
Chapter 3

METRIC SPACES and SOME
BASIC TOPOLOGY

Thus far, our focus has been on studying, reviewing, and/or developing an under-
standing and ability to make use of properties ofU � U1. The next goal is to
generalize our work toUn and, eventually, to study functions onUn.

3.1 Euclidean n-space

The set Un is an extension of the concept of the Cartesian product of two sets that
was studied in MAT108. For completeness, we include the following

De¿nition 3.1.1 Let S and T be sets. The Cartesian product of S and T , denoted
by S � T , is


�p� q� : p + S F q + T � .

The Cartesian product of any ¿nite number of sets S1� S2� ���� SN , denoted by S1 �
S2 � � � � � SN , isj

�p1� p2� ���� pN � : �1 j�
b
� j + M F 1 n j n N �" p j + S j

ck
.

The object �p1� p2� ���� pN � is called an N -tuple.

Our primary interest is going to be the case where each set is the set of real
numbers.
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De¿nition 3.1.2 Real n-space, denoted Un, is the set all ordered n-tuples of real
numbers� i.e.,

Un � 
�x1� x2� ���� xn� : x1� x2� ���� xn + U� .

Thus,Un � U� U� � � � � U_ ^] `
n of them

, the Cartesian product ofU with itself n times.

Remark 3.1.3 From MAT108, recall the de¿nition of anordered pair:

�a� b� �
de f



a�� 
a� b��.

This de¿nition leads to the more familiar statement that�a� b� � �c� d� if and only
if a � b and c � d. It also follows from the de¿nition that, for sets A, B and
C, �A � B� � C is, in general, not equal to A� �B � C�� i.e., the Cartesian
product is not associative. Hence, some conventions are introduced in order to
give meaning to the extension of the binary operation to more that two sets. If we
de¿ne ordered triples in terms of ordered pairs by setting�a�b� c� � ��a� b�� c��
this would allow us to claim that�a� b� c� � �x� y� z� if and only if a� x, b � y,
and c� z. With this in mind, we interpret the Cartesian product of sets that are
themselves Cartesian products as “big” Cartesian products with each entry in the
tuple inheriting restrictions from the original sets. The point is to have helpful
descriptions of objects that are described in terms of n-tuple.

Addition and scalar multiplication on n-tuple is de¿ned by

�x1� x2� ���� xn�� �y1� y2� ���� yn� � �x1 � y1� x2 � y2� ���� xn � yn�

and

: �x1� x2� ���� xn� � �:x1� :x2� ���� :xn� , for : + U, respectively.

The geometric meaning of addition and scalar multiplication overU2 andU3 as
well as other properties of these vector spaces was the subject of extensive study in
vector calculus courses (MAT21D on this campus). For eachn, n o 2, it can be
shown thatUn is a real vector space.

De¿nition 3.1.4 A real vector space Y is a set of elements called vectors, with
given operations of vector addition � : Y � Y �� Y and scalar multiplication
� : U� Y �� Y that satisfy each of the following:
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1. �1v� �1w� �v�w + Y " v � w � w � v� commutativity

2. �1u� �1v� �1w� �u� v�w + Y " u � �v � w� � �u � v�� w� associativity

3. �20� �0 + Y F �1v� �v + Y " 0 � v � v � 0 � v�� zero vector

4. �1v� �v + Y " �2 ��v�� ���v� + Y F v � ��v� � ��v�� v � 0�� negatives

5. �1D� �1v� �1w� �D + U F v�w + Y " D � �v � w� � D � v � D � w� distribu-
tivity

6. �1D� �1< � �1w� �D� < + U F w + Y " D �< � w� � �D< � � w� associativity

7. �1D� �1< � �1w� �D� < + U F w + Y " �D� < � � w � D � w�< �w� distribu-
tivity

8. �1v� �v + Y " 1 � v � v � 1 � v� multiplicative identity

Given two vectors, x � �x1� x2� ���� xn� and y � �y1� y2� ���� yn� in Un, the inner
product (also known as the scalar product) is

x � y �
n;

j�1

x j yj �

and the Euclidean norm (or magnitude) of x � �x1� x2� ���� xn� + Un is given by

�x� � T
x � x �

YXXW n;
j�1

b
x j
c2

.

The vector space Un together with the inner product and Euclidean norm is called
Euclidean n-space. The following two theorems pull together the basic properties
that are satis¿ed by the Euclidean norm.

Theorem 3.1.5 Suppose that x� y� z + Un and : + U. Then

(a) �x� o 0�
(b) �x� � 0 % x � 0�

(c) �:x� � �:� �x�� and



76 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY

(d) �x � y� n �x� �y�.
Excursion 3.1.6 Use Schwarz’s Inequality to justify part (d). Forx � �x1� x2� ���� xn�
andy � �y1� y2� ���� yn� in Un,

�x � y�2 �

Remark 3.1.7 It often helps to take our observations back to the setting that is
“once removed” fromU1. For the caseU2, the statement given in part (d) of the
theorem relates to the dot product of two vectors: ForG � �����

�x1� x2� and@ � �����
�y1� y2�,

we have that

G � @ � x1y1 � x2y2

which, in vector calculus, was shown to be equivalent to�G ��@�cosA whereA is the
angle between the vectorsG and@.

Theorem 3.1.8 (The Triangular Inequalities) Suppose thatx � �x1� x2� ���� xN �,
y � �y1� y2� ���� yN � andz � �z1� z2� ���� zN � are elements ofUN . Then

(a) �x � y� n �x� � �y�� i.e.,�
N;

j�1

�x j � yj �
2

�1�2

n
�

N;
j�1

x2
j

�1�2

�
�

N;
j�1

y2
j

�1�2

where�� � ��1�2 denotes the positive square root and equality holds if and only
if either all the xj are zero or there is a nonnegative real numberD such that
yj � Dx j for each j,1 n j n N� and

(b) �x � z� n �x � y� � �y � z�� i.e.,�
N;

j�1

�x j � zj �
2

�1�2

n
�

N;
j�1

�x j � yj �
2

�1�2

�
�

N;
j�1

�yj � zj �
2

�1�2
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where �� � ��1�2 denotes the positive square root and equality holds if and only
if there is a real number r , with 0 n r n 1, such that y j � rx j � �1 � r�z j

for each j, 1 n j n N.

Remark 3.1.9 Again, it is useful to view the triangular inequalities on “familiar
ground.” Let G � �����

�x1� x2� and@ � �����
�y1� y2�. Then the inequalities given in The-

orem 3.1.8 correspond to the statements that were given for the complex numbers�
i.e., statements concerning the lengths of the vectors that form the triangles that are
associated with¿ndingG � @ andG � @.

Observe that, for C � 
�x� y� : x2 � y2 � 1� and I � 
x : a n x n b� where
a � b, the Cartesian product of the circle C with I , C � I , is the right circular
cylinder,

U � 
�x� y� z� : x2 � y2 � 1 F a n z n b��
and the Cartesian product of I with C, I � C, is the right circular cylinder,

V � 
�x� y� z� : a n x n b, y2 � z2 � 1��
If graphed on the same U3-coordinate system,U andV are different objects due to
different orientation� on the other hand,U andV have the same height and radius
which yield the same volume, surface area� etc. Consequently, distinguishingU
from V depends on perspective and reason for study. In the next section, we lay the
foundation for properties that placeU andV in the same category.

3.2 Metric Spaces

In the study ofU1 and functions onU1 the length of intervals and intervals to de-
scribe set properties are useful tools. Our starting point for describing properties
for sets inUn is with a formulation of a generalization of distance. It should come
as no surprise that the generalization leads us to multiple interpretations.

De¿nition 3.2.1 Let S be a set and suppose that d : S � S �� U1. Then d is said
to be a metric (distance function) on S if and only if it satis¿es the following three
properties:

(i) �1x� �1y�
d
�x� y� + S � S " d�x� y� o 0F �d�x� y� � 0 % x � y�

e
,
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(ii) �1x� �1y�
d
�x� y� + S � S " d�y� x� � d�x� y�

e
(symmetry), and

(iii) �1x� �1y� �1z�
d
x� y� z + S " d�x� z� n d�x� y�� d�y� z�

e
(triangle inequal-

ity).

De¿nition 3.2.2 A metric space consists of a pair�S�d�–a set, S, and a metric, d,
on S.

Remark 3.2.3 There are three commonly used (studied) metrics for the setUN .
For x � �x1� x2� ���� xN � andy � �y1� y2� ���� yN �, we have:

� �UN �d� where d�x� y� �
T3N

j�1

b
x j � yj

c2
, the Euclidean metric,

� �UN � D� where D�x� y� � 3N
j�1 �x j � yj �, and

� �UN �d*� where d*�x� y� � max
1n jnN

nnx j � yj
nn.

Proving that d, D, and d* are metrics is left as an exercise.

