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Parabolic Approximation, Radiative Transfer and

Time Reversal

Albert C. Fannjiang
Department of Mathematics, University of California at Davis, Davis, CA 95616

E-mail: cafannjiang@ucdavis.edu

Abstract. We first present a new formulation of parabolic approximation of the Maxwell
equations for heterogeneous dielectric materials. We then discuss rigorous results about self-
averaging scaling limits of parabolic waves in terms of the Wigner distribution function. Among
the 6 possible scaling limits two are exactly solvable. We use the Green function to analyze
the time reversal operation in turbulent media with power-law spectral density. We show that
the time-reversed refocused spot size depends superlinearly on the wavelength and thus has the
potential of breaking the diffraction limit when the wavelength is small.

We also derive an uncertainty principle for random media which has the forward wave spread
and the turbulence-induced resolution as conjugate quantities.

1. Introduction
Wave propagation in random media is an important problem for both fundamental and practical
reasons.

In the fundamental aspect, randomness often introduces completely new phenomena into the
physical processes. One such example is the localization of the Schrödinger wave in a strongly
fluctuating random medium. A related effect is the enhanced backscattering of waves in random
media. Another example is the transition of the Bloch waves in a periodic medium to the
diffusive wave regime when random impurities are added to the medium. In the practical aspect,
randomness is often viewed as impedance to various technologies such as distortion of wave fronts
and astronomical images for ground-based telescopes. Adaptive optics and space telescopes
(such as the Hubble Space Telescope) were invented to circumvent the difficulties caused by
the atmospheric turbulence. In satellite or wireless communications the multi-path effect of a
random medium causes the inter-symbol-interference which induces errors in communication or
slows down the rate of transmission.

Unfortunately the full governing equations describing wave processes in random media are
often extremely challenging to solve even for computers. It is thus very important to identify
asymptotic regimes where simplified description can be effective and to devise efficient numerical
schemes for computer simulation.

In the present paper, we first review the vector wave equations for electro-magnetic waves
in dielectric materials. Then we present a novel iterative scheme which has demonstrable
advantages. Next we discuss a family of self-averaging scaling limits, including the radiative
transfer limit, which arise when the correlation length of the medium fluctuation is relatively
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short and the intensity of the fluctuation is relatively large. Finally we use the Green function
of one of the exactly solvable limits to analyze the time reversal of waves in random media.

Time reversal of waves has been a hot topic because many new possibilities have been
demonstrated experimentally in laboratories and nature environments (mostly with the sound
waves) [3, 6, 4, 5, 11, 12, 13, 14, 17, ?, 22, 24, 26]. An interesting effect of time reversal operation
with random media is the statistical stability of the refocal spot, independent of the medium
realization from the same ensemble, when the time-reversal aperture is large compared to the
correlation length of the medium fluctuations. This statistical stability or self-averaging effect is
partially but rigorously addressed by one of our self-averaging scaling regimes. Another regime
of statistical stability not addressed in this paper is the use of broadband signals. The most
striking effect in time-reversed back-propagated waves in random media is that the refocused
spot size can be much smaller than that in the homogeneous medium. Here the random medium
appears as enhancement, instead of impedance, to the resolution. This is called superresolution
which in a particular regime has already been explained by using a radiative transfer equation in
[2]. In the previous experimental, numerical or theoretical results the superresolution comes as a
linear function of the wavelength but independent of the aperture. We show that in fractal media
the resolution can be a superlinear (between linear and quadratic) function of the wavelength.
The lowest achievable refocal spot size in this nonlinear regime is on the order of the smallest
scale of the medium fluctuations. Below this scale the linear regime prevails.

Finally we derive an uncertainty principle for random media which has the forward wave
spread and the turbulence-induced resolution as conjugate quantities.

2. Maxwell equations for dielectric materials
Let us start with the Maxwell equations for a dielectric medium where there is no free charges
ρ = 0 and no current flows j = 0 and the only material response is the induced dipole polarization
P:

∇× E = − ∂

∂t
B (1)

∇× H =
∂

∂t
D (2)

∇ · D = 0 (3)
∇ · B = 0. (4)

Here E and D are, respectively, the electric field and the displacement field, and are related by

D = ε0E + P = εE (5)

with the dielectric constants ε0 (of the vacuum) and ε (of the dielectric material); H and B are,
respectively, the magnetic field and the magnetic induction and are related by

B = µH (6)

with the magnetic permeability µ of the medium. The magnetic permeability of the vacuum is
denoted by µ0. Eq. (1) and (2) are the dynamical equations; eq. (3) and (4) are the constraints;
eq. (5) and (6) are the constitutive equations. We note that para- and diamagnetisms are
always very weak, so that for non-ferromagnetic materials it is essentially true that µ = µ0.
For ferromagnetic materials, µ is also essentially equal to µ0 in the optical range of frequency ω
since ferromagnetism does not occur at high frequencies.

