Chapter 3

METRIC SPACES and SOME
BASIC TOPOLOGY

Thus far, our focus has been on studying, reviewing, and/or developing an under-
standing and ability to make use of propertiesRof= R. The next goal is to
generalize our work t®" and, eventually, to study functions &".

3.1 Euclidean n-space

The set R" is an extension of the concept of the Cartesian product of two sets that
was studied in MAT108. For completeness, we include the following

Definition 3.1.1 Let Sand T be sets. The Cartesian product of Sand T, denoted
by Sx T,is

{(p,@): peSAQqeT].

The Cartesian product of any finite number of sets S, S, ..., Sy, denoted by §; x
Sx---x S, IS

{(Ppr, P2y PN) S (V) ((j €T AL < j < N) = pj € §))}.
The object (p1, p2, ..., pn) Iscalled an N-tuple.

Our primary interest is going to be the case where each set is the set of real
numbers.

73



74 CHAPTER 3. METRIC SPACES AND SOME BAS C TOPOLOGY

Definition 3.1.2 Real n-space denoted R", is the set all ordered n-tuples of real
numbersi.e.,

R" = {(X1, X2, ..., Xn) : X1, X2, ..., Xn € R}.

Thus,R"=R x R x --- x R, the Cartesian product dk with itself n times.

n of them

Remark 3.1.3 From MAT108, recall the gmition of anordered pair:

(a, b) = {{a}, {a, b}}.

This dginition leads to the more familiar statement tlfat b) = (c, d) if and only

ifa = b and c= d. It also follows from the dmition that, for sets A, B and

C, (A x B) x C is, in general, not equal to A (B x C), i.e., the Cartesian
product is not associative. Hence, some conventions are introduced in order to
give meaning to the extension of the binary operation to more that two sets. If we
deine ordered triples in terms of ordered pairs by settiagb, c) = ((a, b), ¢);

this would allow us to claim thata, b,c) = (x,y,z) ifandonlyifa=x, b=y,

and c = z. With this in mind, we interpret the Cartesian product of sets that are
themselves Cartesian products as “big” Cartesian products with each entry in the
tuple inheriting restrictions from the original sets. The point is to have helpful
descriptions of objects that are described in terms of n-tuple.

Addition and scalar multiplication on n-tuple is déined by
(X1, X2, ..y Xn) + (Y1, Y2, ..y Yn) = (X1 + Y1, X2 + Y2, ..., Xn + Yn)
and
a (X1, X2, ..., Xn) = (aX1, aXo, ..., aXn), for a € R, respectively.

The geometric meaning of addition and scalar multiplication ®&andR3 as

well as other properties of these vector spaces was the subject of extensive study in
vector calculus courses (MAT21D on this campus). For eaah > 2, it can be
shown thafR" is a real vector space.

Definition 3.1.4 A real vector space V is a set of elements called vectors, with
given operations of vector addition 4+ : V x V — V and scalar multiplication
-1 R x V — V that satisfy each of the following:
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1. W)y(W) (V,weV=V4+W=wW+V) commutativity

2. (Vu) (W) (VW) (u,v,w e V=u+ (V+w) = (u+Vv)+Ww) associativity

3.(30)0eVA(MW)(VeV=0+Vv=v+0=V)) zerovector

4. W)(veV=3(=V)((-v) e VAV+ (-V) =(-Vv)+Vv=0)) negatives

5 V)Y(W) (W) (L eRAV,WeV = A-(V+W)=A1-v+ 1-w) distribu-
tivity

6. V) (Vy)("W)(4,y e RAwe V= A(y -w)=(4y)-w) associativity

7. (_V{I) My)y(Mw)y(4,y eRAweV= (A+4+y)-w=41-w+y-w) distribu-
tivity

8. (W)(veV=1l.v=v-1=vV) multiplicative identity

Given two vectors, X = (X1, X2, ..., Xp) andy = (y1, Y2, ..., ¥n) inR", theinner
product (also known as the scalar product) is

n
X'Y=ijyj;
j=1

and the Euclidean norm (or magnitude) of x = (X1, X2, ..., Xn) € R" isgiven by

IX| = /XX = i (Xj)z.

The vector space R" together with the inner product and Euclidean norm is called
Euclidean n-space. The following two theorems pull together the basic properties
that are sati$ed by the Euclidean norm.

Theorem 3.1.5 Supposethat x,y,z € R"anda € R. Then
(@ x| >0
(b) X =0=x=0;

(©) lox] = la||x|; and
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@ Ix-yl < x|yl

Excursion 3.1.6 Use Schwarz's Inequality to justify part (d). Fok = (X1, X2, ..., Xn)
andy = (y1, ¥2, ..., ¥n) in R",

- yI? =

Remark 3.1.7 It often helps to take our observations back to the setting that is
“once removed” fromR!. For the caseR?, the statement given in part (d) of the
theorem relates to the dot product of two vectors: &6t (X1, X2) andy = (y1, y{),

we have that

¢ =X1y1+ X2y

which, in vector calculus, was shown to be equivalen&tp;|cos) whered is the
angle between the vectafsand .

Theorem 3.1.8 (The Triangular Inequalities) Suppose that = (X1, X2, ..., Xn),
y = (Y1, Y2, ..., YN) @andz = (z1, 2o, ..., zn) are elements dRN. Then

@ Ix+yl <Xl +lyl ie.,

N 1/2 N 1/2 N 1/2
(Z(Xj +Yi )2) < (Z sz) + (Z y,-z)
i=1 i=1 i=1

where(- - -)¥/? denotes the positive square root and equality holds if and only
if either all the x are zero or there is a nonnegative real numiesuch that
yj = Axj foreach j,1 < j < N,;and

b) x—zl <|x=yl+|y—12zie.,

\ 12 N 12 N 1/2
(Z(xj — Zj)z) < (Z(Xj - yj)z) + (Z(Yj - ZJ‘)Z)
i=1 i=1 i=1
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where (- - -)/2 denotes the positive square root and equality holds if and only
if thereisareal number r, withO <r < 1, suchthat y; = rxj 4+ (1 —r)z;
foreachj,1<j < N.

Remark 3.1.9 Again, it is useful to view the triangular inequalities on “familiar
ground” Leté = (X1, X2) and 7 = (y1, ¥2). Then the inequalities given in The-
orem 3.1.8 correspond to the statements that were given for the complex numbers
l.e., statements concerning the lengths of the vectors that form the triangles that are
associated witltinding¢ + » and¢ — 7.

Observe that, for C = {(x,y) : X°+ y?> =1} and | = {x : a < x < b} where
a < b, the Cartesian product of the circle C with I, C x I, isthe right circular
cylinder,

U={(X,Y,2): x2+y2=1/\a§ zZ < b},
and the Cartesian product of | with C, | x C, istheright circular cylinder,
V={(XY,2):a<x<b y’+ 22 =1}.

If graphed on the same R3-coordinate systemt) andV are different objects due to
different orientationon the other hand) andV have the same height and radius
which yield the same volume, surface aretc. Consequently, distinguishirgdy

from V depends on perspective and reason for study. In the next section, we lay the
foundation for properties that plateandV in the same category.

3.2 Metric Spaces

In the study ofR! and functions oR* the length of intervals and intervals to de-
scribe set properties are useful tools. Our starting point for describing properties
for sets inR" is with a formulation of a generalization of distance. It should come
as no surprise that the generalization leads us to multiple interpretations.

Definition 3.2.1 Let Sbea set and supposethatd : Sx S— R Thend is said
to be a metric (distance function) on Sif and only if it satisfies the following three
properties:

(i) (x) (YY) [(X,¥) € Sx S=d(x,y) =0A (d(x,y) =0 x =VY)],
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(i) (vx) (vy) [(x,y) € Sx S= d(y, X) = d(x, y)]| (symmetry), and

(iii) (vx) (vy) (V2) [x, Y,z € S= d(X,2) < d(X, y) + d(y, 2)] (triangleinequal-
ity).

Definition 3.2.2 A metric space consists of a paifS, d)—a set, S, and a metric, d,
onS.

Remark 3.2.3 There are three commonly used (studied) metrics for thé&k8et
For x = (X1, X2, ..., Xn) andy = (Y1, Yo, ..., YN), We have:

e (RN, d)where dx,y) = \/Z;\Ll (Xj - Yj)z, the Euclidean metric,
o (RN, D)where Ox,y) = YIL; [x; — yjl, and

e (RN, dy) where do(x,y) = 12}2)(1\1 X = Yil-

Proving that d, D, and d., are metricsis|eft as an exercise.

