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The paper addresses the space-frequency correlations of electromagnetic waves in general random, bianisotro-
pic media whose constitutive tensors are complex Hermitian matrices. The two-frequency Wigner distribution
(2f-WD) for polarized waves is introduced to describe the space-frequency correlations, and the closed form
Wigner—Moyal equation is derived from the Maxwell equations. Two-frequency radiative transfer (2f-RT) equa-
tions are then derived from the Wigner—Moyal equation by using the multiple-scale expansion. For the sim-
plest isotropic medium, the result coincides with Chandrasekhar’s transfer equation. In birefringent media,
the 2f-RT equations take the scalar form due to the absence of depolarization. A number of birefringent media
such as chiral, uniaxial, and gyrotropic media are examined. For the unpolarized wave in an isotropic medium
the 2f-RT equations reduces to the 2f-RT equation previously derived in part I of this research [J. Opt. Soc. Am.
A 24, 2248 (2007)]. A similar Fokker—Planck-type equation is derived from the scalar 2f-RT equation for the

birefringent media. © 2007 Optical Society of America

OCIS codes: 030.5620, 290.4210.

1. INTRODUCTION

In part I [1] of the series we studied the space-frequency
correlation for scalar waves in random media as governed
by the Helmholtz equation with a randomly fluctuating
refractive index. To this end, we introduced the two-
frequency Wigner distribution (2f-WD), which in the un-
scaled form is

! ip'y * ¥
W(X,p,wl,wz)— (277)3 fe U1<w1 + 20)1)
X
X UZ( — l) dy,

w9 2(,02
where U; and U, are the wave fields at frequencies w;
and ws, respectively. Throughout, © denotes the Hermitian
conjugation of vectors or matrices and * denotes the com-
plex conjugation. The important characteristic of defini-
tion (1) is that the spatial argument of each wave field is
scaled in proportion to the respective wavelength. The
variables x are the so-called size parameter in scattering
theory when the phase velocity is unity [2].

In the weak-coupling (disorder) regime we derived the
two-frequency radiative transfer (2{-RT) equation for the
two-frequency Wigner distribution. We considered several
approximations, notably the geometrical optics and
paraxial approximations. Based on the dimensional
analysis of these asymptotic equations, we obtained scal-
ing behavior of the coherence bandwidth and coherence
length. We also obtained the space-frequency correlation
below the transport mean free path by analytically solv-
ing one of the paraxial 2f-RT equations.

The main advantage of the 2f-RT theory over the tradi-
tional equal-time RT theory is that it describes not just
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the energy transport but also the two space-time point
mutual coherence in the following way. Let u(¢;,x;),j
=1,2 be the time-dependent wave field at two space—time
points (¢;,%;),j=1,2. Let x=(wX;+wyXy)/2 and y=wx;
—wyXy. Then we have

(u(ty,x)u (¢2,X9))

= f ei(thZ_w1t1)<UI(XI)U;(Xz»d(U]_d(Dz

= f eipTye_i‘",te_”“KW(x,p;a) +0'/2,0- w'/2))

xdwdo'dp, (1)

with t= (t1+t2)/2, T=l1—tg,w= (w1+w2)/2 , w'= w1—Wy.
Here and below (-) is the ensemble averaging w.r.t. the
medium fluctuations. In comparison, the single-time cor-
relation gives rise to the expression

<u(tvxl)u+(t’x2)>

=feip1ye_i‘",t|:j Wx,p;o+0'/2,0- 0'/2))do

Xdw'dp,

which, through spectral decomposition, determines only
the central-frequency-integrated 2f-WD. For a statisti-
cally stationary signal, Eq. (1) would be a function of 7
only. In this case different frequency components are un-
correlated and consequently only the equal-frequency WD
is necessary to describe the two-space—time correlation
[3]. For statistically nonstationary signals the two-
frequency cross correlation is needed to characterize the
two-space—time correlation.