The local speed of propagation c(�x), �x ∈ R
3 is given by

c =
1

√
εµ

=
c0

n
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where n(�x) is the refractive index field at �x given by

n(�x) =
√

ε

ε0
.

Taking the curl of eq. (1) and using eq. (2), (5) we obtain

∆E −∇(∇ · E) = c−2 ∂2

∂t2
E. (7)

Using the constitutive relation (5) and the constraint (3) the second term on the LHS can be
expressed as

∇ · E = ∇ · D
ε

= −ε−2∇ε · D = −ε−1∇ε · E. (8)

With this we arrive at the wave equation

∆E + ∇
(
ε−1∇ε · E

)
= c−2

0 ε−1
0 ε(x)

∂2

∂t2
E (9)

or in terms of the refractive index

∆E + 2∇
(
n−1∇n · E

)
= c−2

0 n2 ∂2

∂t2
E. (10)

Let us write the electric susceptibility χ = ε/ε0 as

χ = χ̄(1 + χ̃(�x)), �x ∈ R
3

where ε̄ is the background (relative) dielectric constant and ε̃ the fluctuation. Taking the Fourier
transform in time we obtain from eq. (9) that

∆Ê + ∇
(
(1 + χ̃)−1∇χ̃ · Ê

)
+ k2χ̄(1 + χ̃)Ê = 0 (11)

where
k = ω/c0

is the wavenumber in vacuum.

3. Coupled forward-backward equations with polarization
Let us consider the high frequency wave k � 1. We assume that the waves propagate primarily
in the z direction and we write �x = (z,x) where x is the coordinates in the transverse directions.

Following [18] we consider the following ansatz

Ê = Aei
√

χ̄kz + Be−i
√

χ̄kz. (12)

We can interpret A and B as the forward and backward propagating modes, respectively.
Differentiating with respect to z we have

Êz = Aze
i
√

χ̄kz + Bze
−i

√
χ̄kz + i

√
χ̄k

(
Aei

√
χ̄kz − Be−i

√
χ̄kz

)
. (13)

For high frequency waves k � 1 we now make the following approximation

Êz = i
√

χ̄k
(
Aeiχ̄kz − Be−iχ̄kz

)
(14)
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or equivalently

Aze
i
√

χ̄kz + Bze
−i

√
χ̄kz = 0. (15)

Differentiating eq. (15) w.r.t. z again and using (15) we obtain(
Azze

i
√

χ̄kz + Bzze
−i

√
χ̄kz

)
= i2k

√
χ̄Bze

−i
√

χ̄kz (16)

and (
Azze

i
√

χ̄kz + Bzze
−i

√
χ̄kz

)
= −i2k

√
χ̄Aze

i
√

χ̄kz (17)

which will be used later.
Substituting (12) into eq. (11) and canceling the background propagation components we

get

ei
√

χ̄kz
[
∆⊥A + Azz + i2

√
χ̄kAz + k2χ̄χ̃A + Az(1 + χ̃)−1χ̃z (18)

+∇⊥A ·
(
(1 + χ̃)−1∇⊥χ̃

)
+ i

√
χ̄k(1 + χ̃)−1(∇χ̃ · A)ez +

(
∇(1 + χ̃)−1∇χ̃

)
· A

]
= e−i

√
χ̄kz

[
−∆⊥B − Bzz + i2

√
χ̄kBz − k2χ̄χ̃B − Bz(1 + χ̃)−1χ̃z

−∇⊥B ·
(
(1 + χ̃)−1∇⊥χ̃

)
+ i

√
χ̄k(1 + χ̃)−1(∇χ̃ · B)ez −

(
∇(1 + χ̃)−1∇χ̃

)
· B

]
.

Now by (16) and (15) eq. (18) reduces to

i2
√

χ̄kAz + ∆⊥A + k2χ̄χ̃A (19)
+∇⊥A ·

(
(1 + χ̃)−1∇⊥χ̃

)
+ i

√
χ̄k(1 + χ̃)−1(∇χ̃ · A)ez +

(
∇(1 + χ̃)−1∇χ̃

)
· A

= e−i2
√

χ̄kz
[
−∆⊥B − k2χ̄χ̃B

−∇⊥B ·
(
(1 + χ̃)−1∇⊥χ̃

)
+ i

√
χ̄k(1 + χ̃)−1(∇χ̃ · B)ez −

(
∇(1 + χ̃)−1∇χ̃

)
· B

]
.

On the other hand, by (15) and (17) eq. (18) reduces instead to

−i2
√

χ̄kBz + ∆⊥B + k2χ̄χ̃B (20)
+∇⊥B ·

(
(1 + χ̃)−1∇⊥χ̃

)
− i

√
χ̄k(1 + χ̃)−1(∇χ̃ · B)ez +

(
∇(1 + χ̃)−1∇χ̃

)
· B

= ei2
√

χ̄kz
[
−∆⊥A − k2χ̄χ̃A

−∇⊥A ·
(
(1 + χ̃)−1∇⊥χ̃

)
− i

√
χ̄k(1 + χ̃)−1(∇χ̃ · A)ez −

(
∇(1 + χ̃)−1∇χ̃

)
· A

]
.