Excursion 3.2.4 Graph each of the following on Cartesian coordinate systems

1. A={x e R?:d(0,x) < 1}

2. B={xeR?:D(0,x) < 1}
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3. C={xeR?:dy(0,x) <1}

***For (1), you should have gotten the closed circle with center at origin and radius
one; for (2), your work should have led you to a“diamond” having vertices gtl, 0),
(0,1), (-1,0), and (0, —1); the closed shape for (3) is the square with vertices
1, -1), (1, 1), (-1, 1), and(—1, —1).***

Though we haven’t dened continuous and integrable functions yet as a part of
this course, we offer the following observation to make the point that metric spaces
can be over different objects. Létbe the set of all functions that are continuous
real valued functions on the intervhl= (x : 0 < x < 1}. Then there are two
natural metrics to consider on the getnamely, forf andg in C we have

(1) (C,d) whered(f, g) = 0maxl| f (xX) — g(x)|, and

<X<

(2) (€, d) whered(f, g) = [; | f(x) — g(x)|dx.

Because metrics on the same set can be distinctly different, we would like to
distinguish those that are related to each other in terms of being able to “travel
between” information given by them. With this in mind, we introduce the notion of
equivalent metrics.

Definition 3.2.5 Given a set S and two metric spaces (S, d;1) and (S, d»), d1 and
d» are said to be equivalent metricsif and only if there are positive constants ¢ and
C such that cdi(x, y) < da(X, y) < Cdi(x, y) for all x,yinS.

Excursion 3.2.6 As the result of one of the Exercises in Problem Set C, you will
know that the metrics d and du, 0n R? satisfy dao (X, ) < d(X, Y) < V2 - dso (X, Y).

1. Let A = {x € R?: d(0,x) < 1}. Draw a figure showing the boundary of
A and then show the largest circumscribed sgquare that is symmetric about
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the origin and the square, symmetric about the origin, that circumscribes the
boundary of A.

2. Let C = {x € R?: d(0, X) < 1}. Draw a figure showing the boundary of C
and then show the largest circumscribed circle that is centered at the origin
and the circle, centered at the origin, that circumscribes the boundary of C.

***For (1), your outer square should have corresponded to
{x = (X1X2) € R? : dse (0, X) = ﬁ}; the outer circle that you showed for part of

(2) should have corresponded to {x = (x1X2) € R? : d(0, x) = ﬁ}.***

Excursion 3.2.7 Let E = {(cosd,sind) : 0 < 6§ < 2z} and define d*(py1, p2) =
|61 — 2] where p; = (cos#1, Sinfp) and p2 = (cosbz, sindy). Show that (E, d*) is
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a metric space.

Theauthor of our textbook refersto an openinterval (a,b) = {x e R:a < x < b}
as a segment which allows the term interval to be reserved for a closed interval
[a,b] = {x € R:a < x < b}; half-open intervals are then in the form @, [b) or
(a, b.

Definition 3.2.8 Givenreal numbersay, ap, ..., a, and by, by, ..., by suchthataj <
bjforj=1,2,..,n,

{(x1, %2, ... Xn) e R" 1 (V]) (1< j <n=a; < xj <bj)}
is called an n-cell.

Remark 3.2.9 With this terminology, a 1-cell is an interval and &-cell is a rect-
angle.

Definition 3.2.10 If x € R" and r is a positive real number, then thpen ball with
centerx and radius r is given by

Bx,r)={yeR": |x—y| <r};
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and the closed ball with center x and radiusr is given by

BX,r)={yeR":|x—y| <r}.

Definition 3.2.11 A subset E of R" is convex if and only if
(V) (Wy) (VA) [,y e EAO <A <1= Ax+(1—2)y € E]

Example 3.2.12 For x € R" andr a positive real number, supposethaty and z are
inB(x,r). If Areal issuchthat0 < 1 < 1, then

Ay+@A-z—X = [Ay=—xX)+A—-41)(Z-Xx)|
< Aly=xl+@A-2)z=x|
< AMr+A=-NDr=r

Hence, iy + (1 — A)z eB (x,r). Sncey and z were arbitrary,
(VY) (vV2) VA [y, 2e B(X,r) A0 <A <1=Ay+(1—2A)ze B(xr)],

that is, B (x, r) isa convex subset of R".

3.3 Point Set Topology on Metric Spaces

Once we have adistance function on a set, we can talk about the proximity of points.
Theideaof asegment (interval) in R is replaced by the concept of a neighborhood
(closed neighborhood). We have the following

Definition 3.3.1 Let po be an element of a metric space S whose metric is denoted
by d and r be any positive real number. The neighborhood of the point pg with
radiusr isdenoted by N(po, r) or Ny (po) andis given by

Nr(po) ={p e S:d(p, po) <r}.

The closed neighborhood with center pg and radiusr isdenoted by N, (po) and
is given by

Nr (po) = {p € S:d(p, po) <r}.
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Remark 3.3.2 The sets A, B and C defined in Excursion 3.2.4 are examples of
closed neighborhoods in R? that are centered at (0, 0) with unit radius.

What does the unit neighborhood look like for (R?, d) where

0, if x=y
dx,y) = is known as the discrete metric?
1, if x#y

We want to use the concept of neighborhood to describe the nature of points
that are included in or excluded from sets in relationship to other points that are in
the metric space.

Definition 3.3.3 Let A beasetinametric space (S, d).

1. Supposethat po isan element of A. We say the pg isan isolated point of A if
and only if

(AN (o)) [Nr (Po) N A = {po}]

2. Apoint poisalimit point of the set A if and only if

(YNr (po)) (3p) [P # Po A p € AN N (po)] -
(N.B. Alimit point need not be in the set for which it isa limit point.)
3. Theset Aissaidto beclosed if and only if A containsall of its limit points.

4. Apoint pisaninterior point of Aif and only if

(AN, (p)) [Nr,(p) C A
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5. Theset Aisopen ifand only if

(Vp) (p e A= (AN, (p)) [Ne,(P) C A]);

I.e., every point in Aisan interior point of A.

Example 3.3.4 For each of the following subsets of R? use the space that is pro-
vided to justify the claims that are made for the given set.

(@) {(x1,X2) € R?: x1, %2 € J A |X1 + Xo| < 5} is closed because is contains all
none of its limit points.

(b) {(x1, %) e R?: 4 < xf A X2 € J} is neither open not closed.



3.3. POINT SET TOPOLOGY ON METRIC SPACES 85

(© {(x1,%2) € R?: %2 > |xq|} isopen.

Our next result relates neighborhoods to the “open” and “closed” adjectives.

Theorem 3.3.5 (a) Every neighborhood is an open set.
(b) Every closed neighborhood is a closed set.

Use this space to draw some helpful pictures related to proving the results.

Proof. (a) Let N;(po) be a neighborhood. Suppose tigae N (po) and set
ri = d(po,q). Letp = ' —r1. If X € N, (q), thend (x,q) < r-n and the
triangular inequality yields that

—r1_3r1+r

2 4 <Tr.

r
d(pOax) < d(pOaQ)‘i'd(CIaX) <ri+
Hencex € N; (po). Sincex was arbitrary, we conclude that

(VX) (X € N/) @ =xe Nr(pO)) ,

i.e.,, N, (@) C Nr(po).Thereforeq is an interior point ofN; (po). Becausey was
arbitrary, we have that each element\yf( po) is an interior point. Thud\, (po) is
open, as claimed.
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Excursion 3.3.6 Fill inwhat ismissing in order to complete the following proof of

(b)
Let N; (po) be a closed neighborhood and suppose that g isa limit point of

R 1 _
N (po). Then, for eachr, = = n € J, thereexists py # q such that p, € N (po)

1 N
andd(q, pn) < = Because pn € N (po), d (po, pn) < r for eachn € J. Hence,
by the triangular inequality

IA

d (qa pO) < d (qa pn) +

@ @

1
Snce g and po are fixed and - goes to 0 as n goes to infinity, it follows that

d(g, po) <r,thatis, q e . Finally, g and arbitrary limit point of
3
N (po) leadsto the conclusion that N, (po) contains

()
Therefore, N (po) is closed.

|
1 _ :
*** Acceptable responses are: (1) d (pn, Po), (2) - +r, (3) Nr(po), (4) dl of its
limit points.***
The definition of limit point leads us directly to the conclusion that only infinite
subsets of metric spaces will have limit points.