© 2007 Optical Society of America
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The 2f-RT theory developed in part I has enabled pre-
cise estimation of important physical quantities such as
the coherence length and the coherence bandwidth [1],
which are medium characteristics relevant to communica-
tions and imaging in disordered media [4,5]. In particular,
the two-frequency formulation is an indispensable tool for
the statistical stability analysis of the time-reversal com-
munication scheme with broadband signals in multiple-
scattering media (see [4], where a 2f-RT equation and its
solution play a key role). The 2f-RT theory developed here
is expected to extend these results to the case of polarized
waves.

The organization of this paper is as follows. In Section
2 and Appendix A, we develop the two-frequency formu-
lation of the Maxwell equations for a general heteroge-
neous dielectric in terms of 2-WD. In Section 3, we for-
mulate the weak-coupling scaling limit for two-frequency
Wigner—Moyal equation. In Section 4 we develop the mul-
tiscale expansion to find an approximate solution in the
weak-coupling regime. In Section 5 and Appendix B,
based on a solvability condition we give an explicit form to
the 2f-RT equations for general bianisotropic media and
in Subsection 5.A we derive a scalar 2f-RT equation for bi-
refringent media. In Subsection 6.A, we consider the iso-
tropic medium and show that the general 2{-RT equations
after a change of variable reduces to the two-frequency
version of Chandrasekhar’s transfer equation. In Subsec-
tions 6.B—6.D, we examine three birefringent media: chi-
ral, uniaxial, and gyrotropic media. In Section 7, we ana-
lyze the unpolarized wave in the isotropic medium in the
geometrical optics regime and show that the two-
frequency version of Chandrasekhar’s equation reduces to
a Fokker—Planck-type equation rigorously derivable from
the geometrical optics of the scalar wave [6]. We derive a
similar equation from the scalar 2f-RT equation for the bi-
refringent media. We conclude the paper in Section 8 with
a brief discussion on expressing the two-space—time cor-
relation in terms of solutions of the 2f-RT equations.

2. MAXWELL EQUATIONS AND
WIGNER-MOYAL EQUATIONS

In this paper, we consider the electromagnetic wave
propagation in a heterogeneous, lossless, bianisotropic di-
electric medium. We assume that the scattering medium
is free of charges and currents and start with the source-
free Maxwell equations in the frequency domain,

[E] [o -vx]|[E
-ioK H + v 0 H =0, (2)

where K is, by the assumption of losslessness, a Hermit-

ian matrix [7],
K¢ KX
K= K K|’ 3)

with the permittivity and permeability tensors K¢, K*,
and the magnetoelectric tensor KX [8]. The Hermitian ma-
trix K is assumed to be always invertible. Here and below,
VX denotes the curl operator.

In an isotropic dielectric, K¢=€l, K#=uI, KX=0. In a bi-
isotropic dielectric, KX as well as K¢,K* are nonzero sca-
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lars. A reciprocal chiral medium is biisotropic with purely
imaginary KX=iy. The appearance of nonzero KX arises
from the so called magnetoelectric effect [9]. Crystals are
often naturally anisotropic, and in some media (such as
liquid crystals) it is possible to induce anisotropy by ap-
plying, e.g., an external electric field. In crystal optics,
K¢, K* are real, symmetric matrices and KX=0 [10]. In re-
sponse to a magnetic field, some materials can have a di-
electric tensor that is complex-Hermitian; this is called
the gyrotropic effect. In general, a magnetoelectric, bi-
anisotropic medium has a constitutive tensor (3) with
complex Hermitian K¢,K* and a complex matrix KX sat-
isfying the Post constraint [11]. It has been shown that a
moving medium, even isotropic, must be treated as bi-
anisotropic [9,12].

In general, K is a function of the frequency o (for dis-
persive media), but it turns out that if the frequency-
dependence of K is sufficiently smooth, the 2f-RT equa-
tions derived in the present framework have the same
form as for nondispersive media; the frequency depen-
dence would enter the coefficients of the equations in the
obvious way [1]. For simplicity of presentation we shall
assume that the medium is nondispersive.