Here ∇⊥ = ∇x is the transverse gradient and ∆⊥ = ∆x is the transverse Laplacian. The main
feature in the above system is that z-derivative of A or B is first order and appears only once
in either equation. We note that the above procedure is exact including the relation (15) which
can be viewed as a constraint to eliminate the redundancy in the ansatz (12).

The coupled forward and backward modes (19), (20) take the following form

i2
√

χ̄k
∂

∂z
A + L1A = −e−i2

√
χ̄kzL2B (21)

−i2
√

χ̄k
∂

∂z
B + L2B = −ei2

√
χ̄kzL1A (22)

where the operators L1 and L2 given by

L1A = ∆⊥A + k2χ̄χ̃A (23)
+∇⊥A ·

(
(1 + χ̃)−1∇⊥χ̃

)
+ i

√
χ̄k(1 + χ̃)−1(∇χ̃ · A)ez +

(
∇(1 + χ̃)−1∇χ̃

)
· A

L2B = ∆⊥B + k2χ̄χ̃B (24)
+∇⊥B ·

(
(1 + χ̃)−1∇⊥χ̃

)
− i

√
χ̄k(1 + χ̃)−1(∇χ̃ · B)ez +

(
∇(1 + χ̃)−1∇χ̃

)
· B
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Figure 1. Iteration scheme for solving the wave equation

involve only the transverse differentiation. The main advantage of formulating the reduced wave
equation in the form (11) is that the original boundary value problem associated with (11) can
be solved iteratively from z = 0 to z = L by solving eq. (21) and then from z = L to z = 0 by
solving eq. (22):

i2
√

χ̄k
∂

∂z
A(n) + L1A(n) = −e−i2

√
χ̄kzL2B(n−1), A(n)(0,x) = Ê(0,x) − B(n−1)(0,x) (25)

−i2
√

χ̄k
∂

∂z
B(n) + L2B(n) = −ei2

√
χ̄kzL1A(n), B(n)(L,x) = ei

√
χ̄kLÊ(L,x) − ei2

√
χ̄kLA(n)(L,x)(26)

for n = 1, 2, 3... with B(0) = 0. The computational cost can be significantly lowered than the
direct solver of eq. (11). For simplicity, we assume that the transverse cross section of the
domain is a rectangle with widths Lx, Ly and we assume either the zero or periodic boundary
condition.

3.1. Hierarchy of approximations
In the weak scattering regime k � |χ−1∇χ|, the leading order approximation to the system
(19)-(20) is the system of parabolic wave equations

i2
√

χ̄kAz + ∆⊥A + k2χ̄χ̃A = 0 (27)
−i2

√
χ̄kBz + ∆⊥B + k2χ̄χ̃B = 0. (28)

The terms
e−i2

√
χ̄kzk2χ̄χ̃B, e−i2

√
χ̄kzk2χ̄χ̃A

can be neglected for fast phase if kL � 1 in the case of the transport or diffusive regime.
Equation-wise, this is the standard parabolic (or paraxial ) approximation which is widely used
for waves in weakly fluctuating refractive index fields (see for example [19]). However, (27)
and (28) are still coupled through the boundary conditions as in (25)-(26). Only the different
polarizations are decoupled.

125



The next order approximation is to include the term of the order k2 on the RHS of the
system. The resulting equations are the coupled system of the forward and backward modes:

i2
√

χ̄kAz + ∆⊥A + k2χ̄χ̃A = −e−i2
√

χ̄kzk2χ̄χ̃B (29)

−i2
√

χ̄kBz + ∆⊥B + k2χ̄χ̃B = −ei2
√

χ̄kzk2χ̄χ̃A. (30)

This coupled system has been numerically demonstrated to yield solutions more closely
approximating those of the reduced wave equation (11) than the decoupled system (27)-(28)
especially in the small scale behavior [18]. As in the system (27)-(28) the different polarizations
are decoupled in (29)-(29).

Let L0 be the correlation length of χ̃. When χ̃ is highly fluctuating as in the case of long
distance propagation L � L0 or in the case of wide beam width L⊥ � L0, it is no longer
reasonable to discard entirely the second lines on the LHS of (19)-(20). Namely, the different
components of the wave are coupled due to inhomogeneities.