Theorem 3.3.7 Suppose that (X, d) isa metric spaceand A C X. If pisalimit
point of A, then every neighborhood of p contains infinitely many points of A.

Spoace for scratch work.

Proof. For a metric space (X, d) and A c X, suppose that p € X is such
that there exists a neighborhood of p, N (p), with the property that N (p) N A
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iIsafiniteset. If N(p)NnA=6@or, N(p)n A= {p}, then pisnot alimit

point. Otherwise, N (p) N A being finite implies that it can be realized as a finite

sequence, say Qi, d2, , 93, ..., Oy for some fixedn € J. Foreach j,1 < | < n,

letrj = d(x,qj). Setp = l@jignd (x,qj). If p € {g1,0,,03, ..., Gn}, then
qj#p

N, (p) N A = {p}; otherwise N, (p) N A = @. In either case, we conclude that p

isnot alimit point of A.

We have shown that if p € X hasaneighborhood, N (p), with the property
that N (p) N A is afinite set, then p is not a limit point of A ¢ X. From the
contrapositive tautology it follows immediately that if p isalimit point of A c X,
then every neighborhood of p containsinfinitely many pointsof A. m

Corollary 3.3.8 Any finite subset of a metric space has no limit point.

From the Corollary, we note that every finite subset of a metric space is closed
because it contains al none of its limit points.

3.31 Complementsand Families of Subsets of Metric Spaces

Given afamily of subsets of ametric space, it is natural to wonder about whether or
not the properties of being open or closed are passed on to the union or intersection.
We have already seen that these properties are not necessarily transmitted when we
look as families of subsets of R.

—-3n+2 2n?2—n
Example3.39 Let A = {A,: n e J} where A, = n+ — . Note
3 2 1
that A1 = [-1,1], Ap = [—2, E]’ and Az = [—3+ :—%,2— 5}. More careful
-3n+2

Inspection reveal sthat

2n% —n i .
o = 2 — — isstrictlyincreasingto 2asn — oo, and A; = [—1, 1] c A,

n
for eachn € J. Itfollowsthat |J An=(-3,2)and (| An = A1 =[-1,1].

neJ neJ

= _3+ﬁ isstrictly decreasingto —3andn — oo,

The exampletellsusthat we may need some special conditionsin order to claim
preservation of being open or closed when taking unions and/or intersections over
families of sets.
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The other set operation that iscommonly studied iscomplement or rel ative com-
plement. We know that the complement of a segmeiRiris closed. This moti-
vates us to consider complements of subsets of metric spaces in general. Recall the
following

Definition 3.3.10 Supposethat A and B are subsets of a set S. Then the set differ-
ence(or relative complementA — B, read “ A not B”, is given by

A—B={peS:peAAnp¢B},
thecomplement of A, denoted by Ais S— A.
Excursion 3.3.11 Let A= {(x1, X2) € R? : x? + x2 < 1} and
B={(x,%) eR?:xi—1 <1Alx—1 <1}.

On separate copies of Cartesian coordinate systems, show the set8 Aand
A°=R2— A,

The following identities, which were proved in MAT108, are helpful when we
are looking at complements of unions and intersections. Namely, we have

Theorem 3.3.12 (deMorgan’s Laws) Supposethat Sisany space and F isafam-
ily of subsets of S. Then

c
] -0-
AeF AeF
and

[ﬂ (A)}C = A~

AeF AceF
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The following theorem pulls together basic statement concerning how unions,
intersections and complements effect the properties of being open or closed. Be-
cause their proofs are straightforward applications of tHaiiens, most are left
as exercises.

Theorem 3.3.13 Let Sbe a metric space.

1. The union of any family F of open subsets of Sis open.

2. If Aq, Ag, ..., Am isafinite family of open subsets of S, then the intersection
NjL1 Aj isopen.

3. For any subset A of S, Aisclosed if and only if A®isopen.
4. The intersection of any family F of closed subsets of Sis closed.

5. If A1, Ao, ..., An is a finite family of closed subsets of S, then the union
UJL1 Aj isclosed.

6. The space Sis both open and closed.
7. Thenull set is both open and closed.

Proof. (of #2) Suppose thaf;, Ay, ..., An is afinite family of open subsets
of S, andx € N1, Aj. Fromx e L, Aj, it follows thatx e A; for each
j, 1 < j < m. Since eachA; is open, for eaclj, 1 < j < m, there exists

rj > 0 such thatN;; (x) C Aj. Letp = lmin ri. BecauseN, (x) C Aj for
<jsm

eachj, 1 < j < m, we conclude thaN, (x) C ﬂTZl Aj. Hencex is an interior
point of ﬂ?‘zl A;. Finally, sincex was arbitrary, we can claim that each element of
Nj=1 Aj is an interior point. Thereforg)_; A; is open.

(or #3) Suppose thad c Sis closed ank € A®. Thenx ¢ A and, because
A contains all of its limit pointsx is not a limit point of A. Hence,x ¢ A A
= (YN (X)) [AN (Nr (x) — {x}) # 0] is true. It follows thaix ¢ A and there exists
ap > 0suchthatAn (N, (x) — {x}) = @. Thus,AN N,(x) = # and we conclude
thatN,(x) c A i.e.,x is an interior point ofA°. Sincex was arbitrary, we have
that each element 04 is an interior point. ThereforeA® is open.
To prove the converse, suppose that- Sis such thatA°® is open. Ifp
is a limit point of A, then(VN; (p)) [Aﬁ (Nr(p) — {p}) # ﬂ]. But, for anyp > 0,
AN (N,(p) — {p}) # 0 implies that(N,(p) — {p}) is not contained irA°. Hence,
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p is not an interior point of A® and we concludethat p ¢ A®. Therefore, p € A.
Since p was arhitrary, we have that A contains all of its limit points which yields
that Aisclosed. m

Remark 3.3.14 Take the time to look back at the proof of (#2) to make sure that
you where that fact that the intersection was over a finite family of open subsets of
Swas critical to the proof.

Given asubset of ametric space that is neither open nor closed we'd like to have
a way of describing the process of “extracting an open subset” or “building up to a
closed subset.” The following terminology will allow us to classify elements of a
metric spaceSin terms of their relationship to a subskic S.

Definition 3.3.15 Let A be a subset of a metric space S. Then

1. Apoint p € Sisan exterior point of A if and only if

@ANr (p) [Nr (p) C A°],
where A® = S— A.

2. Theinterior of A, denoted by Int (A) or A | isthe set of all interior points
of A.

3. Theexterior of A, denoted by Ext(A), isthe set of all exterior points of A.
4. Thederived set of A, denoted by A', isthe set of all limit points of A.

5. The closure of A, denoted by A, is the union of A and its derived set; i.e.,
A=AUA.

6. The boundary of A, denoted by 9 A, is the difference between the closure of
A and theinterior of A; i.e, A= A— AO,
Remark 3.3.16 Note that, if A is a subset of a metric space S, then Ext(A) =
Int (A%) and
x € 0A S (YN (X)) [Nr (X)) N A% B AN (X) N A° £ 4]

The proof of these statements are |eft as exercises.
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Excursion 3.3.17 For AU B where
A = {(X1, X2) eR?: xf—l—xg <1}
and
B={(x,%) eR*: xa—1 < 1Alxp—1 <1}

1. Sketchagraphof AU B.

2. On separate representations for R?, show each of the following

Int (AU B), Ext(AUB), (AUB), and (AU B).

***Hopefully, your graph of A U B consisted of the union of the open disc that
Is centered at the origin and has radius one with the closed square having vertices
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(0,0), (1,0), (1,1) and (0, 1); the disc and square overlap in the first quadrant and
the set is not open and not closed. Your sketch of Int (A U B) should have shown
the disc and sguare without the boundaries (;i.e., with the outline boundaries as not
solid curves), while your sketch of Ext (A U B) should have shown everything that

IS outside the combined disc and square-also with the outlining boundary as not
solid curves. Finally, becaus®U B has no isolated point$ A U B) and(A U B)
are shown as the same sets—looking like(At B) with the outlining boundary
now shown as solid curves.***

The following theorem relates the properties of being open or closed to the
concepts described in Beition 3.3.15.

Theorem 3.3.18 Let A be any subset of a metric space S.

() Thederived set of A, A, isaclosed set.
(b) Theclosureof A, A, isa closed set.