Excursion 3.2.4 Graph each of the following on Cartesian coordinate systems

1. A� 
x + U2 : d�0� x� n 1�

2. B � 
x + U2 : D�0� x� n 1�
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3. C � 
x + U2 : d*�0� x� n 1�

***For (1), you should have gotten the closed circle with center at origin and radius
one� for (2), your work should have led you to a “diamond” having vertices at�1�0�,
�0� 1�, ��1� 0�, and�0��1�� the closed shape for (3) is the square with vertices
�1��1�, �1� 1�, ��1� 1�, and��1��1�.***

Though we haven’t de¿ned continuous and integrable functions yet as a part of
this course, we offer the following observation to make the point that metric spaces
can be over different objects. LetF be the set of all functions that are continuous
real valued functions on the intervalI � �x : 0 � x n 1�. Then there are two
natural metrics to consider on the setF� namely, for f andg in F we have

(1) �F� d� whered� f� g� � max
0nxn1

� f �x�� g�x��, and

(2) �F� d� whered� f� g� � 5 1
0 � f �x�� g�x��dx �

Because metrics on the same set can be distinctly different, we would like to
distinguish those that are related to each other in terms of being able to “travel
between” information given by them. With this in mind, we introduce the notion of
equivalent metrics.

De¿nition 3.2.5 Given a set S and two metric spaces �S� d1� and �S� d2�, d1 and
d2 are said to be equivalent metrics if and only if there are positive constants c and
C such that cd1�x� y� n d2�x� y� n Cd1�x� y� for all x� y in S.

Excursion 3.2.6 As the result of one of the Exercises in Problem Set C, you will
know that the metrics d and d* on U2 satisfy d*�x� y� n d�x� y� n T

2 � d*�x� y�.

1. Let A � 
x + U2 : d�0� x� n 1�. Draw a ¿gure showing the boundary of
A and then show the largest circumscribed square that is symmetric about
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the origin and the square, symmetric about the origin, that circumscribes the
boundary of A.

2. Let C � 
x + U2 : d*�0� x� n 1�. Draw a ¿gure showing the boundary of C
and then show the largest circumscribed circle that is centered at the origin
and the circle, centered at the origin, that circumscribes the boundary of C.

***For (1), your outer square should have corresponded toQ
x � �x1x2� + U2 : d*�0� x� �

T
2
R
� the outer circle that you showed for part of

(2) should have corresponded to
Q

x � �x1x2� + U2 : d�0� x� � T
2
R

.***

Excursion 3.2.7 Let E � 
�cosA� sinA� : 0 n A � 2H� and de¿ne d`�p1� p2� �
�A1 � A2� where p1 � �cosA1� sinA1� and p2 � �cosA2� sinA2�. Show that �E� d`� is
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a metric space.

The author of our textbook refers to an open interval �a� b� � 
x + U : a � x � b�
as a segment which allows the term interval to be reserved for a closed interval
[a� b] � 
x + U : a n x n b�� half-open intervals are then in the form of [a� b� or
�a� b].

De¿nition 3.2.8 Given real numbers a1� a2� ���� an and b1� b2� ���� bn such that a j �
b j for j � 1� 2� ���� n,j

�x1� x2� ���� xn� + Un : �1 j�
b
1 n j n n " a j n x j n b j

ck
is called an n-cell.

Remark 3.2.9 With this terminology, a 1-cell is an interval and a2-cell is a rect-
angle.

De¿nition 3.2.10 If x + Un and r is a positive real number, then theopen ball with
centerx and radius r is given by

B �x� r � � j
y + Un : �x � y� � r

k
�
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and the closed ball with center x and radius r is given by

B �x� r� � j
y + Un : �x � y� n r

k
.

De¿nition 3.2.11 A subset E of Un is convex if and only if

�1x� �1y� �1D� dx� y + E F 0 � D � 1 " Dx � �1 � D� y + E
e

Example 3.2.12 For x + Un and r a positive real number, suppose that y and z are
in B �x� r�. If D real is such that 0 � D � 1, then

�Dy � �1 � D� z � x� � �D �y � x�� �1 � D� �z � x��
n D �y � x� � �1 � D� �z � x�

� Dr � �1 � D� r � r .

Hence, Dy � �1 � D� z +B �x� r�. Since y and z were arbitrary,

�1y� �1z� �1D� dy� z + B �x� r� F 0 � D � 1 " Dy � �1 � D� z + B �x� r�
e
�

that is, B �x� r� is a convex subset of Un.

3.3 Point Set Topology on Metric Spaces

Once we have a distance function on a set, we can talk about the proximity of points.
The idea of a segment (interval) in U1 is replaced by the concept of a neighborhood
(closed neighborhood). We have the following

De¿nition 3.3.1 Let p0 be an element of a metric space S whose metric is denoted
by d and r be any positive real number. The neighborhood of the point p0 with
radius r is denoted by N�p0� r� or Nr �p0� and is given by

Nr �p0� � 
p + S : d�p� p0� � r��
The closed neighborhood with center p0 and radius r is denoted by Nr �p0� and

is given by

Nr �p0� � 
p + S : d�p� p0� n r��
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Remark 3.3.2 The sets A, B and C de¿ned in Excursion 3.2.4 are examples of
closed neighborhoods in U2 that are centered at �0� 0� with unit radius.

What does the unit neighborhood look like for �U2, d� where

d�x� y� �
��
�

0� if x � y

1� if x /� y
is known as the discrete metric?

We want to use the concept of neighborhood to describe the nature of points
that are included in or excluded from sets in relationship to other points that are in
the metric space.

De¿nition 3.3.3 Let A be a set in a metric space �S� d�.

1. Suppose that p0 is an element of A. We say the p0 is an isolated point of A if
and only if

�2Nr�p0��
d
Nr �p0� D A � 
p0�

e

2. A point p0 is a limit point of the set A if and only if

�1Nr �p0�� �2p�
d

p /� p0 F p + A D Nr �p0�
e

.

(N.B. A limit point need not be in the set for which it is a limit point.)

3. The set A is said to be closed if and only if A contains all of its limit points.

4. A point p is an interior point of A if and only ifb2Nr p�p�
c d

Nrp�p� t A
e
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5. The set A is open if and only if

�1p�
b

p + A " b2Nrp�p�
c d

Nr p�p� t A
ec
�

i.e., every point in A is an interior point of A.

Example 3.3.4 For each of the following subsets of U2 use the space that is pro-
vided to justify the claims that are made for the given set.

(a) 
�x1� x2� + U2 : x1� x2 + M F �x1 � x2� � 5� is closed because is contains all
none of its limit points.

(b) 
�x1� x2� + U2 : 4 � x2
1 F x2 + M� is neither open not closed.
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(c) 
�x1� x2� + U2 : x2  �x1�� is open.

Our next result relates neighborhoods to the “open” and “closed” adjectives.

Theorem 3.3.5 (a) Every neighborhood is an open set.
(b) Every closed neighborhood is a closed set.

Use this space to draw some helpful pictures related to proving the results.

Proof. (a) Let Nr �p0� be a neighborhood. Suppose thatq + Nr�p0� and set

r1 � d �p0� q�. Let I � r � r1

4
. If x + NI �q�, thend �x� q� �

r � r1

4
and the

triangular inequality yields that

d �p0� x� n d �p0� q�� d �q� x� � r1 � r � r1

4
� 3r1 � r

4
� r .

Hence,x + Nr �p0�. Sincex was arbitrary, we conclude that

�1x�
b
x + NI �q�" x + Nr �p0�

c
�

i.e., NI �q� t Nr �p0�.Therefore,q is an interior point ofNr �p0�. Becauseq was
arbitrary, we have that each element ofNr �p0� is an interior point. Thus,Nr �p0� is
open, as claimed.
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Excursion 3.3.6 Fill in what is missing in order to complete the following proof of
(b)

Let Nr�p0� be a closed neighborhood and suppose that q is a limit point of

Nr �p0�. Then, for each rn � 1

n
, n + M, there exists pn /� q such that pn + Nr �p0�

and d �q� pn� �
1

n
. Because pn + Nr �p0�, d �p0� pn� n r for each n + M. Hence,

by the triangular inequality

d �q� p0� n d �q� pn��
�1�

n
�2�

.

Since q and p0 are ¿xed and
1

n
goes to 0 as n goes to in¿nity, it follows that

d �q� p0� n r� that is, q +
�3�

. Finally, q and arbitrary limit point of

Nr �p0� leads to the conclusion that Nr �p0� contains
�4�

.

Therefore, Nr�p0� is closed.

***Acceptable responses are: (1) d �pn� p0�, (2)
1

n
� r , (3) Nr�p0�, (4) all of its

limit points.***

The de¿nition of limit point leads us directly to the conclusion that only in¿nite
subsets of metric spaces will have limit points.

Theorem 3.3.7 Suppose that �X� d� is a metric space and A t X. If p is a limit
point of A, then every neighborhood of p contains in¿nitely many points of A.

Space for scratch work.

