PROOF WRITING: ASSIGNMENT 4

Due: Thursday, February 26th

Let \(V \) be a vector space with basis \(B = \{v_1, \cdots, v_n\} \). For \(\pi \in S_n \) define the linear transformation \(T_\pi : V \to V \) by \(T(v_i) = v_{\pi(i)} \) for \(1 \leq i \leq n \). Let \(M_\pi \) denote the matrix of \(T_\pi \) with respect to the basis \(B \) and let \(M_n \) denote the set of such matrices.

(1) Show that \(M \in M_n \) if and only if there is exactly one 1 in each row and column of \(M \) and zeroes everywhere else.

(2) Show that \(M^T \in M_n \) if and only if \(M \in M_n \).

(3) Let \(M_\pi = (m_{ij})_{1 \leq i,j \leq n} \). Show that

\[
m_{ij} = \begin{cases}
1, & i = \pi(j) \\
0, & \text{otherwise}
\end{cases}
\]

(4) Show that \(\det(M_\pi) = \text{sign}(\pi) \).

(5) Show that \(M_\pi M_\sigma = M_{\pi \sigma} \). (Hint: If \(AB = C \) then \(c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} \).

(6) For \(M_\pi \in M_n \) show that \(M_\pi^T M_\pi = I_n \).