(c) Then A= Aif andonlyif Aisclosed.
(d) The boundary of A, oA, isa closed set.
(e) Theinterior of A, Int (A), isan open set.
(f) If Ac Band B isclosed, then A c B.
(g) If Bc Aand Bisopen, B C Int(A).

(h) Any point (element) of Sisa closed set.

The proof of part(a) is problem #6 in WRp43, while (e) and (g) are parts of
problem #9 in WRp43.

Excursion 3.3.19 Fill in what is missing to complete the following proofs of parts
(b), (c), and (f).
Part (b): In view of Theorem 3.3.13(#3), it suffices to show that

@
Supposethat x € Sissuchthat x e (ﬂ)c Because A = AUA, it followsthat x ¢ A
and . From the latter, there exists a neighborhood of x, N (x), such
@
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that( )ﬂ A = ¢; while the former yieldsthat( )ﬂ
(©) 4)

A = @. Hence, N (x) ¢ A®. Supposethat y € N (x). Since , there

(5
exists a neighborhood N* (y) such that N* (y) ¢ N (x). From the transitivity of

Subset, from which we conclude that y is not a limit point of A; i.e.,
(6)
y € (A)°. Because y was arbitrary,

(vy) [y eN(X = } ;
)

e, . Combining our containmentsyieldsthat N (x) C
®
A° and . Hence,
®)

N(x)CACﬂ(A’)°:|: } .
©)

Snce x was arbitrary, we have shown that

(10)

Therefore, (K)C is open.

Part (c): Frompart (b), if A = A, then

(11)
Conversaly, if ,then A C A. Hence, AUA" =, thatis,
(12 (13

A=A

Part (f): Suppose that A c B, Bisclosed, and x € A. Thenx € Aor
. Ifx € A thenx e B; if x € A, then for every neighborhood

(14)
of X, N (x), there exists w € A such that w # x and . But then
(15)




94 CHAPTER 3. METRIC SPACES AND SOME BAS C TOPOLOGY

w € Band (N (X) —{x}) " B # #. Snce N (x) was arbitrary, we conclude that
. Because B is closed, . Combining the conclusions
(16) (17
and noting that x € A was arbitrary, we have that

(VX) |: :| .
(18)

*** A cceptable responses are (1) the complement of A closureisopen, (2) x ¢ A,
(3) N () — {x}, (4) N (x), (5) N (x) isopen, (6) N* (y) c A%, (7) y € (A)", (8)
N (x) C (A)% (9) AUA', and (10) (vx) (x e (A)°= AN () (Nr (x) C (K)C));
(11) Alisclosed, (12) Aisclosed, (13) A; (14) x isalimit point of A (or x € A');
(15 w € N (x); (16) x is alimit point of B (or x € B’); (17) x € B, (18)
Xe A= x e B***

Thus, A C B.

Definition 3.3.20 For ametric space (X, d) and E c X, theset E isdensein X if
and only if

(VX) (xe X=>xe EvxeFE).

Remark 3.3.21 Note that for a metric space (X, d), E ¢ X impliesthat E ¢ X
because the space X is closed. On the other hand, if E is densein X, then X C
E U E’ = E. Consequently, we see that E isdensein a metric space X if and only
if E = X.

Example 3.3.22 We have that the sets of rationals and irrationals are dense in Eu-
clideanl-space. This was shown in the two Corollaries the Archimedean Principle
for Real Numbers that were appropriately named “Density of the Rational Num-
bers” and “Density of the Irrational Numbers.”

Definition 3.3.23 For a metric spacg X, d) and E c X, the set E ivounded if
and only if

AM)(EHg)[M e R* Aq e X A (E C Num(@)].
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Excursion 3.3.24 Justify that each of the following sets is bounded in Euclidean
space.

1L A={(x1,X2) e R?: —1<x1 <2A|x2— 3| < 1}

2. B={(x1,%2,%3) e R3:x1 > 0A X2 > 0A X3 > 0 A 2X1 + X + 4%3 = 2}

Remark 3.3.25 Notethat, for (R?, d), where
X 0, if x=y
d(x,y) = )
1, if x#y

the space R? is bounded. This example stresses that classification of a set as
bounded istied to the metric involved and may allow for a set to be bounded

The definitions of least upper bound and greatest lower bound directly lead to
the observation that they are limit points for bounded sets of real numbers.

Theorem 3.3.26 Let E be a nonempty set of re_al numbers that is bounded, o =
sup (E),and g =inf (E). Thena € Eand S € E.

Spoace for illustration.

Proof. It sufficesto show the result for least upper bounds. Let E beanonempty
set of real numbersthat isbounded aboveand o = sup (E). If e € E,thena € E =
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EUE’. Fora ¢ E, supposethat h isapositivereal number. Becausea —h < a and
a = sup (E), thereexistsx € E suchthat « — h < x < a. Since h was arbitrary,

(Vvhy(h>0= AX)(« —h <x <a));
i.e., a isalimit point for E. Therefore, o € E asneeded. m

Remark 3.3.27 In view of the theorem we note that any closed nonempty set of
real numbers that is bounded above contains its least upper bound and any closed
nonempty set of real numbers that is bounded below contains its greatest |ower
bound.

3.3.2 Open Relativeto Subsets of Metric Spaces

Given a metric space (X, d), for any subset Y of X, d [y isametricon Y. For
example, given the Euclidean metric de on R? we have that de [rx (o) COrresponds
to the (absolute value) Euclidean metric, d = |x — y|, on thereals. It is natural to
ask about how properties studied in the (parent) metric space transfer to the subset.

Definition 3.3.28 Given a metric space (X,d) andY c X. Asubset E of Y is
open relativeto Y if and only if

(Vp)[pe E= @) (r>0A(Va)[geYAd(p,q) <r =qe E])]
which is equivalent to

(Vp)[peE= @) >0AYNN (p) C E)].
Example 3.3.29 For Euclidean 2-space,(R?, d), consider the subsets
Y = {(xl,xz) eR?: x5 > 3} and Z= {(xl,xz) eR?:x;=0A2< X <5}.

(@) Theset X={(x1,x2) e R?:3<x1 <5A1l <X <4}U{(3,1),((3,4}is
notopen relative to Y, while = {(x1, X2) e R :3<x1 <5A1 < Xp < 4}
Is open relativeto Y .

(b) The half open intervaf(xy, X2) € R?: x; = 0A 2 < X, < 3} is open rela-
tiveto Z.
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From the example we see that a subset of a metric space can be open relative to
another subset though it is not open in the whole metric space. On the other hand,
the following theorem gives us a characterization of open relative to subsets of a
metric space in terms of sets that are open in the metric space.

Theorem 3.3.30 Supposethat (X, d) isametric spaceand Y ¢ X. A subset E of
Y isopen relativeto Y if and only if there exists an open subset G of X such that
E=YNG.

Spoace for scratch work.

Proof. Supposethat (X, d) isametricspace, Y ¢ X,andE C Y.
If E isopen relativeto Y, then corresponding to each p € E thereexistsa
neighborhood of p, N;, (p), suchthat YNN;_ (p) C E. Let A= {N; (p): p € E}.

By Theorems 3.3.5(a) and 3.3.13(#1), G = UA is an open subset of X. Since
e

p e N, (p) foreach p € E, wehavethat E C G which, with E C Y, implies that
E C GNY. Onthe other hand, the neighborhoods N, (p) were chosen such that
YN N, (p) CE; hence,

U (YﬂNrp(p))zYﬂ(U Nrp(p))zYﬂGCE.

peE peE

Therefore, E = Y N G, as needed.

Now, suppose that G is an open subset of X suchthat E = Y NG and
p € E. Then p € G and G open in X yields the existence of a neighborhood of p,
N (p), suchthat N (p) c G. Itfollowsthat N (p)NY c GNY = E. Since p was
arbitrary, we have that

(Vp)[pe E= BN (p)[N(pNY C E]];

I.e, EisopenrelativetoY. m
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3.3.3 Compact Sets

In metric spaces, many of the properties that we study are described in terms of
neighborhoods. The next set characteristic will alow usto extract finite collections
of neighborhoods which can lead to bounds that are useful in proving other results
about subsets of metric spaces or functions on metric spaces.

Definition 3.3.31 Givenametric space (X, d)and A c X, thefamily {G, : a € A}
of subsets of X isan open cover for Aif and only if G, isopen for eacha € A and
Ac U G,.

aeA

Definition 3.3.32 A subset K of a metric space (X, d) iscompact if and only if ev-
ery open cover of K hasjanite subcoveri.e., given any open covg¢G, : a € A}
of K, there exists an & J such that{GO(k keJAal<k< n} is a cover for K.