Proof. For a metric space �X� d� and A t X , suppose that p + X is such
that there exists a neighborhood of p, N �p�, with the property that N �p� D A
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is a ¿nite set. If N �p� D A � 3 or , N �p� D A � 
p�, then p is not a limit
point. Otherwise, N �p� D A being ¿nite implies that it can be realized as a ¿nite
sequence, say q1� q2� � q3� ���� qn for some ¿xed n + M. For each j , 1 n j n n,
let r j � d

b
x� q j

c
. Set I � min

1n jnn
q j /�p

d
b
x� q j

c
. If p + 
q1� q2� � q3� ���� qn�, then

NI �p� D A � 
p�� otherwise NI �p� D A � 3. In either case, we conclude that p
is not a limit point of A.

We have shown that if p + X has a neighborhood, N �p�, with the property
that N �p� D A is a ¿nite set, then p is not a limit point of A t X . From the
contrapositive tautology it follows immediately that if p is a limit point of A t X ,
then every neighborhood of p contains in¿nitely many points of A.

Corollary 3.3.8 Any ¿nite subset of a metric space has no limit point.

From the Corollary, we note that every ¿nite subset of a metric space is closed
because it contains all none of its limit points.

3.3.1 Complements and Families of Subsets of Metric Spaces

Given a family of subsets of a metric space, it is natural to wonder about whether or
not the properties of being open or closed are passed on to the union or intersection.
We have already seen that these properties are not necessarily transmitted when we
look as families of subsets of U.

Example 3.3.9 Let D � 
An : n + M� where An �
v�3n � 2

n
�

2n2 � n

n2

w
. Note

that A1 � [�1� 1], A2 �
v
�2�

3

2

w
, and A3 �

v
�3 � 2

3
� 2 � 1

3

w
. More careful

inspection reveals that
�3n � 2

n
� �3�2

n
is strictly decreasing to�3 and n � *,

2n2 � n

n2
� 2 � 1

n
is strictly increasing to 2 as n � *, and A1 � [�1� 1] t An

for each n + M. It follows that
6
n+M

An � ��3� 2� and
7
n+M

An � A1 � [�1� 1].

The example tells us that we may need some special conditions in order to claim
preservation of being open or closed when taking unions and/or intersections over
families of sets.
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The other set operation that is commonly studied is complement or relative com-
plement. We know that the complement of a segment inU1 is closed. This moti-
vates us to consider complements of subsets of metric spaces in general. Recall the
following

De¿nition 3.3.10 Suppose that A and B are subsets of a set S. Then the set differ-
ence(or relative complement) A � B, read “ A not B”, is given by

A� B � 
p + S : p + AF p �+ B��
thecomplement of A, denoted by Ac, is S� A.

Excursion 3.3.11 Let A� 
�x1� x2� + U2 : x2
1 � x2

2 n 1� and

B � 
�x1� x2� + U2 : �x1 � 1� n 1 F �x2 � 1� n 1��
On separate copies of Cartesian coordinate systems, show the sets A� B and
Ac � U2 � A.

The following identities, which were proved in MAT108, are helpful when we
are looking at complements of unions and intersections. Namely, we have

Theorem 3.3.12 (deMorgan’s Laws) Suppose that S is any space and I is a fam-
ily of subsets of S. Then �>

A+5
A

�c

�
?
A+5

Ac

and �?
A+5

�A�

�c

�
>
A+5

Ac�
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The following theorem pulls together basic statement concerning how unions,
intersections and complements effect the properties of being open or closed. Be-
cause their proofs are straightforward applications of the de¿nitions, most are left
as exercises.

Theorem 3.3.13 Let S be a metric space.

1. The union of any family I of open subsets of S is open.

2. If A1� A2� ���� Am is a ¿nite family of open subsets of S, then the intersection7m
j�1 A j is open.

3. For any subset A of S, A is closed if and only if Ac is open.

4. The intersection of any family I of closed subsets of S is closed.

5. If A1� A2� ���� Am is a ¿nite family of closed subsets of S, then the union6m
j�1 A j is closed.

6. The space S is both open and closed.

7. The null set is both open and closed.

Proof. (of #2) Suppose thatA1� A2� ���� Am is a ¿nite family of open subsets
of S, andx + 7m

j�1 A j . From x + 7m
j�1 A j , it follows that x + A j for each

j , 1 n j n m. Since eachA j is open, for eachj , 1 n j n m, there exists
r j  0 such thatNr j �x� t A j . Let I � min

1n jnm
r j . BecauseNI �x� t A j for

each j , 1 n j n m, we conclude thatNI �x� t 7m
j�1 A j . Hence,x is an interior

point of
7m

j�1 A j . Finally, sincex was arbitrary, we can claim that each element of7m
j�1 A j is an interior point. Therefore,

7m
j�1 A j is open.

(or #3) Suppose thatA t S is closed andx + Ac. Thenx �+ A and, because
A contains all of its limit points,x is not a limit point of A. Hence,x �+ A F
� �1Nr �x��

d
A D �Nr �x�� 
x�� /� 3e is true. It follows thatx �+ A and there exists

aI  0 such thatA D b
NI�x�� 
x�c � 3. Thus,A D NI�x� � 3 and we conclude

that NI�x� t Ac� i.e., x is an interior point ofAc. Sincex was arbitrary, we have
that each element ofAc is an interior point. Therefore,Ac is open.

To prove the converse, suppose thatA t S is such thatAc is open. If p
is a limit point of A, then�1Nr �p��

d
A D �Nr�p�� 
p�� /� 3e. But, for anyI  0,

AD b
NI�p�� 
p�c /� 3 implies that

b
NI�p�� 
p�c is not contained inAc. Hence,



90 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY

p is not an interior point of Ac and we conclude that p �+ Ac. Therefore, p + A.
Since p was arbitrary, we have that A contains all of its limit points which yields
that A is closed.

Remark 3.3.14 Take the time to look back at the proof of (#2) to make sure that
you where that fact that the intersection was over a ¿nite family of open subsets of
S was critical to the proof.

Given a subset of a metric space that is neither open nor closed we’d like to have
a way of describing the process of “extracting an open subset” or “building up to a
closed subset.” The following terminology will allow us to classify elements of a
metric spaceS in terms of their relationship to a subsetA t S.

De¿nition 3.3.15 Let A be a subset of a metric space S. Then

1. A point p + S is an exterior point of A if and only if

�2Nr �p��
d
Nr �p� t Ace ,

where Ac � S � A.

2. The interior of A, denoted by Int �A� or A�0�, is the set of all interior points
of A.

3. The exterior of A, denoted by Ext�A�, is the set of all exterior points of A.

4. The derived set of A, denoted by A), is the set of all limit points of A.

5. The closure of A, denoted by A, is the union of A and its derived set� i.e.,
A � A C A).

6. The boundary of A, denoted by "A, is the difference between the closure of
A and the interior of A� i.e., "A � A � A�0�.

Remark 3.3.16 Note that, if A is a subset of a metric space S, then Ext�A� �
Int �Ac� and

x + "A % �1Nr �x��
d
Nr �x� D A /� 3 F Nr �x� D Ac /� 3e .

The proof of these statements are left as exercises.
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Excursion 3.3.17 For A C B where

A � 
�x1� x2� + U2 : x2
1 � x2

2 � 1�
and

B � 
�x1� x2� + U2 : �x1 � 1� n 1 F �x2 � 1� n 1��
1. Sketch a graph of A C B.

2. On separate representations for U2, show each of the following

Int �A C B� , Ext �A C B� , �A C B�) , and �A C B�.

***Hopefully, your graph of A C B consisted of the union of the open disc that
is centered at the origin and has radius one with the closed square having vertices
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�0� 0�, �1� 0�, �1� 1� and �0� 1�� the disc and square overlap in the ¿rst quadrant and
the set is not open and not closed. Your sketch of Int �A C B� should have shown
the disc and square without the boundaries (�i.e., with the outline boundaries as not
solid curves), while your sketch of Ext �A C B� should have shown everything that
is outside the combined disc and square–also with the outlining boundary as not
solid curves. Finally, becauseA C B has no isolated points,�A C B�) and�A C B�
are shown as the same sets–looking like Int�A C B� with the outlining boundary
now shown as solid curves.***

The following theorem relates the properties of being open or closed to the
concepts described in De¿nition 3.3.15.

Theorem 3.3.18 Let A be any subset of a metric space S.

(a) The derived set of A, A), is a closed set.

(b) The closure of A, A, is a closed set.

(c) Then A � A if and only if A is closed.

(d) The boundary of A, "A, is a closed set.

(e) The interior of A, Int �A�, is an open set.

(f) If A t B and B is closed, then A t B�

(g) If B t A and B is open, B t Int�A��

(h) Any point (element) of S is a closed set.

The proof of part(a) is problem #6 in WRp43, while (e) and (g) are parts of
problem #9 in WRp43.

Excursion 3.3.19 Fill in what is missing to complete the following proofs of parts
(b), (c), and (f).