We write explicitly the transverse and longitudinal components as A = (A⊥, A′),B =
(B⊥, B′). We assume still the high frequency regime kL0 � 1. Then the equations for the
transverse modes satisfy

i2
√

χ̄kA⊥
z + ∆⊥A⊥ + k2χ̄χ̃A⊥ +

[(
∇(1 + χ̃)−1∇χ̃

)
· A

]⊥ = −e−i2
√

χ̄kzk2χ̄χ̃B⊥ (31)

−i2
√

χ̄kB⊥
z + ∆⊥B⊥ + k2χ̄χ̃B⊥ +

[(
∇(1 + χ̃)−1∇χ̃

)
· B

]⊥ = −ei2
√

χ̄kzk2χ̄χ̃A⊥ (32)

while the longitudinal modes satisfy

i2
√

χ̄kA′
z + ∆⊥A′ + k2χ̄χ̃A′ + i

√
χ̄k(1 + χ̃)−1∇χ̃ · A = −e−i2

√
χ̄kzk2χ̄χ̃B′ (33)

−i2
√

χ̄kB′
z + ∆⊥B′ + k2χ̄χ̃B′ − i

√
χ̄k(1 + χ̃)−1∇χ̃ · B = −ei2

√
χ̄kzk2χ̄χ̃A′. (34)

The rest of the paper, however, will focus on the analysis of the parabolic system (27)-(28)
as the analysis of the other two systems are much more complicated and still work in progress.

3.2. Decomposition of the data
Let us first consider the homogeneous case where χ̄ = 1 and χ̃ = 0. Let Uz be the corresponding
propagator such that

Uzf(x) =
k

2πz

∫
exp

[
−i

k

2z
|x − y|2

]
f(y)dy.

Then we have the expression for A(n+1)

A(n+1)(0,x) =
n∑

m=0

ei2mkLU2m
L Ê(0,x) − eikLUL

n−1∑
m=0

ei2mkLU2m
L Ê(L,x). (35)

If the limits A∞(0,x) ≡ limn→∞ A(n)(0,x),B∞(L,x) ≡ limn→∞ B(n)(L,x) exist then they
satisfy the equations(

1 − e2ikLU2
L

)
A∞(0,x) = E(0,x) − eikLULE(L,x) (36)(

1 − e2ikLU2
L

)
B∞(L,x) = eikLE(L,x) − ei2kLULE(0,x). (37)

Let β be the bandwidth of the boundary data Ê(0,x), Ê(L,x). For

β <
√

2k (38)
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the RHS of eq. (36) and (37) are orthogonal to the null space of the adjoint of 1 − ei2kLU2
L,

denoted by ker
(
1 − ei2kLU2

L

)∗, and hence eq. (36) and (37) have a unique solution in the
orthogonal complement of ker

(
1 − ei2kLU2

L

)∗. The solutions are such that

eikLULA∞(0,x) + e−ikLB∞(L,x) = E(L,x) (39)
ULB∞(L,x) + A(0,x) = E(0,x). (40)

With the boundary data decomposed in the following way

Ê(0,x) = A∞(0,x) + B∞(0,x), B∞(0,x) =
(
Ê(0,x) − A∞(0,x)

)
Ê(L,x) = A∞(L,x)eikL + B∞(L,x)e−ikL, A∞(L,x) = e−ikL

(
Ê(L,x) − B∞(L,x)e−ikL

)
eq. (27) and (28) completely decouple from each other.

In the presence of an inhomogeneous electric susceptibility χ̃, the problem of decomposing
the data can be reduced to studying the wellposedness of the equations(

1 − e2ikLŨLUL

)
A∞(0,x) = E(0,x) − eikLŨLE(L,x) (41)(

1 − e2ikLULŨL

)
B∞(L,x) = eikLE(L,x) − ei2kLULE(0,x) (42)

where UL and ŨL are the (random) propagator associated with the one-sweep random
Schrödinger equations (27) and (28) respectively. The null space of the operator adjoint to
the LHS of (41)-(42) is not easy to characterize in general. However, the system (41)-(42) is
well-posed provided that exp (−i2Lk) is not in the spectrum of the unitary operator ŨLUL or
ULŨL.

In the following we will focus on the self-averaging regimes where a quadratic functional
of the wave amplitude, called the Wigner distribution, has a deterministic limit which is very
important in the time-reversal analysis discussed in Section 5. Because different polarizations
are decoupled in (27)-(28) we will use the scalar version of (27) and denote the amplitude by Ψ.

4. Self-averaging scaling limits
Next we present an overview of some recently proved scaling limits for high-frequency wave
transport in random media using the phase space formulation, called the Wigner distribution.
We then solve exactly two solvable limiting models and apply the results to time reversal of
waves.

Let us nondimensionalize the equation by two reference scales of observation Lz = L for the
longitudinal coordinate and Lx = Ly for the transverse coordinates, and the reference frequency
k0. Introducing the rescaled quantities

x̃ = x/Lx, z̃ = z/Lz, k̃ = k/k0

and dropping the tilde in z̃, x̃ after rescaling we obtain the parabolic equation in the rescaled
variables

i
∂

∂z
Ψ(z,x) +

γ

2k̃
∇2Ψ(z,x) +

k0

2
k̃Lzχ̃(zLz,xLx)Ψ(z,x) = 0. (43)

where γ is the dimensionless Fresnel number

γ =
Lz

k0χ̄L2
x

.
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Let us write
χ̃(zLz,xLx) = κV (z�z,x�x),

with
�z =

Lz

L0
, �x =

Lx

L0

where κ is the standard variation of the statistically homogeneous field χ̃(z,x) and L0 is the
correlation length of the index fluctuation so that V is the normalized electric susceptibility field
with O(1) correlation length. We then rewrite (43) as

i
∂Ψ
∂z

+
γ

2k̃
∆Ψ + k̃σV (z�z,x�x)Ψ = 0 (44)

with the dimensionless parameters

σ = k0Lzχ̄κ/2. (45)

The self-averaging scalings are to let �z, �x, σ → ∞ and γ → 0 in various controlled ways.
Since the self-averaging limits require �x → ∞ we shall assume for simplicity that the physical

domain is an infinite slab unbounded in the transverse dimensions. The effective size of the
domain, however, is determined by the boundary data and remains O(1).

