Az
andGMAC = —(DMASYT 5o that

MAC MAC

(GMAC MAC) _ (pi+1,i — R )
x P T Ar

with GQ,"AC defined analogously. The resulting linear system (77) is solved using a multigr
preconditioned conjugate gradient solver [34].
The face-based advection velocitieg'dt!/? are then defined by

ADV n+3 1 (GMAc pMAC) (78)
X

Uit12j = Uigipnj — o

i+3.]
i+1/2.j 2

with v/*PY; , defined analogously. The quantjtf),, ,, ; in (78) is defined by

[

Ohaj2j = Q(Pi'} +0%)

with p'; ., , defined analogously.
The next step, after constructing the advective velocities

ADV ADV
Uite/2,j0 Vi j4is

is to choose the appropriate st *11//22’1- given the left and right states in (72) through (73),

UM/2L /2R

i+1/2,j » Yi+1/2,j
We have
ut if UAPV >0
upjll/;j ={3U-+UR)  ifurV=0 (79)

UR if uAbY < 0.
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Here, we suppress the- 1/2, j spatial indices on left and right states and we also suppres
then+ 1/2 temporal index.
We follow a similar procedure as in (79) to construct

n+3

Ui,i+%'

The advection term can now be defined by

ADV ADV
n+l 1 FigaeUiyo; +ri-12UiZis
[(U-WU];* = AT > (Uita/2j = Vic2)
1 UiAjDJ\rll/z‘*‘ ”iA?Y1/2
— : Ui —Uii—1/2). 80
Az > (Uij+12— Uijj-172) (80)

9.2. Discretization of pressure gradient, viscous, and surface tension tetmshis
section we describe the finite difference approximation to the pressure gr&lgmiscous
term, £, and surface tension termt.

The discrete pressure gradient is defined by

Pirlj+d + Pilj-1 P 1,1 PR 1,1

2Ar
(Gpij = : (81)
! pl+%.|+%7pl+%.1—%+pl—%.1+%7p|—2,1—

2Az

N
N

whereG here denotes a discrete gradient operator defined at cell centers but operating
nodal data.
The first component of the viscous teWn 2u(¢)D is discretized as

Ly =

2”'\+%.j r|+1/2(U|+1,J — Ui j ) — 2ui —1/2,jFi —1/2(U|.J —Ui—1j )
ri Ar2

Hij—172(Ui,j — Ui j-1)

2

Hij+1/2(Uij+1 — Ui j) —
+ AZ
. Vit i1 — Vi1 o b Vit — Vi1 1) — i i1Vt | — Vi1 § A Vist 1 — Vi1
+ Mi,j+12(Vit1,j+1 — Vienj+1 HVi4L] — Ui l.jA)rAl;I,J 1/2(Vit1,) —Vi-1,j +Vi+1j-1 —Vi-1,j-1) _Hi,jui,j/riz

where
1 1
Mipij = E(M((f)i.j) +u(disrg) and oy = é(ﬂ(‘bi,j) + (i jr1). (82)

Remarks.

e The discretization described by (82) is a basic discretization; improved discretiz
tions for variable viscosity problems are described by Cowaual. [15].

e The second component of the viscous te(rﬂ)izj , is discretized in a similar manner
as the first component.

The surface tension terpre (¢) VH (¢) is discretized as
(M)ij = y(DN);j (GH™%); . (83)
Nit+1/2,j+1/2 is the discrete approximation of the level set norivigl/|V¢|,

(GP)it1/2,j+1/2 (84)

Niy1/2j+1/2 = ,
I (G2 1]



334 SUSSMAN AND PUCKETT

where

2Ar

Gt — Pt +dij+1— i
2Az

irrj+1t it —dijr1—¢ij
) . (85)

(GP)it12j+12 = (

Here we usés to refer to the discrete gradient operator defined on nodes but operating
cell-centered data.
We define the cell-based discrete divergence opefatoy

1 1 1 1
ri+1/2(ni+1/2,i—1/2 + ni+1/2.j+1/2) - Iri—1/2(”i—1/2,1—1/2 + ”i—l/z,j+1/2)
ri Ar

(DN)jj =

2 2 2 2
n ri+1/2(ni+l/2,j+1/2 - ”i+1/2,j71/2) + rifl/z(nifl/zj+l/2 - nifl/z,jfl/Z) (86)
riAz ’

The node-based Heaviside functib\rﬁ‘f{‘fz’jﬂ/z is defined as

d Git1j+ i+ dirij+1+dij+1
HiT%.éH% = ( 4 . (87)

9.3. Discretization of the projection.In this section we describe the discrete “approxi-
mate projection,’P, which is used in (59)P is an approximation to the projection operator
P described in (21). We remark that a detailed description of the approximate projectior
given by [4].

Given the discrete vector field

u*-u"
_— 88
N (88)
we decompose (88) into approximatelydivergence free part
Un+1 _ Un
_ 89
Al (89)
and the discrete gradient of a scadadivided by density
(Gajj
i (90)
where the discrete gradie@tin (90) is defined in (81).
The approximate projection is computed by solving
u*—u"
L,g=D— 91
a=o(2 %) (o)

for . The right hand side of (91) is an approximatiorMo V found in the right hand side
of (19). The discrete divergend2U is

Fige(Uigej + Uigrj+1) — iU + Ui j+1)
Fiy1/247

(DU, y 143 =

n Fip1(Vigejr1 — vignj) —iuij — Ui.j+1). 92)
liy1/2AZ
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The left hand side of (91}, ,q, is an approximation t& - %V p found in the left hand side
of (19). The discrete representationlofq is

(LﬂQ)i+§,j+%

fi

a7 (Qogiog + G-+ O-des ~ g eg)

fi
1 + et (ZQi—%,j+3/2+qi+%,j+3/2+Qi—§,j+% - 4qi+%,j+%)
Brita/2n + ﬁ(zqwa/z,ﬂ-% t0ir1j-1 tlitz2j+l _4qi+%,j+%)

Mit1

(20043724372 + Gitlj+32t Gits2j+l — 4qi+%,j+%)

Pi+1,j+1
(93)
The operatolt ,q (93) is derived from the variational form of (19),
1 ¥ _ 10
/*VQ(X) - Vi (x) dx :/T - Vi (x) dx, Vi (x), (94)
0

wheredx is the volume elememtdr d6. The finite element basis functioggx) represent
standard piecewise bilinear functions.
After (91) is solved, we fornU™! — U")/At,

Un+l_Un B U*_Un Gq

At At - pn+l/2 ’ (95)

and pn+1/2,
pn+1/2 — pn—1/2+ q.

Remarks.

e The discrete projection step presented here is slightly different from the continuc
analogue presented in Subsection 2.1 because we are solving thiféihencein pressure
q= p"t/2— p"~1/2instead of the actual pressup&**/2.

e The discrete projection operatfris called an approximate projection because the
discrete divergence of (89),

Un+l _ Un
G| I 9
i+1/2,j+1/2

is not identically zero. In order to see why (96) is not necessarily zero, we apply the discr
divergenceD to both sides of (95) in order to arrive at

UI’H—l _ Un * Un 1
LT o™ PO e L7 e
At i41/2,)41/2 At i+1/2,j+1/2 Y i+1/2,j+1/2
(97)

The discrete operatdd(1/o"t1/?)Gq is not the same ak,g which means (96) is not
necessarily zero.
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