Writing the total field U=(E,H), we introduce the two-
frequency matrix-valued Wigner distribution,

W(X’p ;W1, (1)2)

1 s X y X y
= SJe-lPYU1 —+— U —-—dy, )
(2 oy ) w1 2(1)1 [0 2(1)2
where U; and U, are the total fields at frequencies w; and
w9y, respectively. From the definition we see that the vari-
ables x and p~! have the dimension of length/time. Al-
though the scaling factors in the arguments of U; and U,
are not required for the development of the 2f-RT theory
for the first-order (Maxwell) equations, they are particu-
larly useful in the case of the second-order (Helmholtz
and paraxial wave) equations. For consistency and conti-
nuity of presentation (see Section 7) we work with defini-
tion (4) in the present paper. For an alternative develop-
ment of the 2f-RT theory for Maxwell’s equations in terms
of the 2f-WD without the scaling factors, we refer the
reader to [13].
First note the symmetry of the Wigner distribution ma-
trix:

WT(X’p;wl,(UZ) =W(X’p;w27 wl)' (5)

In other words, the right-hand side of Eq. (4) is invariant
under the simultaneous transformations of Hermitian
conjugation T and frequency exchange w; < ws.

In what follows we shall omit writing the arguments of
any fields if there is no risk of confusion.

We put Eq. (5) in the form of a general symmetric hy-
perbolic system [14,15],

~iwKU+ R0, U=0, (6)

where the symmetric matrices R; are given by

R [0 TJ}
iTl-T; 0]

with
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00 0 0 01 0-10
T,=[0 0 -1|, T,=| 0 0 0|, T,=[1 0 o0
01 0 -100 000

The matrices iT},j=1,2,3 are related to the photon spin
matrices [16].

Throughout this paper the dot notation, “”, is used ex-
clusively for the directional derivative as in p-V=p jaxj. All
vectors are treated as matrices, and the scalar product is
just the matrix multiplication between row and column
vectors. All vectors are taken to be, by default, column
vectors, unless explicitly transposed. Einstein’s summa-
tion is applied to all english indices.

Applying the operator R;d/dx; to W and using Eq. (6) we
obtain

«»

(9 . -”- A q
R,——W=-2ipRW+2i J eid "/‘”IK(q)W(x,p - 2—M)dq,

J
J
(7

whose derivation is given in Appendix A. From Eqgs. (7)
and (5) we also have

J . . a\. .
—WR/=2iWp/R; - 2i J W(X,P + 2—)K(q)e“4l ordq.

j W2
(8)

Here and below, K stands for the Fourier transform (spec-
tral density) of K as in

K(x) = f ¢ IR (q)dq.

For a Hermitian K we have K(p):f(*(—p), Vp.

3. WEAK-COUPLING LIMIT

As in part I [1] we consider the weak-coupling regime
with the tensor

K(x) =K, I+ \(V(x/€)), <1, 9)

where the Hermitian matrix K, represents the uniform
background medium and V“?V represents the relative fluc-
tuations of the permittivity—permeability tensor. The
small parameter [ describes the ratio of the scale of the
medium fluctuation to the propagation distance. In an

isotropic dielectric,
6013 0 a3 0
K,= , V= |
0 [ 0 Mols] {0 Al

where € and i are the electric and magnetic susceptibility,
respectively. In general K, is a Hermitian matrix, and its
blocks, as in Eq. (3), are denoted by KS,K”,KX,KX%, re-
spectively. To preserve the Hermiticity of K and K, the
matrix V must satisfy

V+KO = KOV (10)
We shall assume below that K is either positive or nega-

tive definite. Otherwise, the materials would be lossy
since the refractive index is not real valued if K, is not
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sign definite. A negative-definite K, gives rise to negative
refractive index, which is a hot topic in metamaterial re-
search [17-19]. To fix the idea, let us take K, to be posi-
tive definite. With minor notational change, our method
applies equally well to the negative definite case.