Part (b): In view of Theorem 3.3.13(#3), it suf¿ces to show that
�1�

.

Suppose that x + S is such that x + b
A
cc

. Because A � ACA), it follows that x �+ A
and

�2�

. From the latter, there exists a neighborhood of x, N �x�, such
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that

�
�3�

�
D A � 3� while the former yields that

�
�4�

�
D

A � 3. Hence, N �x� t Ac. Suppose that y + N �x�. Since
�5�

, there

exists a neighborhood N` �y� such that N` �y� t N �x�. From the transitivity of
subset,

�6�

from which we conclude that y is not a limit point of A� i.e.,

y + b
A)cc

. Because y was arbitrary,

�1y�

�
y + N �x�"

�7�

�
�

i.e.,
�8�

. Combining our containments yields that N �x� t
Ac and

�8�

. Hence,

N �x� t Ac D b
A)cc �

�
�9�

�c

.

Since x was arbitrary, we have shown that

�10�

.

Therefore,
b
A
cc

is open.

Part (c): From part (b), if A � A, then
�11�

.

Conversely, if
�12�

, then A) t A. Hence, A C A) �
�13�

� that is,

A � A.

Part (f): Suppose that A t B� B is closed, and x + A. Then x + A or

�14�

. If x + A, then x + B� if x + A), then for every neighborhood

of x, N �x�, there exists * + A such that * /� x and
�15�

. But then
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* + B and �N �x�� 
x�� D B /� 3. Since N �x� was arbitrary, we conclude that

�16�

. Because B is closed,
�17�

. Combining the conclusions

and noting that x + A was arbitrary, we have that

�1x�

�
�18�

�
.

Thus, A t B�

***Acceptable responses are (1) the complement of A closure is open, (2) x �+ A),
(3) N �x� � 
x�, (4) N �x�, (5) N �x� is open, (6) N` �y� t Ac, (7) y + b

A)cc
, (8)

N �x� t b
A)cc� (9) ACA), and (10) �1x�

r
x + b

A
cc " �2Nr �x��

r
Nr �x� t

b
A
cc
ss

�

(11) A is closed, (12) A is closed, (13) A� (14) x is a limit point of A (or x + A))�
(15) * + N �x�� (16) x is a limit point of B (or x + B))� (17) x + B, (18)
x + A " x + B.***

De¿nition 3.3.20 For a metric space �X� d� and E t X, the set E is dense in X if
and only if

�1x�
b
x + X " x + E G x + E )c .

Remark 3.3.21 Note that for a metric space �X� d�, E t X implies that E t X
because the space X is closed. On the other hand, if E is dense in X, then X t
E C E ) � E. Consequently, we see that E is dense in a metric space X if and only
if E � X.

Example 3.3.22 We have that the sets of rationals and irrationals are dense in Eu-
clidean1-space. This was shown in the two Corollaries the Archimedean Principle
for Real Numbers that were appropriately named “Density of the Rational Num-
bers” and “Density of the Irrational Numbers.”

De¿nition 3.3.23 For a metric space�X� d� and E t X, the set E isbounded if
and only if

�2M� �2q�
d
M + U� F q + X F �E t NM �q��

e
.
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Excursion 3.3.24 Justify that each of the following sets is bounded in Euclidean
space.

1. A � j
�x1� x2� + U2 : �1 n x1 � 2 F �x2 � 3� � 1

k

2. B � j
�x1� x2� x3� + U3 : x1 o 0 F x2 o 0 F x3 o 0 F 2x1 � x2 � 4x3 � 2

k

Remark 3.3.25 Note that, for �U2, d�, where

d�x� y� �
��
�

0� if x � y

1� if x /� y
,

the space U2 is bounded. This example stresses that classi¿cation of a set as
bounded is tied to the metric involved and may allow for a set to be bounded

The de¿nitions of least upper bound and greatest lower bound directly lead to
the observation that they are limit points for bounded sets of real numbers.

Theorem 3.3.26 Let E be a nonempty set of real numbers that is bounded, : �
sup �E�, and ; � inf �E�. Then : + E and ; + E.

Space for illustration.

Proof. It suf¿ces to show the result for least upper bounds. Let E be a nonempty
set of real numbers that is bounded above and : � sup �E�. If : + E , then : + E �
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ECE ). For : �+ E , suppose that h is a positive real number. Because :�h � : and
: � sup �E�, there exists x + E such that : � h � x � :. Since h was arbitrary,

�1h� �h  0 " �2x� �: � h � x � :�� �

i.e., : is a limit point for E . Therefore, : + E as needed.

Remark 3.3.27 In view of the theorem we note that any closed nonempty set of
real numbers that is bounded above contains its least upper bound and any closed
nonempty set of real numbers that is bounded below contains its greatest lower
bound.

3.3.2 Open Relative to Subsets of Metric Spaces

Given a metric space �X� d�, for any subset Y of X , d �Y is a metric on Y . For
example, given the Euclidean metric de on U2 we have that de �U�
0� corresponds
to the (absolute value) Euclidean metric, d � �x � y�, on the reals. It is natural to
ask about how properties studied in the (parent) metric space transfer to the subset.

De¿nition 3.3.28 Given a metric space �X� d� and Y t X. A subset E of Y is
open relative to Y if and only if

�1p�
d
p + E " �2r�

b
r  0 F �1q�

d
q + Y F d �p� q� � r " q + E

ece
which is equivalent to

�1p�
d

p + E " �2r� �r  0 F Y D Nr �p� t E�
e

.

Example 3.3.29 For Euclidean 2-space,
b
U2� d

c
, consider the subsets

Y �
Q
�x1� x2� + U2 : x1 o 3

R
and Z�

Q
�x1� x2� + U2 : x1 � 0 F 2 n x2 � 5

R
.

(a) The set X1 � j
�x1� x2� + U2 : 3 n x1 � 5 F 1 � x2 � 4

kC
�3� 1� � �3� 4�� is
not open relative to Y , while X2 � j

�x1� x2� + U2 : 3 n x1 � 5 F 1 � x2 � 4
k

is open relative to Y .

(b) The half open interval
j
�x1� x2� + U2 : x1 � 0 F 2 n x2 � 3

k
is open rela-

tive to Z.
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From the example we see that a subset of a metric space can be open relative to
another subset though it is not open in the whole metric space. On the other hand,
the following theorem gives us a characterization of open relative to subsets of a
metric space in terms of sets that are open in the metric space.

Theorem 3.3.30 Suppose that �X� d� is a metric space and Y t X. A subset E of
Y is open relative to Y if and only if there exists an open subset G of X such that
E � Y D G.

Space for scratch work.

Proof. Suppose that �X� d� is a metric space, Y t X , and E t Y .
If E is open relative to Y , then corresponding to each p + E there exists a

neighborhood of p, Nrp �p�, such that YDNrp �p� t E . Let D � j
Nrp �p� : p + E

k
.

By Theorems 3.3.5(a) and 3.3.13(#1), G �
de f

CD is an open subset of X . Since

p + Nrp �p� for each p + E , we have that E t G which, with E t Y , implies that
E t G D Y . On the other hand, the neighborhoods Nr p �p� were chosen such that
Y D Nrp �p� t E � hence,

>
p+E

b
Y D Nrp �p�

c � Y D
�>

p+E

Nr p �p�

�
� Y D G t E .

Therefore, E � Y D G, as needed.
Now, suppose that G is an open subset of X such that E � Y D G and

p + E . Then p + G and G open in X yields the existence of a neighborhood of p,
N �p�, such that N �p� t G. It follows that N �p�D Y t G D Y � E . Since p was
arbitrary, we have that

�1p�
d

p + E " �2N �p��
d
N �p� D Y t E

ee
�

i.e., E is open relative to Y .
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3.3.3 Compact Sets

In metric spaces, many of the properties that we study are described in terms of
neighborhoods. The next set characteristic will allow us to extract ¿nite collections
of neighborhoods which can lead to bounds that are useful in proving other results
about subsets of metric spaces or functions on metric spaces.

De¿nition 3.3.31 Given a metric space �X� d� and A t X, the family 
G: : : + ��
of subsets of X is an open cover for A if and only if G: is open for each : + � and
A t 6

:+�
G:.

De¿nition 3.3.32 A subset K of a metric space �X� d� is compact if and only if ev-
ery open cover of K has a¿nite subcover� i.e., given any open cover
G: : : + ��
of K , there exists an n+ M such that

j
G:k : k + M F 1 n k n n

k
is a cover for K .

We have just seen that a subset of a metric space can be open relative to another
subset without being open in the whole metric space. Our ¿rst result on compact
sets is tells us that the situation is different when we look at compactness relative to
subsets.

Theorem 3.3.33 For a metric space�X� d�, suppose that Kt Y t X. Then K is
compact relative to X if and only if K is compact relative to Y .

Excursion 3.3.34 Fill in what is missing to complete the following proof of Theo-
rem 3.3.33.

Space for scratch work.