We have just seen that a subset of a metric space can be open relative to another
subset without being open in the whole metric space. Our first result on compact
setsistells usthat the situation is different when we look at compactness relative to
subsets.

Theorem 3.3.33 For a metric spacd X, d), suppose that KZ Y ¢ X. Then K is
compact relative to X if and only if K is compact relative to Y .

Excursion 3.3.34 Fill in what is missing to complete the following proof of Theo-
rem 3.3.33.

Space for scratch work.
Proof. Let (X, d) be a metric space and K Y C X.
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Quppose that K is compact relativeto X and {U,, : o € A}
isafamily of sets such that, for each o, U,, isopen relativeto Y
such that

Kc U

a€A

By Theorem 3.3.30, corresponding to each o € A, there existsa
set G, such that G, isopenrelativeto X and

@

SnceK c Y and

Kc UU,=U =YN | Gy, if
aeA aeA 1) aeA

follows that

Kc ]G

aeA

Because K is compact relative to X, there exists a finite number
of elementsof A, a1, a, ..., an, such that

&)

n
Now K Cc YandK C |J G yieldsthat
ji=1

=1 ©) @

Snce {U, : a € A} wasarbitrary, we have shown that every
openrelativeto Y cover of K has a finite subcover. Therefore,

©)

Conversely, suppose that K is compact relativeto Y and
that {W, : a € A}isafamily of sets such that, for each o, W,
isopen relativeto X and

Kc W,

aeA

99
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Foreacha € A, letU, =Y NW,. NowK c Y and
Kc U W, impliesthat

a€A

(6)
Consequently, {U,, : a € A} isanopenreativeto Y
cover for K. Now K compact relativeto Y yields that
there exists a finite number of elements of A,
a1, a, ..., on, such that . Snce

0

n n n
Jus =J vow) =vo Jw,
=1 j=1 j=1

and K cC YV, it follows that

®
Snce {W, : a € A} wasarbitrary, we conclude that
every family of sets that form an open relativeto X
cover of K hasa finite subcover. Therefore,

©

*** Acceptable fill-ins: (1)U, = YN Gy, (2) K C Gy UGy, U--- UG, (or
n n n

Kc UGq) B U (YNGy), (4) U Uy, (5) K is compact relative t&, (6)
j=1 j=1 j=1

n n
KcYNnUW,=U YnW)= {J Ug, MK C U Uy, @)K C U Wy,
aeA aeA ael =1 =1
(9) K is compact inX.***

Our next set of results show relationships between the property of being com-
pact and the property of being closed.

Theorem 3.3.35 If Aisacompact subset of a metric space (S, d), then Aisclosed.

Excursion 3.3.36 Fill-in the steps of the proof as described
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Proof. Suppose that A isa compact subset of a metric space (S, d) and
. 1
p e Sissuchthat p ¢ A. Forq e A letrq = Zd (p,q). The
{Nr, (@) : g € A} isan open cover for A. Since A is compact,
there exists a finite number of q, say g1, gz, ..., On, Such that
A C Nrg, (Q1) U N, (@2) U+ - - U Ny (Gn) def W.

(a) Justify that the set V = Nrg, (P) M Nrg, (P) M-+ -1 Nrg (P)
isa neighborhood of p suchthat V NW = ¢.

(b) Justify that A® is open.

(c) Justify that the result claimed in the theoremistrue.

***For (a), hopefully you noted that taking r = 1min rq; yields that N, (p) N
<]<n

Nrg, (P) M-+ - N Ny, (p) = Nr (p). To complete (b), you needed to observe
that Ny (p) c A® made p an interior point of A®; since p was an arbitrary point
satisfying p ¢ A, it followed that A® is open. Finaly, part (c) followed from
Theorem 3.3.13(#3) which asserts that the complement of an open set is closed;
thus, (A®)¢ = Aisclosed.***

Theorem 3.3.37 Inany metric space, closed subsets of a compact sets are compact.
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Spoace for scratch work.

Excursion 3.3.38 Fill inthetwo blanksin order to complete the following proof of
the theorem.

Proof. For a metric space (X, d), supposethat F ¢ K ¢ X aresuchthat F is
closed (relativeto X) and K iscompact. Let G = {G,, : a € A} be an open cover
for F. Then the family Q = {V :V € G vV = F€} is an open cover for K. It
follows from K being compact that there exists a finite number of elements of Q,
say V1, Vo, ..., V, such that

Because F C K, we also have that

If forsome j € J,1 < j < n, F® = Vj, thefamily {Vk: 1<k <nAk#j}
would still be a finite open cover for F. Since G was an arbitrary open cover for
F, we conclude that every open cover of F has a finite subcover. Therefore, F is
compact. =

Corollary 3.3.39 If F and K are subsets of a metric space such that F is closed
and K is compact, then F N K is compact.

Proof. As a compact subset of a metric space, from Theorem 3.3.35, K is
closed. Then, it follows directly from Theorems 3.3.13(#5) and 3.3.37 that F N K
is compact as a closed subset of the compact set K. m

Remark 3.3.40 Notice that Theorem 3.3.35 and Theorem 3.3.37 are not converses
of each other. The set {(x1, X2) € R? : X3 > 2 A o = 0} is an example of a closed
set in Euclidean 2-space that is not compact.
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Definition 3.3.41 Let {S,}2; be a sequence of subsets of a metric space X. Then
{Si}e; isanested sequence of setsif and only if (vn) (N e J = S41 C ).

Definition 3.3.42 A family A ={A, : a € A} of sets in the universe &/ has the
finite intersection property if and only if the intersection over any finite subfamily
of A isnonempty; i.e.,

(VQ) [QC A AQfinite= (1) Ag ;éﬂ]

peQ

The following theorem gives a sufficient condition for a family of nonempty
compact setsto be digoint. The condition is not being offered as something for you
to apply to specific situations; it leads usto a useful observation concerning nested
sequences of nonempty compact sets.

Theorem 3.3.43 If {K, : a € A} isafamily of nonempty compact subsets of a met-
ric space X that satfes thefinite intersection property, theﬂ Ko # 0.

a€eA

Space for notes.

Proof. Suppose that ﬂ K, = @ and choose K5 € {K, :a € A}. Since

aeA

(VX)|:XEK(5=>X¢ ﬂKa}

aeA
Let
Gg={K,:aeAANK, #Ks}.

Because each K, is compact, by Theorems 3.3.35 and 3.3.13(#3), K, isclosed and
K is open. For any w € Kg, we have that w ¢ ﬂ K,. Hence, there exists a

aeA
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B € A suchthat w ¢ Ky from which we conclude that w e K% and Ky # K.
Since w was arbitrary, we have that

(Vu))[u)eK(5:>(E|ﬂ)(ﬁeA/\K/f;éK(s/\weK’g)].

Thus, Ks ¢ |J G which establishes G as an open cover for K;. Because K is
Geg
compact there exists afinite number of elementsof G, K¢S , KE , ..., K¢, such that

a1 a2’

n n c
Ks C U K(Sj :<ﬂ K“J)
j=1 j=1

from DeMorgan’s Laws from which it follows that

n
Km(ﬂ Kaj) = 0.
j=1

Therefore, there existsfmite subfamily of{K,} that is disjoint.

We have shown that iﬂ K, = @, then there exists fanite subfamily of

aeA
{K, : a € A} that has empty intersection. From the Contrapositive Tautology, if

{K, : a € A} is a family of nonempty compact subsets of a metric space such that
the intersection of anfinite subfamily is nonempty, theﬂ Ko #90. m

aeA

Corollary 3.3.44 If {Kn},2 4 is a nested sequence of nonempty compact sets, then
[Kn # 9.

neJ

Proof. For A anyfinite subset of], letm = max{j : | € A}. BecausgKpn} 2,
is a nested sequence on nonempty S€ts,C () Kj and () Kj # #. SinceA
jeA

jeA
was arbitrary, we conclude thg, : n € J} satidies thefinite intersection property.
Hence, by Theorem 3.3.48,)K, # 0. m

neJ

Corollary 3.3.45 If {§};2; is a nested sequence of nonempty closed subsets of a
compact setsin a metric space, then ﬂ S # 0.

nejJ
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Theorem 3.3.46 In a metric space, any infinite subset of a compact set has a limit
point in the compact set.

Soace for notes and/or scratch work.