We assume that V=[V;] is a statistically homogeneous
random field with the spectral density tensors ®
=[®;jmn], ¥ =[V;jnn] such that

(Vyi(®)V,,,(y) = J KV, (k)dk (11)

(ViR V,un(y)) = f KV, (dk.  (12)

This implies the following relations:

(Vi®Vn(@) = By (0) 8 - @), (13)
(Vi®)Vn(@)) = Vi (p) P + Q). (14)

In the case of real-valued V, ®=W. The spectral den-
sity tensors have the basic symmetry

q)z;mn(p) = q)mnij(p) ’ (15)
\Ijijmn(_ p)= \Pmnij(p)’ (16)
Furthermore, Eq. (10) implies that
Ko iV ni(P) = Kg,zjq)mnji(l)) , (17)
KO,ichmnjl(p) = Kz,qu’mnji(p) . (18)

As in part I, we consider the regime where the wave-
lengths are of the same order of magnitude as the corre-
lation length of the medium fluctuations by rescaling the
frequencies w;j=®;/¢,j=1,2. This choice of frequency scal-
ing results in strong scattering by the medium heteroge-
neities. For ease of notation, we drop the tilde in @; below.
To capture the high-frequency behavior of the wave field,
we redefine the 2f-WD as

W(x,p) = ! e YU, i+€—y U; x v dy.
’ 2m? w; 2w 2 wy 2wy

(19)

We also assume that w;,ws— w as £—0 such that

Wy — W1

014

(20)
with a fixed constant 8. The governing equations for Eq.
(19) become

2i 2i

J

K,W
J(?xj 0

21 e . q
+— | e X/“’1K0V(q)W p-—|dq,
\r'e 2(‘)1

(21)
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P 9 9
“WR.= —WpR. - —WK
a0 g PR TR

2 [ wlp- L V(@R ¥
_—— —_—— e )
7) Ve, V@K q

(22)
where X=x/¢ is the fast spatial variable. In order to can-
cel the background effect, we multiply Eq. (21) by K,

from the left and Eq. (22) by Kal from the right and add
them to obtain the symmetrical form

J J 2i
KaleEW 0 EWRng1 + ?[Kalp RW - WpRK;']

J J
21 A q
=—= {elqulv(q)“,(p__)
\“Je 2(1)1
q \.. ot
-W|lp-—|V'(qe™®¥*2 |dq. (23)
2(02

This is the equation that we shall work with to derive the
2f-RT equations employing the multiscale expansion
(MSE) [1,15]. Note that Eq. (23) is invariant under the si-
multaneous transformations of Hermitian conjugation '
and frequency exchange w; < ws.

If, instead of adding the two equations, we subtract
them, then we obtain the antisymmetric form

41 1 7 d ) 2i[ L
-—W+K;'R—W- —WRK;! + —[K;'p RW
¢ J(?x] (;x] J ¢ J

21 A q
2 [etmw(q)w(p-—)

\/7 2 w1

qQ\..
+W(p-—|V'(qe™1¥2 |dq. (24)
2&)2
Equation (24) requires a different treatment and will
not be pursued here. However, the leading order ¢! terms
of Eq. (24) impose a constraint, which will be discussed in
the Conclusion.

4. MULTISCALE EXPANSION

The key point of MSE is to separate the fast variable X
from the slow variable x and make the substitution

J J
Rjﬁx W — RJ—W + €_1Rj—W,
’ o 9

a d
9, WR;,— —WR; + (' —WR;
J e I

. J :
J i

The idea is that for sufficiently small ¢ the two widely
separated scales, represented by x and X respectively, be-
come mathematically (but not physically) independent.
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We posit the expansion W=W + \s’?W1+€W2+- -+, substi-
tute it into Eq. (23), and equate terms of same order of
magnitude.