Proof. Let �X� d� be a metric space and Kt Y t X.
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Suppose that K is compact relative to X and 
U: : : + ��
is a family of sets such that, for each :, U: is open relative to Y
such that

K t
>
:+�

U:.

By Theorem 3.3.30, corresponding to each : + �, there exists a
set G: such that G: is open relative to X and

�1�

.

Since K t Y and

K t 6
:+�

U: � 6
:+�

�
�1�

�
� Y D 6

:+�
G:, if

follows that

K t
>
:+�

G:.

Because K is compact relative to X, there exists a ¿nite number
of elements of �, :1� :2� ���� :n, such that

�2�

.

Now K t Y and K t
n6

j�1
G: j yields that

K t Y D
n>

j�1

G: j �
�3�

�
�4�

.

Since 
U: : : + �� was arbitrary, we have shown that every
open relative to Y cover of K has a ¿nite subcover. Therefore,

�5�

.

Conversely, suppose that K is compact relative to Y and
that 
W: : : + �� is a family of sets such that, for each :, W:

is open relative to X and

K t
>
:+�

W:.
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For each : + �, let U: � Y D W:. Now K t Y and
K t 6

:+�
W: implies that

�6�

.

Consequently, 
U: : : + �� is an open relative to Y
cover for K . Now K compact relative to Y yields that
there exists a ¿nite number of elements of �,
:1� :2� ���� :n, such that

�7�

. Since

n>
j�1

U: j �
n>

j�1

b
Y D W: j

c � Y D
n>

j�1

W: j

and K t Y , it follows that
�8�

.

Since 
W: : : + �� was arbitrary, we conclude that
every family of sets that form an open relative to X
cover of K has a ¿nite subcover. Therefore,

�9�

.

***Acceptable ¿ll-ins: (1) U: � Y D G:, (2) K t G:1 C G:2 C � � � C G:n (or

K t
n6

j�1
G: j ), (3)

n6
j�1

b
Y D G: j

c
, (4)

n6
j�1

U: j , (5) K is compact relative toY , (6)

K t Y D 6
:+�

W: � 6
:+�

�Y D W:� � 6
:+�

U:, (7) K t
n6

j�1
U: j , (8) K t

n6
j�1

W: j ,

(9) K is compact inX .***

Our next set of results show relationships between the property of being com-
pact and the property of being closed.

Theorem 3.3.35 If A is a compact subset of a metric space �S� d�, then A is closed.

Excursion 3.3.36 Fill-in the steps of the proof as described
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Proof. Suppose that A is a compact subset of a metric space �S� d� and

p + S is such that p �+ A. For q + A, let rq � 1

4
d �p� q�. Thej

Nrq �q� : q + A
k

is an open cover for A. Since A is compact,
there exists a ¿nite number of q, say q1� q2� ���� qn, such that

A t Nrq1
�q1� C Nrq2

�q2� C � � � C Nrqn
�qn� �

de f
W.

(a) Justify that the set V � Nrq1
�p� D Nrq2

�p� D � � � D Nrqn
�p�

is a neighborhood of p such that V D W � 3.

(b) Justify that Ac is open.

(c) Justify that the result claimed in the theorem is true.

***For (a), hopefully you noted that taking r � min
1n jnn

rq j yields that Nrq1
�p� D

Nrq2
�p� D � � � D Nrqn

�p� � Nr �p�. To complete (b), you needed to observe
that Nr �p� t Ac made p an interior point of Ac� since p was an arbitrary point
satisfying p �+ A, it followed that Ac is open. Finally, part (c) followed from
Theorem 3.3.13(#3) which asserts that the complement of an open set is closed�
thus, �Ac�c � A is closed.***

Theorem 3.3.37 In any metric space, closed subsets of a compact sets are compact.
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Space for scratch work.

Excursion 3.3.38 Fill in the two blanks in order to complete the following proof of
the theorem.

Proof. For a metric space �X� d�, suppose that F t K t X are such that F is
closed (relative to X) and K is compact. Let J � 
G: : : + �� be an open cover
for F . Then the family P � 
V : V + J G V � Fc� is an open cover for K . It
follows from K being compact that there exists a ¿nite number of elements of P,
say V1� V2� ���� Vn, such that

.

Because F t K , we also have that

.

If for some j + M, 1 n j n n, Fc � Vj , the family 
Vk : 1 n k n n F k /� j�
would still be a ¿nite open cover for F . Since J was an arbitrary open cover for
F , we conclude that every open cover of F has a ¿nite subcover. Therefore, F is
compact.

Corollary 3.3.39 If F and K are subsets of a metric space such that F is closed
and K is compact, then F D K is compact.

Proof. As a compact subset of a metric space, from Theorem 3.3.35, K is
closed. Then, it follows directly from Theorems 3.3.13(#5) and 3.3.37 that F D K
is compact as a closed subset of the compact set K .

Remark 3.3.40 Notice that Theorem 3.3.35 and Theorem 3.3.37 are not converses
of each other. The set

j
�x1� x2� + U2 : x1 o 2 F x2 � 0

k
is an example of a closed

set in Euclidean 2-space that is not compact.
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De¿nition 3.3.41 Let 
Sn�*n�1 be a sequence of subsets of a metric space X. Then

Sn�*n�1 is a nested sequence of sets if and only if �1n� �n + M " Sn�1 t Sn�.

De¿nition 3.3.42 A family D �
A: : : + �� of sets in the universe X has the
¿nite intersection property if and only if the intersection over any ¿nite subfamily
of D is nonempty� i.e.,

�1P�
�
P t � FP ¿nite "

?
;+P

A; /� 3
�

.

The following theorem gives a suf¿cient condition for a family of nonempty
compact sets to be disjoint. The condition is not being offered as something for you
to apply to speci¿c situations� it leads us to a useful observation concerning nested
sequences of nonempty compact sets.

Theorem 3.3.43 If 
K: : : + �� is a family of nonempty compact subsets of a met-
ric space X that satis¿es the¿nite intersection property, then

?
:+�

K: /� 3.

Space for notes.

Proof. Suppose that
?
:+�

K: � 3 and choose K= + 
K: : : + ��. Since?
:+�

K: � 3,

�1x�

�
x + K= " x �+

?
:+�

K:

�
.

Let

J � 
K: : : + � F K: /� K=� .

Because each K: is compact, by Theorems 3.3.35 and 3.3.13(#3), K: is closed and
K c
: is open. For any * + K=, we have that * �+

?
:+�

K:. Hence, there exists a
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; + � such that * �+ K; from which we conclude that * + K c
; and K; /� K=.

Since * was arbitrary, we have that

�1*�
K
* + K= " �2;�

r
; + � F K; /� K= F * + K c

;

sL
.

Thus, K= t 6
G+:

G which establishes J as an open cover for K=. Because K= is

compact there exists a ¿nite number of elements of J, K c
:1
� K c

:2
� ���� K c

:n
, such that

K= t
n>

j�1

K c
: j

�
�

n?
j�1

K: j

�c

from DeMorgan’s Laws from which it follows that

K= D
�

n?
j�1

K: j

�
� 3.

Therefore, there exists a¿nite subfamily of
K:� that is disjoint.

We have shown that if
?
:+�

K: � 3, then there exists a¿nite subfamily of


K: : : + �� that has empty intersection. From the Contrapositive Tautology, if

K: : : + �� is a family of nonempty compact subsets of a metric space such that
the intersection of any¿nite subfamily is nonempty, then

?
:+�

K: /� 3.

Corollary 3.3.44 If 
Kn�*n�1 is a nested sequence of nonempty compact sets, then?
n+M

Kn /� 3.

Proof. For� any¿nite subset ofM, let m � max
j : j + ��. Because
Kn�*n�1
is a nested sequence on nonempty sets,Km t 7

j+�
K j and

7
j+�

K j /� 3. Since�

was arbitrary, we conclude that
Kn : n + M� satis¿es the¿nite intersection property.
Hence, by Theorem 3.3.43,

?
n+M

Kn /� 3.

Corollary 3.3.45 If 
Sn�*n�1 is a nested sequence of nonempty closed subsets of a
compact sets in a metric space, then

?
n+M

Sn /� 3.
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Theorem 3.3.46 In a metric space, any in¿nite subset of a compact set has a limit
point in the compact set.

Space for notes and/or scratch work.

Proof. Let K be a compact subset of a metric space and E is a nonempty
subset of K . Suppose that no element of K is a limit point for E . Then for each
x in K there exists a neighborhood of x , say N �x�, such that �N �x�� 
x�� D
E � 3. Hence, N �x� contains at most one point from E � namely x . The family

N �x� : x + K � forms an open cover for K . Since K is compact, there exists a
¿nite number of elements in 
N �x� : x + K �, say N �x1� � N �x2� � ���� N �xn� � such
that K t N �x1� C N �x2� C � � � C N �xn�. Because E t K , we also have that
E t N �x1� C N �x2� C � � � C N �xn�. From the way that the neighborhoods were
chosen, it follows that E t 
x1� x2� ���� xn�. Hence, E is ¿nite.