4.1. Assumptions on the electric susceptibility
We assume that V (z,x) is a centered, z-stationary, x-homogeneous random field admitting the
spectral representation

V (z,x) =
∫

exp (ip · x)V̂ (z, dp)

with the z-stationary spectral measure V̂ (z, ·) satisfying

E[V̂ (z, dp)V̂ (z, dq)] = δ(p + q)Φ0(p)dpdq.

The transverse power spectrum density is related to the full power spectrum density Φ(ξ,p)
in the following way

Φ0(p) =
∫

Φ(ξ,p)dw.

The power spectral density Φ(�k) satisfies Φ(�k) = Φ(−�k),∀�k = (ξ,p) ∈ R
d+1 because the electric

susceptibility field is assumed to be real-valued. Hence

Φ(w,p) = Φ(−w,p) = Φ(w,−p) = Φ(−w,−p) (46)

which is related to the detailed balance of the limiting scattering operators described below.

Assumption 1 Vz(x) is a square-integrable, z-stationary, x-homogeneous Gaussian process
with a spectral density satisfying the upper bound

Φ(�k) ≤ K(�−2
1 + |�k|2)−H−1/2−d/2

(
1 + �2

0|�k|2
)−2

, �k ∈ R
d+1, H ∈ (0, 1) (47)

for some positive constants K, �0, �1.
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A relevant example is the generalized von Kármán spectral density with H = 1/3 [19].
Let Fz and F+

z be the sigma-algebras generated by {Vs : ∀s ≤ z} and {Vs : ∀s ≥ z},
respectively. The correlation coefficient r(t) is given by

r(t) = sup
h∈Fz

E[h]=0,E[h2]=1

sup
g∈F+

z+t
E[g]=0,E[g2]=1

E [hg] . (48)

We assume

Assumption 2 The correlation coefficient r(t) satisfies∫ ∞

0
r(s)ds < ∞.

4.2. Radiative transfer equations
First we consider a family of scaling limits with

γ � 1, �z, �x � 1 (49)

such that
γ�x = O(1).

This, of course, is not sufficient to ensure the existence of scaling limit until we specify the
strength of µ. For monochromatic wave, we set k̃ = 1.

To study scaling limits with a low Fresnel number it is convenient to use the Wigner
distribution

W (z,x,p) =
1

(2π)d

∫
e−ip·yΨ

(
z,x +

γy
2

)
Ψ

(
z,x − γy

2

)
dy (50)

which satisfies a closed-form equation

∂W

∂z
+ p · ∇W + σLW = 0, (51)

with

LW (z,x,p) = i

∫
eiq·x�x [Wz(x,p + �xγq/2) − Wz(x,p − �xγq/2)] V̂ (z�z, dq). (52)

We shall refer to eq. (51) as the Wigner-Moyal equation, the derivation of which is given in
Appendix A.

Many useful quantities can be recovered from the Wigner distribution. For instance, it is real
and its p-integral is the modulus square of the function∫

Rd

W (x,p)dp = |Ψ(x)|2, (53)

so we may think of W (x,p) as wave number-resolved mass density. Additionally, its x-integral
is ∫

Rd

W (x,p)dx = (
2π

γ
)d|Ψ̂|2(p/γ).

The energy flux is expressed through W (x,p) as

1
2i

(Ψ∇Ψ∗ − Ψ∗∇Ψ) =
∫

Rd

pW (x,p)dp (54)
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and its second moment in p is∫
|p|2W (x,p)dp = |∇Ψ(x)|2. (55)

Indeed one can recover from the Wigner distribution all but a constant factor, depending only
on z, about the wave amplitude by using this property∫

W (z,x,p)eip·ydp = Ψ(z,x +
γy
2

)Ψ∗(z,x − γy
2

)

or

Ψ(z,x1)Ψ∗(z,x2) =
∫

W (z,
1
2
(x1 + x2),q) exp

[
iγ−1q · (x1 − x2)

]
dq.

By setting x2 = 0 we obtain

Ψ(z,x1)Ψ∗(z, 0) =
∫

W (z,
1
2
x1,q) exp

[
iγ−1q · x1

]
dq.

The family of self-averaging scaling limits can be divided into two groups depending on
whether γ�x ∼ 1 or γ�x → 0. The following formulation of scaling limits provides a different
perspective on the convergence results proved in [8].