Proof. Let K be a compact subset of a metric space and E is a nonempty
subset of K. Suppose that no element of K is alimit point for E. Then for each
x in K there exists a neighborhood of x, say N (x), such that (N (x) — {x}) N
E = 0. Hence, N (x) contains at most one point from E; namely x. The family
{N (x) : x € K} forms an open cover for K. Since K is compact, there exists a
finite number of elementsin {N (x) : x € K}, say N (x1), N (x2), ..., N (Xn) , such
that K € N (X)) UN(X2) U---U N (Xn). Because E C K, we also have that
E c N(X1) UN(X2) U---U N (x). From the way that the neighborhoods were
chosen, it followsthat E C {x1, X2, ..., Xn}. Hence, E isfinite.

We have shown that for any compact subset K of metric space, every subset
of K that has not limit pointsin K isfinite. Consequently, any infinite subset of K
must have at least one limit point that isin K. m

3.3.4 Compactnessin Euclidean n-space

Thus far our results related to compact subsets of metric spaces described implica-

tions of that property. It would be nice to have some characterizations for compact-
ness. In order to achieve that goal, we need to restrict our consideration thcspeci
metric spaces. In this section, we consider only reapace with the Euclidean
metric. Ourfirst goal is to show that every-cell is compact ifR". Leading up to

this we will show that every nested sequence of nonemyaglls is not disjoint.

Theorem 3.3.47 (Nested Intervals Theorem) If {In};2; is a nested sequence of

[o.]
intervalsin RY, then N I, # 4.
n=1

Proof. For the nested sequence of intervellgl> ;, let In = [an, bn] and A =
{an :n e J}. Becaus€ln}y2; is nested[an, by] C [a1, by] for eachn e J. It
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followsthat (Vn) (n € J = a, < by). Hence, A isanonempty set of real numbers
that is bounded above. By the Least Upper Bound Property, x = sup A exists and
e

isreal. From the definition of least upper bound, a, < x for each n € J. For any
positive integers k and m, we have that

A < ak+m < brym < by

from which it followsthat x < b, forall n € J. Sncea, < x < b, foreachn € J,
(0.0) 0.9]
weconcludethat x € () In. Hence, (1 In# 0. m
n=1 n=1
Remark 3.3.48 Note that, for B = {by : n € J} appropriate adjustments in the
proof that was given for the Nested Intervals Theorem would allow us to conclude
[0.9]

thatinf B € [ In. Hence, if lengths of the nested integrals go to O as n goes to oo,

n=1

o0
then sup A = inf B and we conclude that [ | consists of one real number.
n=1

The Nested Intervals Theorem generalizes to nested n-cells. The key is to have
the set-up that makes use of thantervals [Xj, yj], 1 < j < n, that can be
associated witlixs, X2, ..., Xn) and(yi, Y2, ..., yn) in R".

Theorem 3.3.49 (Nested n-Cells Theorem) Let n be a positive integer. If {1y}

o0
is a nested sequence of n-cells, then( Ik # 4.
k=1

Proof. For the nested sequence of intervals {1y} ;, let
Ik = {(Xl, X2, ..., Xn) € R": a,j < Xj <bgjforj=12,.., I‘l}.

Foreach j, 1 < j < n, let Iij = [aj, bk j]- Theneach {I\;} -, sdtisfiesthe

conditions of the Nested Intervals Theorem. Hence, for each j, 1 < j < n, there
[0.9] [0.9]

existswj € Rsuchthat wj € () I, j. Consequently, (w1, w2, ..., wn) € () lk &s
k=1

k=1
needed. m

Theorem 3.3.50 Every n-cell is compact.
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Proof. For real constants ay, ap, ..., an and by, by, ..., by such that a; < bj for
eachj=1,2,...,n,let

lo=1={(Xt, X2, ... X5n) e R": (Vj e ) (1 < j <n=aj <Xj <bj)}

and

5:\Ii(bj —aj)z.

=1

Then (¥X) (YY) [x, yelg= |x—-y| < (5]. Suppose that g is not compact. Then

there existsan open cover G = {G,, : a € A} of g for which no finite subcollection

covers lo. Now we will describe the construction of a nested sequence of n-cells

each member of which is not compact. Use the space provided to sketch appropriate
pictures fom = 1,n = 2, andn = 3 that illustrate the described construction.

aj + bj

Foreachj, 1< j <n,letcj = . The sets of intervals
{(aj,cj):1<j<n} and {(cj,bj):1<j<n}

can be used to determine or generdtengw n-cells, Ilfl) forl < k < 2". For
example, each of

{1, %, ., xn) eRY I (jeD) (1< | sn=a <X <),

{(xt, %2, ... Xn) e R": (Vj e]) (1< j <n=cj < xj <bj)},
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and

{(Xl,Xz,...,Xn) e]R”:aj <Xj <cjif2]jandcj < Xj <b; ifZJ(j}
is an element of {I(l) 11<k< 2”}. Foreachk € J,1 < k < 2", 1Y isa subset

(sub-n-cell) of 1o and U I(l) lo. Consequentlyy = {G, : & € A} is an open

k=
cover for each of the’qubﬂ cells. Becausdy is such that ndinite subcollection
from G coversly, it follows that at least one of the elements{ gﬁl) 1l<k< 2”}

must also satisfy that property. LBtdenote an element ﬂél) l<k< 2”} for
which nofinite subcollection fron§y coversli. For (X1, X2, ..., Xn) € 11 we have
that eithera; < xj < ¢j orcj < xj < bj for eachj, 1 < j < n. Since

cj—aj =bj—Cj =bj—aj

2 2 2

it follows that, forx = (x1, X2, ..., Xn), Y = (Y1, ¥2, ..., Yn) € |1

n " (b —a))’ S
dey) = | D (yj—x)° < Zﬁ4§ﬂ2=?

j=1 j=1

: : .0
i.e., the dianql1) is >

The process just applied 1@ to obtainl; can not be applied to obtain a
subn-cell of 11 that has the transferred properties. That is, if

_ {(xl,xz,...,Xn) eR": (Vj e ) (15 j < n:>aj(1§Xj < bgl))},
a® 1 b
2
() azizn] o (@) s

that will determine 2 new n-cells, I,fz) for 1 < k < 2", that are sum-cells
of 11. Now, sinceG is an open cover foi; such that nofinite subcollection

letting c(l) generates two set of intervals

from G coversl, and U I(z) I1, it follows that there is at least one element
k=1
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of {Iéz) 1<k< 2“} that cannot be covered with a finite subcollection from G;

choose one of those elements and denote it by I>. Now the choice of cgl) alows

. di | ) . ,
us to show that diam (l) = M = 2 Continuing this process generates

{Ik} o that satisfies each of the following properties:
o {lk}pe isanested sequence of n-cells,
e for eachk € J, nofinite subfamily ofG coversly, and

o (V) (V) [X,yelk= Ix—y| <27%].
o0 o
From the Nestea-cells Theorem,( Ix # @. Let¢ € () lk. Because
k=0 k=0

o0
G ={G, :a € A}is an open cover folp and [ Ik C lo, there exist$s € G such

that; € G. SinceG is open, we there is a pol(sit(i)ve real numbesuch thatN, (¢) C
G. Now diam(N; (¢)) = 2r and, forn € J large enough, diarfly) = 27"9 < 2r.
Now, ¢ € Ik for all k € J assures that € I for all k > n. Hence, for alk € J
such thak > n, Ix ¢ N; (¢) € G. In particular, each, k > n, can be covered by
one element off which contradicts the method of choice that is assuréglig not
compact. Therefordg is compact.m

The next result is a classical result in analysis. It gives us a characterization for
compactness in reakspace that is simpjanost of the “hard work” for the proof
was done in when we proved Theorem 3.3.50.

Theorem 3.3.51 (The Heine-Borel Theorem) Let A be a subset of Euclidean n-
space. Then A is compact if and only if A is closed and bounded.