We have shown that for any compact subset K of metric space, every subset
of K that has not limit points in K is ¿nite. Consequently, any in¿nite subset of K
must have at least one limit point that is in K .

3.3.4 Compactness in Euclidean n-space

Thus far our results related to compact subsets of metric spaces described implica-
tions of that property. It would be nice to have some characterizations for compact-
ness. In order to achieve that goal, we need to restrict our consideration to speci¿c
metric spaces. In this section, we consider only realn-space with the Euclidean
metric. Our¿rst goal is to show that everyn-cell is compact inUn. Leading up to
this we will show that every nested sequence of nonemptyn-cells is not disjoint.

Theorem 3.3.47 (Nested Intervals Theorem) If 
In�*n�1 is a nested sequence of

intervals in U1, then
*7

n�1
In /� 3.

Proof. For the nested sequence of intervals
In�*n�1, let In � [an� bn] and A �

an : n + M�. Because
In�*n�1 is nested,[an� bn] t [a1� b1] for eachn + M. It
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follows that �1n� �n + M " an n b1�. Hence, A is a nonempty set of real numbers
that is bounded above. By the Least Upper Bound Property, x �

de f
sup A exists and

is real. From the de¿nition of least upper bound, an n x for each n + M. For any
positive integers k and m, we have that

ak n ak�m n bk�m n bk

from which it follows that x n bn for all n + M. Since an n x n bn for each n + J ,

we conclude that x +
*7

n�1
In. Hence,

*7
n�1

In /� 3.

Remark 3.3.48 Note that, for B � 
bn : n + J � appropriate adjustments in the
proof that was given for the Nested Intervals Theorem would allow us to conclude

that inf B +
*7

n�1
In. Hence, if lengths of the nested integrals go to 0 as n goes to *,

then sup A � inf B and we conclude that
*7

n�1
In consists of one real number.

The Nested Intervals Theorem generalizes to nested n-cells. The key is to have
the set-up that makes use of then intervals

d
x j � y j

e
, 1 n j n n, that can be

associated with�x1� x2� ���� xn� and�y1� y2� ���� yn� in Un.

Theorem 3.3.49 (Nested n-Cells Theorem) Let n be a positive integer. If 
Ik�*k�1

is a nested sequence of n-cells, then
*7

k�1
Ik /� 3.

Proof. For the nested sequence of intervals 
Ik�*k�1, let

Ik � j
�x1� x2� ���� xn� + Un : ak� j n x j n bk� j for j � 1� 2� ����n

k
.

For each j , 1 n j n n, let Ik� j � d
ak� j �bk� j

e
. Then each

j
Ik� j

k*
k�1 satis¿es the

conditions of the Nested Intervals Theorem. Hence, for each j , 1 n j n n, there

exists * j + R such that * j +
*7

k�1
Ik� j . Consequently, �*1� *2� ���� *n� +

*7
k�1

Ik as

needed.

Theorem 3.3.50 Every n-cell is compact.
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Proof. For real constants a1� a2� ���� an and b1� b2� ���� bn such that a j � b j for
each j � 1� 2� ���� n, let

I0 � I � j
�x1� x2� ���� xn� + Un : �1 j + M�

b
1 n j n n " a j n x j n b j

ck
and

= �
YXXW n;

j�1

b
b j � a j

c2
.

Then �1x� �1y�
d
x� y + I0 " �x � y� n =e. Suppose that I0 is not compact. Then

there exists an open cover J � 
G: : : + �� of I0 for which no ¿nite subcollection
covers I0. Now we will describe the construction of a nested sequence of n-cells
each member of which is not compact. Use the space provided to sketch appropriate
pictures forn � 1, n � 2, andn � 3 that illustrate the described construction.

For eachj , 1 n j n n, let c j � a j � b j

2
. The sets of intervals

jb
a j � c j

c
: 1 n j n n

k
and

jb
c j � b j

c
: 1 n j n n

k
can be used to determine or generate 2n new n-cells, I �1�k for 1 n k n 2n. For
example, each ofj

�x1� x2� ���� xn� + Un : � j + M�
b
1 n j n n " a j n x j n c j

ck
�

j
�x1� x2� ���� xn� + Un : �1 j + M�

b
1 n j n n " c j n x j n b j

ck
�
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and j
�x1� x2� ���� xn� + Un : a j n x j n c j if 2 � j and c j n x j n b j if 2 0 j

k
is an element of

Q
I �1�k : 1 n k n 2n

R
. For each k + M, 1 n k n 2n, I �1�k is a subset

(sub-n-cell) of I0 and
2n6

k�1
I �1�k � I0. Consequently,J � 
G: : : + �� is an open

cover for each of the 2n sub-n-cells. BecauseI0 is such that no¿nite subcollection
from J coversI0, it follows that at least one of the elements of

Q
I �1�k : 1 n k n 2n

R
must also satisfy that property. LetI1 denote an element of

Q
I �1�k : 1 n k n 2n

R
for

which no¿nite subcollection fromJ coversI1. For �x1� x2� ���� xn� + I1 we have
that eithera j n x j n c j or c j n x j n b j for eachj , 1 n j n n. Since

c j � a j

2
� b j � c j

2
� b j � a j

2
�

it follows that, forx � �x1� x2� ���� xn� � y � �y1� y2� ���� yn� + I1

d �x� y� �
YXXW n;

j�1

b
y j � x j

c2 n
YXXW n;

j�1

b
b j � a j

c
22

2

� =

2
�

i.e., the diam�I1� is
=

2
.

The process just applied toI0 to obtainI1 can not be applied to obtain a
sub-n-cell of I1 that has the transferred properties. That is, if

I1 �
Q
�x1� x2� ���� xn� + Un : �1 j + M�

r
1 n j n n " a�1j n x j n b�1�j

sR
,

letting c�1�j � a�1�j � b�1�j

2
generates two set of intervals

Qr
a�1�j � c

�1�
j

s
: 1 n j n n

R
and

Qr
c�1�j � b

�1�
j

s
: 1 n j n n

R
that will determine 2n new n-cells, I �2�k for 1 n k n 2n, that are sub-n-cells
of I1. Now, sinceJ is an open cover forI1 such that no¿nite subcollection

from J coversI1 and
2n6

k�1
I �2�k � I1, it follows that there is at least one element
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of
Q

I �2�k : 1 n k n 2n
R

that cannot be covered with a ¿nite subcollection from J�
choose one of those elements and denote it by I2. Now the choice of c�1�j allows

us to show that diam �I2� � diam �I1�

2
� =

22
. Continuing this process generates


Ik�*k�0 that satis¿es each of the following properties:

� 
Ik�*k�0 is a nested sequence of n-cells,

� for eachk + M, no¿nite subfamily ofJ coversIk , and

� �1x� �1y�
d
x� y + Ik " �x � y� n 2�k=

e
.

From the Nestedn-cells Theorem,
*7

k�0
Ik /� 3. Let ? +

*7
k�0

Ik . Because

J � 
G: : : + �� is an open cover forI0 and
*7

k�0
Ik t I0, there existsG + J such

that? + G. SinceG is open, we there is a positive real numberr such thatNr �? � t
G. Now diam�Nr �? �� � 2r and, forn + M large enough, diam�In� � 2�n= � 2r .
Now, ? + Ik for all k + M assures that? + Ik for all k o n. Hence, for allk + M
such thatk o n, Ik t Nr �? � t G. In particular, eachIk , k o n, can be covered by
one element ofJ which contradicts the method of choice that is assured ifI0 is not
compact. Therefore,I0 is compact.

The next result is a classical result in analysis. It gives us a characterization for
compactness in realn-space that is simple� most of the “hard work” for the proof
was done in when we proved Theorem 3.3.50.

Theorem 3.3.51 (The Heine-Borel Theorem) Let A be a subset of Euclidean n-
space. Then A is compact if and only if A is closed and bounded.

Proof. Let A be a subset of Euclidean n-space�Un� d�
Suppose thatA is closed and bounded. Then there exists ann-cell I such

that A t I . For example, becauseA is bounded, there existsM  0 such that

A t NM

r��
0
s
� for this case, then-cell

I �
|
�x1� x2� ���� xn� + Rn : max

1n jnn

nnx j
nn n M � 1

}
satis¿es the speci¿ed condition. From Theorem 3.3.50,I is compact. SinceA t I
andA is closed, it follows from Theorem 3.3.37 thatA is compact.
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Suppose that A is a compact subset of Euclidean n-space. From Theorem
3.3.35, we know thatA is closed. Assume thatA is not bounded and letp1 + A.
Corresponding to eachm + M� choose apm in A such thatpm /� pk for k �
1�2� ���� �m � 1� andd �p1� pm�  m � 1. As an in¿nite subset of the compact
set A, by Theorem 3.3.46,
pm : m + M� has a limit point inA. Let q + A be a
limit point for 
pm : m + M�. Then, for eacht + M, there existspmt + 
pm : m + M�
such thatd

b
pmt � q

c
�

1

t � 1
. From the triangular inequality, it follows that for any

pmt + 
pm : m + M�,

d
b

pmt � p1
c n d

b
pmt � q

c� d �q� p1� �
1

1� t
� d �q� p1� � 1� d �q� p1� .

