Matlab code for BLO-OMP

Wenjing Liao and Albert Fannjiang

March 17, 2014

1 Spectral estimation

The package contains the codes of Orthogonal Matching Pursuit (OMP) and Band-excluded and Locally Optimized OMP (BLO-OMP) for the spectral estimation problem:

$$y_k = \sum_{j=1}^s x_j e^{-2\pi i k \omega_j} + e_k,$$

where $\omega_j \in [0,1), x_j \in \mathbb{C}, k = -f_c, \dots, f_c \text{ and } e \sim N(0, \sigma^2 I) + iN(0, \sigma^2 I).$

2 Functions

- 1. Main: the main function where frequencies and measurements are generated.
- 2. **OMP:** the code of realizing OMP [2].
- 3. **BLOOMP:** the code of realizing BLO-OMP [1].
- 4. **H_dist:** the code of computing the Hausdorff distance between two frequency support set. For example, let $S = \{\omega_i\}$ and $\hat{S} = \{\hat{\omega}_i\}$. The Hausdorff distance between S and \hat{S} is

$$d(\hat{\mathcal{S}}, \mathcal{S}) = \max \left\{ \max_{\hat{\omega} \in \hat{\mathcal{S}}} \min_{\omega \in \mathcal{S}} d(\hat{\omega}, \omega) , \max_{\omega \in \mathcal{S}} \min_{\hat{\omega} \in \hat{\mathcal{S}}} d(\hat{\omega}, \omega) \right\}.$$

where $d(\omega, \hat{\omega})$ is the distance between ω and $\hat{\omega}$ on Torus.

References

- [1] A. Fannjiang, and W. Liao, "Coherence pattern-guided compressive sensing with unresolved grids," SIAM Journal on Imaging Sciences 5(1) pp.179-202, 2012.
- [2] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," *The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, IEEE*, 1993.