Theorem 1 Let Assumptions 1 and 2 be satisfied. Let γ�x = 1 > 0.
As γ → 0, �x, �z, σ → ∞ in one of the following ways the Wigner distribution, as weak solution

of the Wigner-Moyal equation, converges in probability to the solution of the transport equation

∂

∂z
W (z,x,p) + p · ∇W (z,x,p) = 2π

∫
K(p,q)[W (z,x,q) − W (z,x,p)]dq (56)

where K(p,q) is a nonnegative kernel given as follows.

(a) If σ ∼
√

�z, �x � �z then

K(p,q) = Φ(0,q − p) (57)

(b) If σ ∼
√

�x, �x � �z, d ≥ 3 then

K(p,q) = δ(
|q|2 − |p|2

2
)
[∫

Φ(w,q − p)dw

]
. (58)

(c) If σ ∼
√

�z, �x ∼ �z then

K(p,q) = Φ(
|q|2 − |p|2

2
,q − p). (59)

Theorem 2 Let Assumptions 1 and 2 be satisfied. Let γ�x → 0.
As µ → ∞ under the following additional assumption on the scaling parameters the Wigner

distribution converges in probability as a generalized function on R
2d to the solution of the

transport equation

∂

∂z
W (z,x,p) + p · ∇W (z,x,p) = ∇p · D∇pW (60)

where D is a symmetric, nonnegative-definite matrix given as follows.
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(a) If σ ∼ (γ�x)−1
√

�z, �x � �z then

D = π

∫
Φ(0,q)q ⊗ qdq. (61)

(b) If σ ∼ (γ�x)−1
√

�x, �x � �z, d ≥ 3 then

D(p) = π|p|−1

∫
p·p⊥=0

∫
Φ(w,p⊥)dw p⊥ ⊗ p⊥dp⊥. (62)

(c) If σ ∼ (γ�x)−1
√

�z, �x ∼ �z then

D(p) = π

∫
Φ(p · q,q)q ⊗ qdq. (63)

Eq. (60) with (61) , (62) and (63) are the geometrical optics limit of eq. (56) with (57), (58)
and (59), respectively.

The standard radiative transfer scaling is the one that leads to eq. (56) with the kernel
(59) [1]. Eq. (56) with (57) is closely related to the mean Wigner distribution in the Gaussian
white-noise model [9], while eq. (56) with (58) is closely related to the z-independent model
[25], [7].

Besides the limiting transport equations, the self-averaging aspect is of paramount
importance. From the perspective of the quantum stochastic dynamics in a random environment
as modeled by the Schrödinger equation with a random potential, self-averaging means that due
to the spatial and temporal diversity experienced by the wave function the quantum dynamics
has in the scaling limit a classical probabilistic (i.e. jump or diffusion processes in momentum)
description which is independent of the particular realization of the environment. The transition
from a unitary evolution to an irreversible process is of course the outcome of the phase-
space coarse-graining by the test functions. The above results are a rigorous demonstration
of decoherence, a mechanism believed to be responsible for the emergence of the classical world
from the quantum one [20], [27].

4.3. Exactly solvable models
Among the various scaling limits, two, Eq. (56)(a) and (60)(a), are exactly solvable. To see the
dependence on the wave-length, let us set γ�x = λ fixed. Then the resulting equation in the
regime of Theorem 1(a) can be written as

∂

∂z
W (z,x,p) + p · ∇W (z,x,p) (64)

= 2πλ−2

∫
Φ(0,q)[W (z,x,p + λq) − W (z,x,p)]dq

whose Green function is given by

GW (z,x,p; x̄, p̄) (65)

=
1

(2π)2d

∫
ei(w·(x−x̄)+r·(p−p̄)−zw·p̄) exp

[
−1/(2λ2)

∫ z

0
D∗(λ(r + w(z − s)))ds

]
drdw

with the wave structure function

D∗(x) =
∫

Φ(0,q)
[
1 − eix·q]

dq

The Green function for (60)(a) can be similarly solved by taking the (partial) inverse Fourier
transform in p. In the next section we will use the explicit solution given here to analyze the
so-called time reversal procedure.
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zz=L

TRM Source

0

Figure 2. The time reversal procedure. A source with central wavelength λ0 emits a pulse.
The transmitted field is recorded, stored and time reversed at the mirror of size a at a distance
L away, and then sent back toward the source point. There it refocuses on the spot size, ρtr,
described by (75) when the medium is homogeneous. Medium heterogeneity typically enhances
the refocusing resolution.

5. Analysis of time reversal with the exactly solvable transport equation
Let us briefly review the time reversal operation and its mathematical formulation. A cartoon
of a time reversal experiment is given in Figure 2.