But 1�d �q� p1� is a¿xed real number, whilepmt was chosen such thatd
b

pmt � p1
c
 

mt � 1 andmt � 1 goes to in¿nity ast goes to in¿nity. Thus, we have reached a
contradiction. Therefore,A is bounded.

The next theorem gives us another characterization for compactness. It can be
shown to be valid over arbitrary metric spaces, but we will show it only over real
n-space.

Theorem 3.3.52 Let A be a subset of Euclidean n-space. Then A is compact if and
only if every in¿nite subset of A has a limit point in A.

Excursion 3.3.53 Fill in what is missing in order to complete the following proof
of Theorem 3.3.52.

Proof. If A is a compact subset of Euclidean n-space, then every in¿nite subset
of A has a limit point inA by Theorem 3.3.46.

Suppose thatA is a subset of Euclideann-space for which every in¿nite
subset ofA has a limit point inA. We will show that this assumption implies thatA
is closed and bounded. Suppose that* is a limit point of A. Then, for eachn + M,
there exists anxn such that

xn + N 1

n

�*�� 
*� .

Let S � 
xn : n + M�. Then S is an
�1�

of A. Conse-

quently,S has
�2�

in A. But S has only one limit point�
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namely
�3�

. Thus, * + A. Since * was arbitrary, we conclude that A contains

all of its limit point� i.e.,
�4�

.

Suppose that A is not bounded. Then, for each n + M, there exists yn such
that �yn�  n. Let S � 
yn : n + M�. Then S is an

�5�

of

A that has no ¿nite limit point in A. Therefore,

A not bounded " �2S�
b
S t A F S is in¿nite F S D A) � 3c �

taking the contrapositive and noting that � �P F Q F M� is logically equivalent to
[�P F Q�" M] for any propositions P , Q and M , we conclude that

�1S�

��
�6�

�
" S D A) /� 3

�
"

�7�

.

***Acceptable completions include: (1) in¿nite subset, (2) a limit point, (3) *, (4)
A is closed, (5) in¿nite subset, (6) S t A F S is in¿nite, and (7) A is bounded.***

As an immediate consequence of Theorems 3.3.50 and 3.3.46, we have the fol-
lowing result that is somewhat of a generalization of the Least Upper Bound Prop-
erty ton-space.

Theorem 3.3.54 (Weierstrass) Every bounded in¿nite subset of Euclidean n-space
has a limit point inUn.

3.3.5 Connected Sets

With this section we take a brief look at one mathematical description for a subset
of a metric space to be “in one piece.” This is one of those situations where “we
recognize it when we see it,” at least with simply described sets inU andU2. The
concept is more complicated than it seems since it needs to apply to all metric spaces
and, of course, the mathematical description needs to be precise. Connectedness is
de¿ned in terms of the absence of a related property.
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De¿nition 3.3.55 Two subsets A and B of a metric space X are separated if and
only if

A D B � 3 F A D B � 3.

De¿nition 3.3.56 A subset E of a metric space X is connected if and only if E is
not the union of two nonempty separated sets.

Example 3.3.57 To justify that A � 
x + U : 0 � x � 2 G 2 � x n 3� is not con-
nected, we just have to note that B1 � 
x + U : 0 � x � 2� and
B2 � 
x + U : 2 � x n 3� are separated sets inU such that A� B1 C B2.

Example 3.3.58 In Euclidean2-space, if C� D1 C D2 where

D1 �
Q
�x1� x2� + U2 : d ��1� 0� � �x1� x2� n 1�

R
and

D2 �
Q
�x1� x2� + U2 : d ���1� 0� � �x1� x2� � 1�

R
,

then C is a connected subset ofU2.

Remark 3.3.59 The following is a symbolic description for a subset E of a metric
space X to be connected:

�1A� �1B� [�A t X F B t X F E � AC B�
" b

AD B /� 3 G AD B /� 3 G A � 3 G B � 3c].
The statement is suggestive of the approach that is frequently taken when trying
to prove sets having given properties are connected� namely, the direct approach
would take an arbitrary set E and let E� AC B. This would be followed by using
other information that is given to show that one of the sets must be empty.

The good news is that connected subsets of U1 can be characterized very nicely.
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Theorem 3.3.60 Let E be a subset of U1. Then E is connected in U1 if and only if

�1x� �1y� �1z�
Kr

x� y + E F z + U1 F x � z � y
s
" z + E

L
.

Excursion 3.3.61 Fill in what is missing in order to complete the following proof
of the Theorem.

Proof. Suppose that E is a subset of U1 with the property that there exist real
numbers x and y with x � y such that x� y + E and, for some z + U1,

z + �x� y� and z �+ E �

Let Az � E D ��*� z� and Bz � E D �z�*�. Since z �+ E , E � Az C Bz . Because
x + Az and y + Bz, both Az and Bz are

�1�

. Finally, Az t ��*� z�

and Bz t �z�*� yields that

Az D Bz � Az D Bz �
�2�

.

Hence, E can be written as the union of two
�3�

sets� i.e., E is

�4�

. Therefore, if E is connected, then x� y + E F z +
U F x � z � y implies that

�5�

.

To prove the converse, suppose that E is a subset of U1 that is not con-
nected. Then there exist two nonempty separated subsets ofU1� A andB, such that
E � ACB. Choosex + A andy + B and assume that the set-up admits thatx � y.
SinceA D d

x� y
e

is a nonempty subset of real numbers, by the least upper bound
property,z �

de f
sup

b
A D d

x� y
ec

exists and is real. From Theorem 3.3.26,z + A�

thenADB � 3 yields thatz �+ B. Now we have two possibilities to consider� z �+ A
andz + A. If z �+ A, thenz �+ AC B � E andx � z � y. If z + A, thenAD B � 3
implies thatz �+ B and we conclude that there exists* such thatz � * � y and
* �+ B. Fromz � *, * �+ A. Hence,* �+ A C B � E andx � * � y. In either
case, we have that� �1x� �1y� �1z�

db
x� y + E F z + U1 F x � z � y

c " z + E
e
.

By the contrapositive�1x� �1y� �1z�
db

x� y + E F z + U1 F x � z � y
c " z + E

e
implies thatE is connected.
***Acceptable responses are: (1) nonempty, (2)3, (3) separated, (4) not connected,
and (5)E is connected.***

From the theorem, we know that, for a set of reals to be connected it must be
either empty, all ofU, an interval, a segment, or a half open interval.
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3.3.6 Perfect Sets

De¿nition 3.3.62 A subset E of a metric space X is perfect if and only if E is
closed and every point of E is a limit point of E.

Alternatively, a subset E of a metric space X is perfect if and only if E is closed
and contains no isolated points.

From Theorem 3.3.7, we know that any neighborhood of a limit point of a subset
E of a metric space contains in¿nitely many points from E . Consequently, any
nonempty perfect subset of a metric space is necessarily in¿nite� with the next
theorem it is shown that, in Euclidean n-space, the nonempty perfect subsets are
uncountably in¿nite.

Theorem 3.3.63 If P is a nonempty perfect subset of Euclidean n-space, then P is
uncountable.

Proof. Let P be a nonempty perfect subset of Un. Then P contains at least one
limit point and, by Theorem 3.3.6, P is in¿nite. Suppose that P is denumerable. It
follows that P can be arranged as an in¿nite sequence� let

x1� x2� x3� � � �

represent the elements of P. First, we will justify the existence (or construction) of
a sequence of neighborhoods

j
Vj

k*
j�1 that satis¿es the following conditions:

(i) �1 j �
b

j + M " V j�1 l Vj
c
,

(ii) �1 j �
b

j + M " x j �+ V j�1
c
, and

(iii) �1 j �
b

j + M " Vj D P /� 3c.
Start with an arbitrary neighborhood of x1� i.e., let V1 be any neighborhood of

x1. Suppose that
j
Vj

kn
j�1 has been constructed satisfying conditions (i)–(iii) for

1 n j n n. BecauseP is perfect, everyx + Vn D P is a limit point of P. Thus there
are an in¿nite number of points ofP that are inVn and we may choosey + Vn D P
such thaty /� xn. Let Vn�1 be a neighborhood ofy such thatxn �+ V n�1 and
V n�1 l Vn. Show that you can do this.
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Note that Vn�1 D P /� 3 since y + Vn�1 D P . Thus we have a sequence
j
Vj

kn�1
j�1

satisfying (i)–(iii) for 1 n j n n � 1. By the Principle of Complete Induction we
can construct the desired sequence.