Proof. Let A be asubset of Euclidean n-space(R", d)
Suppose thah is closed and bounded. Then there existaarll | such
that A ¢ |. For example, becausg is bounded, there existgl > 0 such that

A C Nm (ﬁ) for this case, tha-cell
| = [(xl, X2,...,Xn) € R": max [xj| < M +1
1<j<n

satidies the speéied condition. From Theorem 3.3.50js compact. Sincé C |
andA is closed, it follows from Theorem 3.3.37 thais compact.
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Suppose that A is a compact subset of Euclidean n-space. From Theorem
3.3.35, we know thaA is closed. Assume thak is not bounded and lgh; € A.
Corresponding to eacim € J, choose apy in A such thatpy, # pk for k =
1,2,..,(m—=1) andd (p1, pm) > m— 1. As an iffinite subset of the compact
set A, by Theorem 3.3.46{pn, : m € J} has a limit point inA. Letq € Abe a
limit point for { pm : m € J}. Then, for each € J, there existpm, € {pm: m € J}

1
such thad (pmt, q) < R From the triangular inequality, it follows that for any
Pm; € {Pm:m e J},

1
d (Pm P1) < d (Pm,0) +d (g, p1) < Top Hd@ Py <1+d@ py).

But 1+d (q, p1) is afixed real number, whilem, was chosen such that{ pm,, p1) >
my — 1 andm; — 1 goes to ifinity ast goes to ifinity. Thus, we have reached a
contradiction. ThereforeA is bounded.m

The next theorem gives us another characterization for compactness. It can be
shown to be valid over arbitrary metric spaces, but we will show it only over real
n-space.

Theorem 3.3.52 Let A be a subset of Euclidean n-space. Then A is compact if and
only if every irfinite subset of A has a limit pointin A.

Excursion 3.3.53 Fill in what is missing in order to complete the following proof
of Theorem 3.3.52.

Proof. If Aisacompact subset of Euclidean n-space, then every fimite subset
of A has a limit point inA by Theorem 3.3.46.

Suppose thaA is a subset of Euclideam-space for which every finite
subset ofA has a limit point inA. We will show that this assumption implies that
is closed and bounded. Suppose thas a limit point of A. Then, for eacm € J,
there exists an, such that

n

LetS = {X, : neJ}. ThenSis an of A. Conse-
(1)
qguently,S has in A. But Shas only one limit point
2
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namely . Thus, w € A. Since w was arbitrary, we conclude that A contains
©)
al of itslimit point; i.e.,

(4)
Suppose that A is not bounded. Then, for each n € J, there exists y, such
that [yn] > n. Let S= {y,: n e J}. Then Sisan of

®)

A that has no finite limit point in A. Therefore,
A not bounded = (35) (Sc A A Sisinfinite A SN A =0);

taking the contrapositive and noting that — (P A Q A M) islogically equivalent to
[(P A Q) = M] for any propositions P, Q and M, we conclude that

(vVS) [( ):> sn A’;éﬂ}
B)

("

|
*** A cceptable completions include: (1) infinite subset, (2) alimit point, (3) w, (4)
Aisclosed, (5) infinite subset, (6) S ¢ A A Sisinfinite, and (7) A isbounded.* **

As an immediate consequence of Theorems 3.3.50 and 3.3.46, we have the fol-
lowing result that is somewhat of a generalization of the Least Upper Bound Prop-
erty ton-space.

Theorem 3.3.54 (Welerstrass) Every bounded infinite subset of Euclidean n-space
has a limit point inR".

3.35 Connected Sets

With this section we take a brief look at one mathematical description for a subset

of a metric space to be “in one piece.” This is one of those situations where “we
recognize it when we see it,” at least with simply described seé&samdR2. The
concept is more complicated than it seems since it needs to apply to all metric spaces
and, of course, the mathematical description needs to be precise. Connectedness is
defined in terms of the absence of a related property.
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Definition 3.3.55 Two subsets A and B of a metric space X are separated if and
only if

ANB=0AANB=4.

Definition 3.3.56 A subset E of a metric space X is connected if and only if E is
not the union of two nonempty separated sets.

Example 3.3.57 Tojustifythat A={x e R:0 < x <2V 2< x < 3}isnot con-
nected, we just have to notethat B {x e R: 0 < X < 2} and
B, = {x e R: 2 < x < 3} are separated sets iR such that A= B; U B,.

Example 3.3.58 In Euclidean2-space, if C= D1 U D, where
D1 = {0, x2) € B2 d ((1,0), (xa, %) < D)}
and

D2 = {0, %) € B2 1 d((=1,0), (xa. x2) < 1)},

then C is a connected subsefR#.

Remark 3.3.59 The following is a symbolic description for a subset E of a metric
space X to be connected:

VA (VB)[(ACc XABC XAE=AUB)
= (ANB#0VANB#IVA=0VB=0).
The statement is suggestive of the approach that is frequently taken when trying
to prove sets having given properties are connectainely, the direct approach
would take an arbitrary set E and let E AU B. This would be followed by using
other information that is given to show that one of the sets must be empty.

The good newsisthat connected subsets of R can be characterized very nicely.
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Theorem 3.3.60 Let E be a subset of RY. Then E is connected in R* if and only if
(VX)(Vy)(VZ)[(x,ye EArnzeR'Ax<z< y) =ze E}.
Excursion 3.3.61 Fill in what is missing in order to complete the following proof

of the Theorem.

Proof. Suppose that E is a subset of R! with the property that there exist real
numbers x and y with X < y suchthat x, y € E and, for some z € R,

ze (X,y) andz ¢ E.

Let A, = EN(—o0,z)and B, = EN(z,00). Sincez ¢ E, E = A;U B;. Because
x € A;andy € B, both A; and B; are . Findly, A; ¢ (=0, 2)
@

and B; C (z, o) yieldsthat
sz BZ: AzﬂEZ:
@)
Hence, E can be written as the union of two sts;ie, Eis

()
. Therefore, if E isconnected, then X,y e EA z €

4
R A X <z < yimpliesthat

(5
To prove the converse, suppose that E is a subset of R? that is not con-
nected. Then there exist two nonempty separated subsifs éfand B, such that
E = AUB. Choosex € Aandy € B and assume that the set-up admits that y.
SinceAN [x, y] is a nonempty subset of real numbers, by the least upper bound

property,z = sup(Aﬂ [x, y]) exists and is real. From Theorem 3.3.26c A;
e

thenANB = @ yields thatz ¢ B. Now we have two possibilities to consicler¢ A
andze A. If z¢ A thenz¢ AUB=Eandx <z<y.Ilfze A thenANB =0
implies thatz ¢ B and we conclude that there existssuch thatz < w < y and

w ¢ B. Fromz < w, w ¢ A. Hencew ¢ AU B = E andx < w < y. In either
case, we have that (vx) (Vy) (V2) [(x,ye EAzeR'Ax <z <y) = z€ E].

By the contrapositivévx) (vy) (V2) [(x,y e EAze R'AXx <z <y) = z € E]
implies thatE is connectedm

*** Acceptable responses are: (1) nonempty@(ZB) separated, (4) not connected,
and (5)E is connected**

From the theorem, we know that, for a set of reals to be connected it must be
either empty, all oRR, an interval, a segment, or a half open interval.
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3.3.6 Perfect Sets

Definition 3.3.62 A subset E of a metric space X is perfect if and only if E is
closed and every point of E isa limit point of E.

Alternatively, asubset E of ametric space X isperfect if and only if E isclosed
and contains no isolated points.

From Theorem 3.3.7, we know that any neighborhood of alimit point of asubset
E of a metric space contains infinitely many points from E. Consequently, any
nonempty perfect subset of a metric space is necessarily infinite; with the next
theorem it is shown that, in Euclidean n-space, the nonempty perfect subsets are
uncountably ifinite.

Theorem 3.3.63 If P isa nonempty perfect subset of Euclidean n-space, then P is
uncountable.

Proof. Let P be anonempty perfect subset of R". Then P contains at least one
limit point and, by Theorem 3.3.6, P isinfinite. Suppose that P is denumerable. It
followsthat P can be arranged as an infinite sequence; let

X1, X2, X3, . . .

represent the elements of P. First, we will justify the existence (or construction) of
(0.0)
j

asequence of neighborhoods {V; }._ , that satisfies the following conditions:

(i) v (j eI=Vju1 V),
(i) (Vj)(] e J = X; ¢Vj+1),and
(iii) (Vj)(] el=V, ﬂP;éQf).

Start with an arbitrary neighborhood of x1; i.e., let V1 be any neighborhood of
x1. Suppose that {V; }?=1 has been constructed satisfying conditions (i)—(iii) for
1 < j < n. BecauseP is perfect, everx € VN P is a limit point of P. Thus there
are an ifinite number of points oP that are inV,, and we may choosg € V, " P
such thaty # x,. Let V41 be a neighborhood of such thatx, ¢ V.1 and
Vi1 C Vi. Show that you can do this.
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Note that Vo1 N P # @ sincey € Vyy1 N P. Thus we have a sequence {V; }Tii

satisfying (i)—(iii) for 1 < j < n+ 1. By the Principle of Complete Induction we
can construct the desired sequence.