Let the time-reversal array (TRA) be located on the plane z = 0 and the source at the
parallel plane a L-distance away with an aperture A. The aperture function of the mirror is, in
the simplest form, the indicator function IA of the set A representing the physical boundary of
the mirror. Let GH(0,x, L,y) be the Green’s function, with the point source located at (L,y),
for the reduced wave (Helmholtz) equation. By the self-adjointness of the Helmholtz equation,
GH satisfies the symmetry property

GH(0,x, L,y) = GH(L,y, 0,x). (66)

By reciprocity the wave field Ψm received at the mirror is given by

Ψm(xm) = IA(xm)
∫

GH(0,xm, L,xs)Ψ0(xs)dxs

= IA(xm)
∫

GH(L,xs, 0,xm)Ψ0(xs)dxs.

In the time-harmonic setting of the present setting, time reversal procedure is equivalent to
phase conjugation. After phase conjugation and back-propagation we have at the source plane
the wave field

ΨB(x) =
∫

GH(L,x, 0,xm)GH(L,xs, 0,xm)IA(xm)Ψ0(xs)dxmdxs.
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In the parabolic approximations the Green’s function GH(L,x, 0,y) is approximated by
eik̃LG(L,x,y) where G(L,x,y) is the propagator of the Schrödinger equation (44). The time-
reversed, refocused field then is approximated by

ΨB(x) =
∫

GS(L,x,xm)GS(L,xs,xm)Ψ0 (xs)IA(xm)dxmdxs

=
∫

eip·(x−xs)/γW (L,
x + xs

2
,p)Ψ0 (xs)dpdxs (67)

where the Wigner distribution W is given by

W (L,x,p) (68)

=
1

(2π)d

∫
e−ip·yGS(L,x + γy/2,xm)GS(L,x − γy/2,xm)IA(xm)dydxm.

This is a mixed-state type of Wigner distribution which satisfies the same Wigner-Moyal equation
(51)-(52), as does the pure-state Wigner distribution (50). The Wigner distribution in (68) has
the initial condition

W (0,x,p) =
IA(x)

γd(2π)d
(69)

which is a L∞(R2d)-function and should be treated as a generalized function on R
2d. Hence in

the regime of Theorem 1(a) we have the expression:

W (z,x,p) =
1

γd(2π)d

∫
GW (z,x,p, x̄, p̄)IA(x̄)dx̄dp̄. (70)

Let us now probe the refocused field near a point source located at x0, i.e. Ψ0(xs) = δ(xs−x0),
and write

x = x0 + �−1
x x′ = x0 +

γ

λ
x′.

Ptr(x0,x′) ≡ ΨB(x0 + �−1
x x′)

=
∫

eip·x′/λW (L,x0 +
γx′

2
,p)dp

=
1

(2πγL)d
ei

γ|x′|2
2Lλ2 ei

x′·x0
λL exp

[
− L

2λ2

∫ 1

0
D∗(sx′)ds

] ∫
e−ix′·x̄/(λL)

IA(x̄)dx̄ (71)

One striking effect of time reversal operation with random media is the statistical stability
of the refocal spot, independent of the medium realization from the same ensemble, when the
time-reversal aperture is large. In our framework this is readily understood in terms of the self-
averaging property of the mixed state Wigner distribution in one of the 6 regimes in Theorem 1
and 2 as �x → ∞ which, in the time-reversal setting, is the ratio of the aperture a = Lx to the
correlation length L0 of the medium.

5.1. Anomalous superresolution in time-reversed refocusing
Another somewhat counterintuitive effect in time reversal is that the presence of a strongly
scattering medium can greatly reduce instead of broadening, the time-reversed focal spot
size which can be much smaller than the one in the homogeneous medium. This is called
superresolution and has been convincingly explained in the diffusive wave regime by asymptotic
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analysis of equation similar to eq. (60) with the diffusion coefficient (63) assuming the spectral
density Φ(p · q,q) is concentrated near q = 0 in [2].

In what follows, we shall assume the regime of Theorem 1(a) and use the Green function (65)
to analyze superresolution in the case of a turbulent medium which after normalization (i.e. V )
has the power-law spectral density

Φ(�k) ∼ (1 + |�k|2)−H−1/2−d/2 exp (−|�k|2�2
0), H ∈ (0, 1) (72)

where �0 is the (normalized) inner scale. We focus on the intermediate (or inertial) regime

�0 � r = |x| � 1. (73)

Calculating the structure function with the power-law spectral density we obtain

D∗(r) ≈ C2
∗r

2H∗ , for �0 � r � 1

H∗ =
{

H + 1/2 for H ∈ (0, 1/2)
1 for H ∈ (1/2, 1]

where C∗ > 0 is a structure parameter. Substituting it into eq. (71) we obtain the Green
function for time-reversal field:

Ptr(x0,x) = (Lγ)−dei
γ|x|2
2Lλ2 ei

x·x0
λL ÎA(

|x|
λL

)Ttr(x) (74)

with

Ttr(x) = exp
[
−L/(2λ2)

∫ 1

0
D∗(−sx)ds

]
.

Here ÎA is the Fourier transform of the indicator function IA and is related to the Bessel function
J1 when A is the circular disk of diameter a.

