A brief note on Hensel’s lemma: it’s statement and examples

In class we proved

Theorem (Hensel’s lemma). Let \(p \) be a prime, \(k \geq 2 \) an integer, and \(f(x) \) a polynomial with integer coefficients. Suppose \(r \) is an (integer) solution to the congruence \(f(x) \equiv 0 \pmod{p^{k-1}} \). Then there are three possible cases for the system of congruences

\[
\begin{cases}
 f(x) & \equiv 0 \pmod{p^k} \\
 x & \equiv r \pmod{p^{k-1}}.
\end{cases}
\]

(\(^*\))

The cases are:

(i) \(f'(r) \not\equiv 0 \pmod{p} \). In this case, there is a unique solution \(s \) modulo \(p^k \) to \((\ast)\). Moreover, we can find \(s \) by letting

\[
s = r + tp^{k-1}
\]

with \(0 \leq t < p \) such that

\[
t \equiv \frac{f'(r)f(r)}{p^{k-1}} \pmod{p}
\]

where \(f'(r) \) is any inverse of \(f'(r) \) modulo \(p \). Thus the solutions to \((\ast)\) in this case are all integers \(x \) such that

\[
x \equiv s \equiv r - f'(r)f(r) \pmod{49}.
\]

(ii) \(f'(r) \equiv 0 \pmod{p} \) and \(f(r) \equiv 0 \pmod{p^k} \). In this case, there are \(p \) many distinct solutions modulo \(p^k \) to \((\ast)\). In particular, the solutions are all of the form

\[
r + tp^{k-1}
\]

where \(t \) is any integer.

(iii) \(f'(r) \equiv 0 \pmod{p} \) and \(f(r) \not\equiv 0 \pmod{p^k} \). In this case, there are no solutions to \((\ast)\).

Let’s do an example showing how to apply Hensel’s lemma. Let us solve

\[
f(x) = x^2 + 4x + 2 \equiv 0 \pmod{49}.
\]

Since \(49 = 7^2 \), we first solve the congruence

\[
f(x) \equiv 0 \pmod{7},
\]

since any solution to \(f(x) \equiv 0 \pmod{49} \) must also be a solution to \(f(x) \equiv 0 \pmod{7} \).

By inspection, we find \(x \equiv 1 \pmod{7} \) and \(x \equiv 2 \pmod{7} \) are the solutions to the congruence \(f(x) \equiv 0 \pmod{7} \). We compute

\[
f'(x) = 2x + 4.
\]

In particular, \(f'(1) = 6 \not\equiv 0 \pmod{7} \) and \(f'(2) = 8 \equiv 1 \not\equiv 0 \pmod{7} \). For future reference, we now compute (using either the Euclidean algorithm, or guess and check) that an inverse of \(f'(1) \) modulo \(7 \) is

\[
\overline{f'(1)} = 6 = 6,
\]

and an inverse of \(f'(2) \) modulo \(7 \) is

\[
\overline{f'(2)} = 1.
\]

Since \(f'(1) \not\equiv 0 \pmod{7} \), case (i) of Hensel’s lemma applies. It tells us that there is a unique solution (mod 49) to \(f(x) \equiv 0 \pmod{49} \) that is congruent to 1 mod 7. In fact, the solution is

\[
x \equiv 1 - \overline{f'(1)}f(1) \equiv 1 - 6 \cdot 7 \equiv -41 \equiv 8 \pmod{49}.
\]
Just to be sure, we might double check: surely $8 \equiv 1 \mod 7$, and also

$$f(8) = 8^2 + 4 \cdot 8 + 2 = 64 + 32 + 2 = 98 \equiv 0 \mod 49.$$

So $x \equiv 8$ is one solution to $f(x) \equiv 0 \mod 49$.

By the same reasoning as before, since $f'(2) \not\equiv 0 \mod 7$, case (i) of Hensel’s lemma tells us there is a unique solution (mod 49) to $f(x) \equiv 0 \mod 49$ that is congruent to 2 mod 7, and this solution is

$$x \equiv 2 - \frac{f'(2)f(2)}{f'(2)} \equiv 2 - 1 \cdot 14 \equiv -12 \equiv 37 \mod 49.$$

Since any solution to $f(x) \equiv 0 \mod 49$ has to come from a solution to $f(x) \equiv 0 \mod 7$ in the manner of Hensel’s lemma, we conclude that the solutions are

$$x \equiv 8 \mod 49 \text{ and } x \equiv 37 \mod 49.$$