Let {K;}[_, be the sequence fised byK; = Vj N P for eachj. SinceV; and
P are closedK is closed. Sinc&; is boundedK; is bounded. Thu&; is closed
and bounded and hence compact. Sixcé K1, no point of P lies in H?O:]_Kj.
SinceK;j C P, this impliesn$Z,Kj = #. But eachK; is nonempty by (iii) and
Kj 2 Kj41 by (i). This contradicts the Corollary 3.3.2&

Corollary 3.3.64 For any two real numbers a and b such that a < b, the segment
(a, b) isuncountable.

The Cantor Set

The Cantor set is a fascinating example of a perfect subset tifiat contains no
segments. In Chapter 11 the idea of the measure of a set is stiidjederalizes
the idea of length. If you take MAT127C, you will see the Cantor set offered as an
example of a set that has measure zero even though it is uncountable.

The Cantor set is daed to be the intersection of a sequence of closed subsets
of [0, 1]; the sequence of closed sets idided recursively. LeEy = [0, 1]. For
E1 partition the intervaEg into three subintervals of equal length and remove the
middle segment (the interior of the middle section). Then

-l

. . 1 2 . .
For E» partition each of the intervals0, 3 and{é, 1| into three subintervals of

equal length and remove the middle segment
then

rom each of the partitioned intervals

m
N
Il
| —
o
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Continuing the process E,, will be the union of 2" intervals. To obtain E 1, we
partition each of the 2" intervals into three subintervals of equal length and remove
the middle segment, then E,,,.1 is the union of the 2" intervals that remain.

Excursion 3.3.65 In the space provided sketch pictures of Eg, E1, E2, and E3 and
find the sum of the lengths of the intervals that form each set.

By construction {En};2 ; is anested sequence of compact subsets of R,

Excursion 3.3.66 Find a formula for the sum of the lengths of the intervals that
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form each set Ej,.

The Cantor set isdefined to be P = (") En.

n=1
Excursion 3.3.67 Justify each of the following claims.

(a) The Cantor set is compact.

(b) The {En}q2, satisfies thefinite intersection property

Remark 3.3.68 It follows from the second assertion that P is nonempty.
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Finally we want to justify the claims that were made about the Cantor set before
we described its construction.

e The Cantor set contains no segment from Eg.
To seethis, we observe that each segment in the form of

3k+1 3k+2
( 3 3m )fork,me.,]]
isdigoint from P. Given any segment (a, ) for a < g, if m € J is such that
— . : 3k+1 3k+2
3M< P 6a,then (a, B) containsaninterval oftheform( 3;'“_ , 3:: )

from which it follows that (a, ) isnot contained in P.

e The Cantor set is perfect. For x € P, let S be any segment that contains x.
[0.9]
Sincex € ﬂ En, X € E for eachn € J. Corresponding to each n € J, let

I, be the irrllte%val in E, such that x € 1,. Now, choose m € J large enough
toget I, ¢ Sand let Xy, be an endpoint of 1, such that X, # x. From the
way that P was constructed, X, € P. Since S was arbitrary, we have shown
that every segment containing x aso contains at least one element from P.
Hence, x isalimit point of P. That x was arbitrary yields that every element
of Pisalimit point of P.

3.4 Problem Set C

1. For X = (X1, X2, ..., XN) andy = (Y1, Yo, ..., Yn) INRN, let

N
dx,y) = J Z (xj — y,—)z.

=1

Provethat (RN, d) isametric space.
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2. For X = (X1, X2, ..., XN) andy = (y1, Yo, ..., yn) INRN, let
N
DY) =D Ixj = Yjl.
i=1

Provethat (RN, D) is ametric space.

3. Forx = (X1, X2, ..., Xn) and y = (y1, yo, ..., yn) inRN | let

doo(x,y) = max Xj = Y-

Provethat (RN, d.) is ametric space.

4. Show that the Euclidean metric d, given in problem #1, is equivalent to the
metric d., given in problem #3.

5. Suppose that (S, d) is a metric space. Prove that (S, d’) is a metric space
where

d(x,y)

dx,y) = ——F—"—.
%) 1+d(x,y)

[Hint: You might find it helpful to make use of propertiesof h (¢) = %&
for & > 0]

6. If a1, ap, ..., ap are positive real numbers, is
n
d (X, y) = D ak X — yl
k=1

wherex = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn) € R", ametric on R"? Does
your response changeif the hypothesisismodified to requirethat a;, ap, ..., an
are nonnegative real numbers?

7. Isthe metric D, given in problem #2, equivalent to the metric d.o, givenin
problem #37? Carefully justify your position.

8. Are the metric spaces (RN, d) and (RN, d’) where the metrics d and d’ are
given in problems #1 and #5, respectively, equivalent? Carefully justify the
position taken.
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9. For (x1, X2) and (x{, x5) inR?,

%ol + [X5] + [x1 — x| i Xx¢#x]
d3 ((Xla X2)3 (X:,I_’ Xé)) =
e = =

Show that (R?, d3) isametric space.

10. For x,y € RL let d (x,y) = |x —3y|. Is (R, d) a metric space? Briefly
justify your position.

11. For Rt with d (x, y) = |x —y|, give an example of a set which is neither
open nor closed.

12. Show that, in Euclidean n — space, a set that is open in R" has no isolated
points.

13. Show that every finite subset of RN is closed.
14. For R with the Euclidean metric, let A= {x € Q : 0 < x < 1}. Describe A.

15. Prove each of the following claims that are parts of Theorem 3.3.13. Let She
ametric space.

(8 Theunion of any family F of open subsets of Sis open.
(b) Theintersection of any family F of closed subsets of Sis closed.

(©) If Aq, Ag, ..., Ay isafinite family of closed subsets of S, then the union
Uj=1 Aj isclosed.

(d) The space Sis both open and closed.
() Thenull set is both open and closed.

16. For X = [=8, —4) U {=2,0} U (@ N (1, 2\/2}) as a subset of R, identify
(describe or show a picture of) each of the following.

(8 Theinterior of X, Int (X)
(b) Theexterior of X, Ext (X)
(c) Theclosureof X, X



3.4. PROBLEM SET C 121

(d) Theboundary of X, X
(e) The set of isolated points of X
(f) The set of lower bounds for X and the least upper bound of X, sup (X)

17. Assubsets of Euclidean 2-space, let
2. 1
A= (X, %) € RT-max{xy +1f, Pel} < 5 r

B = {(X1, X2) € R? : max({|x1 + 1|, |x2|} < 1} and
Y = {(xl,xz) eR2: (x1,%) € B— AV ((x1—1)2+x§ < 1)}

(a) Give a nicely labelled sketch &fon a representation for the Cartesian
coordinate plane.

(b) Give a nicely labelled sketch of the exteriorof Ext(Y), on a repre-
sentation for the Cartesian coordinate plane.

(c) IsY open? Bridy justify your response.
(d) IsY closed? Brifly justify your response.
(e) IsY connected? Brity justify your response.

18. Justify each of the following claims that were made in the Remark following
Definition 3.3.15

(@) If Ais a subset of a metric spac8, d), then Ext(A) = Int (A®).
(b) If Ais a subset of a metric spacs, d), then

x € 0A S (YN (X)) (Nr () N A B AN (X) N AS # 9).
19. ForR? with the Euclidean metric, show that the set
S= {(x,y) eR?:0<x?+y? < 1}

is open. Describe each &, S, 6S, S, and°.

20. Prove thaf(x1, X2) e R?: 0 < x; < 1A 0 < xp < 1} is not compact.
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21.
22

23.
24,
25.

26.

27.
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Prove that Q, the set of rationalsin R2, is not a connected subset of R1.

Let F be any family of connected subsets of a metric space X such that any

two members of F have acommon point. Provethat ) F isconnected.
FeF

Prove that if Sisa connected subset of a metric space, then Sis connected.
Prove that any interval | ¢ R is aconnected subset of R,

Prove that if A isa connected set in ametric spaceand A c B c A, then B
IS connected.

Let {Fn}oo, be a nested sequence of compact sets, each of which is con-

o0
nected. Prove thaﬂ F, is connected.
n=1

Give an example to show that the compactness of thé&gegigen in problem
#26 is necessary.e., show that a nested sequence of closed connected sets
would not have been enough to ensure a connected intersection.