In the homogeneous medium, D∗ = 0 and the refocal spot size is given by the Rayleigh
diffraction limit

ρtr ∼ λL

a
(75)

where a and L can both be taken as 1 since they are respectively normalized by Lx (the back-
propagated beam width) and Lz (the propagation distance).

The effect due to the turbulent medium is described by

Ttr(x) = exp
[
−C2

∗L|x|2H∗λ−2/(4H∗ + 2)
]

which, in the intermediate regime (73), yields a sharper turbulence-induced resolution

ρtr =

√∫
|x|2T 2

tr(x)dx∫
T 2

tr(x)dξ
(76)

∼ C
−1/H∗
∗ L−1/(2H∗)λ1/H∗ , �0 � ρtr � 1

for H∗ ∈ (1/2, 1]. That is, the above asymptotic is valid down to the inner scale, the smallest
scale of the random medium.
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The turbulence-induced resolution (77) is clearly smaller than the diffraction limit (75) when
either C∗ is sufficiently large (i.e. sufficiently strong medium fluctuation) or H ∈ (0, 1/2) with
sufficiently small λ since H∗ < 1. The latter case includes the Kolmogorov spectrum of H = 1/3.

Finally, if we carry out the same analysis with the Fokker-Planck equation of Theorem 2(a),
we obtain that the corresponding refocused field ΨB(x) is Gaussian in the offset variable x and
the refocal spot size is given by

ρtr ∼ (D0L)−1/2.

Clearly the refocal spot size in this case is a finite positive constant different from the vanishing
λ limit of (76) which is zero. This is due to the singular nature of the limit λ → 0.

5.2. Uncertainty principle for random media
In this section we note an interesting connection between the forward wave spread and the
turbulence-induced resolution in time-reversal.

Let us calculate the energy density in x

|Ψ(z,x)|2 =
∫

W (z,x,p)dp

with the Gaussian initial wave amplitude exp
[
−|x|2/(2α2)

]
:

|Ψ(L,x)|2 =
(

α

2
√

π

)d ∫
e−|w|2[α2/4+λ2L2/(4α2)]

× exp
[
−1/(2λ2)L

∫ 1

0
D∗(λLws/k̃)ds

]
eiw·x dw.

Hence the turbulence-induced broadening can be identified as convolution with the kernel which
is the inverse Fourier transform F−1T of the transfer function

T (x) = exp
[
−1/(2λ2)L

∫ 1

0
D∗(λLxs)ds

]
.

We observe that
F−1T (x) =

1
λ2L2

F−1Ttr(
x
λL

).

We define the turbulence-induced forward spread σ∗ as

σ∗ =

√∫
|x|2T 2(x)dx/

∫
T 2(x)dx

which together with ρtr then satisfies the uncertainty inequality:

σ∗ρtr ≥ λL. (77)

The equality holds when Ttr is Gaussian.
The forward spread is a measure of the enhancement of the effective aperture due to the

random medium. This motivates us to define the turbulence-induced aperture as

a∗ =
λL

ρtr

entirely analogous to (75).
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Appendix A. Derivation of the Wigner-Moyal equation
Eq. (51) can be formally derived as follows. Differentiating (50) w.r.t. z and using (44) we have

∂Wz

∂z
(x,p) =

1
(2π)d

∫
e−iy·p

[
iγ

2
∆Ψ(z,x +

γy
2

)Ψ∗(z,x − γy
2

)

− iγ

2
Ψ(z,x +

γy
2

)∆Ψ∗(z,x − γy
2

)
]

dy

+
1

(2π)d

∫
e−iy·p

[
i

γ
V (z�z, �xx +

�xγy
2

)Ψ(z,x +
γy
2

)Ψ∗(z,x − γy
2

)

− i

γ
V (z�z, �xx − �xγy

2
)Ψ(z,x +

γy
2

)Ψ∗(z,x − γy
2

)
]

dy

which can be written as

∂Wz

∂z
(x,p) =

1
(2π)d

∫
e−iy·p

[
i∇y ·

[
∇Ψ(z,x +

γy
2

)
]
Ψ∗(z,x − γy

2
)

+iΨ(z,x +
γy
2

)∇y ·
[
∇Ψ∗(z,x − γy

2
)
]]

dy

+
1

(2π)d

∫
e−iy·p

[
iγ

∫
dV̂ (z�z,q)ei�xq·(x+γy/2)Ψ(z,x +

γy
2

)Ψ∗(z,x − γy
2

)

− i

γ

∫
dV̂ (z�z,q)ei�xq·(x−y/2)Ψ(z,x +

γy
2

)Ψ∗(z,x − γy
2

)
]

dy

by using the spectral representation. Integrating by parts and expressing the right side in terms
of Wz we obtain eq. (51). Note the cancellation of the term

1
(2π)d

∫
e−iy·p iγ

2
∇Ψ(z,x +

γy
2

) · ∇Ψ∗(z,x − γy
2

)dy

in the process of integrating by parts.
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