Let
j

K j
k*

j�1 be the sequence de¿ned byK j � Vj D P for eachj . SinceVj and

P are closed,K j is closed. SinceVj is bounded,K j is bounded. ThusK j is closed
and bounded and hence compact. Sincex j �+ K j�1, no point ofP lies inD*

j�1K j .
SinceK j l P, this impliesD*

j�1K j � 3. But eachK j is nonempty by (iii) and
K j m K j�1 by (i). This contradicts the Corollary 3.3.27.

Corollary 3.3.64 For any two real numbers a and b such that a � b, the segment
�a� b� is uncountable.

The Cantor Set

The Cantor set is a fascinating example of a perfect subset ofU1 that contains no
segments. In Chapter 11 the idea of the measure of a set is studied� it generalizes
the idea of length. If you take MAT127C, you will see the Cantor set offered as an
example of a set that has measure zero even though it is uncountable.

The Cantor set is de¿ned to be the intersection of a sequence of closed subsets
of [0�1]� the sequence of closed sets is de¿ned recursively. LetE0 � [0�1]. For
E1 partition the intervalE0 into three subintervals of equal length and remove the
middle segment (the interior of the middle section). Then

E1 �
v
0�

1

3

w
C
v

2

3
�1
w

.

For E2 partition each of the intervals

v
0�

1

3

w
and

v
2

3
�1

w
into three subintervals of

equal length and remove the middle segment from each of the partitioned intervals�
then

E2 �
v
0�

1

9

w
C
v

2

9
�

1

3

w
C
v

2

3
�

7

9

w
C
v

8

9
� 1
w

�
v
0�

1

9

w
C
v

2

9
�

3

9

w
C
v

6

9
�

7

9

w
C
v

8

9
� 1

w
.
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Continuing the process En will be the union of 2n intervals. To obtain En�1, we
partition each of the 2n intervals into three subintervals of equal length and remove
the middle segment, then En�1 is the union of the 2n�1 intervals that remain.

Excursion 3.3.65 In the space provided sketch pictures of E0� E1� E2� and E3 and
¿nd the sum of the lengths of the intervals that form each set.

By construction 
En�*n�1 is a nested sequence of compact subsets of U1.

Excursion 3.3.66 Find a formula for the sum of the lengths of the intervals that
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form each set En.

The Cantor set is de¿ned to be P �
*?

n�1

En .

Excursion 3.3.67 Justify each of the following claims.

(a) The Cantor set is compact.

(b) The 
En�*n�1 satis¿es the ¿nite intersection property

Remark 3.3.68 It follows from the second assertion that P is nonempty.
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Finally we want to justify the claims that were made about the Cantor set before
we described its construction.

� The Cantor set contains no segment from E0.

To see this, we observe that each segment in the form oft
3k � 1

3m
�

3k � 2

3m

u
for k�m + M

is disjoint from P . Given any segment �:� ;� for : � ;, if m + M is such that

3�m �
; � :

6
, then �:� ;� contains an interval of the form

t
3k � 1

3m
�

3k � 2

3m

u
from which it follows that �:� ;� is not contained in P .

� The Cantor set is perfect. For x + P , let S be any segment that contains x .

Since x +
*?

n�1

En , x + En for each n + M. Corresponding to each n + M, let

In be the interval in En such that x + In. Now, choose m + M large enough
to get Im t S and let xm be an endpoint of Im such that xm /� x . From the
way that P was constructed, xm + P . Since S was arbitrary, we have shown
that every segment containing x also contains at least one element from P .
Hence, x is a limit point of P . That x was arbitrary yields that every element
of P is a limit point of P .

3.4 Problem Set C

1. For x � �x1� x2� ���� xN � and y � �y1� y2� ���� yN � in UN , let

d�x� y� �
YXXW N;

j�1

b
x j � y j

c2
.

Prove that �UN � d� is a metric space.
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2. For x � �x1� x2� ���� xN � and y � �y1� y2� ���� yN � in UN , let

D�x� y� �
N;

j�1

�x j � y j �.

Prove that �UN � D� is a metric space.

3. For x � �x1� x2� ���� xN � and y � �y1� y2� ���� yN � in UN , let

d*�x� y� � max
1n jnN

nnx j � y j
nn .

Prove that �UN � d*� is a metric space.

4. Show that the Euclidean metric d, given in problem #1, is equivalent to the
metric d*, given in problem #3.

5. Suppose that �S� d� is a metric space. Prove that
b
S� d )c is a metric space

where

d ) �x� y� � d �x� y�

1 � d �x� y�
.

[Hint: You might ¿nd it helpful to make use of properties of h �G� � G

1 � G
for G o 0.]

6. If a1� a2� ���� an are positive real numbers, is

d �x� y� �
n;

k�1

ak �xk � yk�

where x � �x1� x2� ���� xn� � y � �y1� y2� ���� yn� + Un, a metric on Un? Does
your response change if the hypothesis is modi¿ed to require that a1� a2� ���� an

are nonnegative real numbers?

7. Is the metric D, given in problem #2, equivalent to the metric d*, given in
problem #3? Carefully justify your position.

8. Are the metric spaces �UN � d� and
b
UN � d )c where the metrics d and d ) are

given in problems #1 and #5, respectively, equivalent? Carefully justify the
position taken.
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9. For �x1� x2� and
b
x )1� x )2

c
in U2,

d3
b
�x1� x2� �

b
x )1� x )2

cc �
��
�

�x2� �
nnx )2nn� nnx1 � x )1

nn , if x1 /� x )1nnx2 � x )2
nn , if x1 � x )1

Show that
b
U2� d3

c
is a metric space.

10. For x� y + U1, let d �x� y� � �x � 3y�. Is �U� d� a metric space? BrieÀy
justify your position.

11. For U1 with d �x� y� � �x � y�, give an example of a set which is neither
open nor closed.

12. Show that, in Euclidean n � space, a set that is open in Un has no isolated
points.

13. Show that every ¿nite subset of UN is closed.

14. For U1 with the Euclidean metric, let A � 
x + T : 0 n x n 1�. Describe A.

15. Prove each of the following claims that are parts of Theorem 3.3.13. Let S be
a metric space.

(a) The union of any family I of open subsets of S is open.

(b) The intersection of any family I of closed subsets of S is closed.

(c) If A1� A2� ���� Am is a ¿nite family of closed subsets of S, then the union6m
j�1 A j is closed.

(d) The space S is both open and closed.

(e) The null set is both open and closed.

16. For X � [�8��4� C 
�2� 0� C
r
T D

r
1� 2

T
2
Ls

as a subset of U1, identify

(describe or show a picture of) each of the following.

(a) The interior of X , Int �X�

(b) The exterior of X , Ext �X�

(c) The closure of X , X
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(d) The boundary of X , "X

(e) The set of isolated points of X

(f) The set of lower bounds for X and the least upper bound of X , sup �X�

17. As subsets of Euclidean 2-space, let

A �
|
�x1� x2� + U2 : max
�x1 � 1� � �x2�� n 1

2

}
,

B � j
�x1� x2� + U2 : max
�x1 � 1� � �x2�� n 1

k
and

Y �
Q
�x1� x2� + U2 : �x1� x2� + B � A G

r
�x1 � 1�2 � x2

2 � 1
sR

.

(a) Give a nicely labelled sketch ofY on a representation for the Cartesian
coordinate plane.

(b) Give a nicely labelled sketch of the exterior ofY , Ext�Y �, on a repre-
sentation for the Cartesian coordinate plane.

(c) IsY open? BrieÀy justify your response.

(d) IsY closed? BrieÀy justify your response.

(e) IsY connected? BrieÀy justify your response.

18. Justify each of the following claims that were made in the Remark following
De¿nition 3.3.15

(a) If A is a subset of a metric space�S� d�, then Ext�A� � Int �Ac�.

(b) If A is a subset of a metric space�S� d�, then

x + "A % �1Nr �x��
b
Nr �x� D A /� 3 F Nr �x� D Ac /� 3c .

19. ForU2 with the Euclidean metric, show that the set

S �
Q
�x� y� + U2 : 0� x2 � y2 � 1

R
is open. Describe each ofS0� S)� "S� S� andSc.

20. Prove that
j
�x1� x2� + U2 : 0 n x1 � 1F 0 n x2 n 1

k
is not compact.
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21. Prove that T, the set of rationals in U1, is not a connected subset of U1.

22. Let I be any family of connected subsets of a metric space X such that any
two members of I have a common point. Prove that

6
F+5

F is connected.

23. Prove that if S is a connected subset of a metric space, then S is connected.

24. Prove that any interval I t U1 is a connected subset of U1.

25. Prove that if A is a connected set in a metric space and A t B t A, then B
is connected.

26. Let 
Fn�*n�1 be a nested sequence of compact sets, each of which is con-

nected. Prove that
*?

n�1

Fn is connected.

27. Give an example to show that the compactness of the setsFk given in problem
#26 is necessary� i.e., show that a nested sequence of closed connected sets
would not have been enough to ensure a connected intersection.