A. Leading Term
The ¢! terms yield

J _ J _ _
K;'R—W+ —WRK;" +2i[K;'p,R,W - WpRK;'] = 0.
;o 0
(25)

We hypothesize that the leading order term W
=W(x,p) is independent of the fast variable X. Thus the
first two terms of Eq. (25) vanish so the equation reduces
to

K;'pRW-WpRK;' =0. (26)

Equation (26) arises also in the equal-time RT theory
[15] and can be solved as follows. For a positive (or nega-
tive) definite K, consider the eigenvalues {Q1°} and eigen-
vectors {€”“} of the matrix Kalijj, where the index «
keeps track of the multiplicity and hence depends on o. As
Kalijj is Hermitian with respect to the scalar product
defined by a'Kyb, Va,b e (8, the eigenvalues are real and
the eigenvectors form a complete set of Kj-orthogonal ba-
sis in C8. Alternatively, we may work with the Hermitian
matrix Kal/ ijRjKal/ 2 in the image space, with the stan-
dard scalar product, under the transformation Ké/ 2. Let
the eigenvectors {e”?} be normalized such that
e”Koe™=5, 5,

Clearly, the eigenvalues )7 as a function of the wave
vector p define the dispersion relations. For general bi-
anisotropic dielectric, it is easy to check that Q%=0 is al-
ways an eigenvalue with eigenvectors

0,1 — p 0,2 — 0
e’ (p) 0/’ e”*(p) o) (27)

Since K, is invertible, it follows that the null space of
Kalijj is spanned by these two nonpropagating modes.
It is easy to check that {d”“'(p):d”*(p)=Kye”*(p)} are
the left eigenvectors of Kalijj and {d”%(p)},{e™(p)} are
co-orthogonal with respect to the standard scalar product:

du’m(p)eT’{(P) = 50',75a,§' (28)

This relation will be useful in deriving the 2f-RT equa-
tions (see Appendix B).

Throughout, the english indices represent the spatial
degrees of freedom while the greek indices represent the
modal and polarization degrees of freedom. It is impor-
tant to keep this distinction in mind in the subsequent
analysis. The Einstein summation convention and the
Hermitian conjugation are used only on the arabic indi-
ces.

It can be checked easily that the general solution to Eq.
(26) is given by [15]

W(x,p) = >, Wi(x,p)E"*“p,p) (29)

o0,

where V_Vgg are generally complex-valued functions and
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E**(p,q) = e”“(p)e”* (q). (30)

Likewise, we define

D"*(p,q) = d"(p)d”* (q). (31)

The linear span of {E*“(p,p),V 7, a,{,p} is a Hilbert
space, denoted by 91, for each p # 0 with the scalar prod-
uct Tr{H'KGK],H,G e 9,. The matrices W”:[V_Vgg], free
of the arabic indices, are called the coherence matrices.

For %-independent W, the constraint that the electric
displacement and the magnetic induction both be diver-
gence free yields, on the macroscopic scale,

(£V,+V)-K,W=0,
which, in view of definition (19), is equivalent to
(+p’, 2 pHK,W(x,p) = 0. (32)

Hence by Eq. (27), d°"W=0 and by Eq. (28) W°=0, where
W0 in Eq. (29) is the coherence matrix associated with the
nonpropagating mode Q°=0.

B. Correctors
The ¢~2 terms yield the equation

Jd J
2IW, +K:'R—W, + —W,RK;!
1 0 ](;:,xvj 1 (75(7]‘ 148

. e q
=2zqu[e‘q x/“’1V(q)W(p— —)
2(1)1

- W(p - i)Wq)e-l’q%] (33)
2(1)2

where, as in part I [1], we have added a small regulariza-
tion term. The reader is referred to part I [1] for the dis-
cussion of the choice of the regularization parameter.
Physically, the sign of the parameter (positive here)
amounts to choosing the direction of causality.

We Fourier transform Eq. (33) in X,

- i20W,(k,p) + K; 'k R,W, (k,p) + W, (k,p)k R K;'

+2[K;'p,R,W, (k,p) - W, (k,p)p R K;']

. _ k\ _ k) .
= 2|:V(w1k)W(p - 5) - w<p + E)VT(— ka)} ,
(34)

and posit the solution

R k k
Wl(k,P) = E ng(k’p)EU’a§<p + E’P - E) ) (35)
ool

where C7, are generally complex numbers. Note that the
two arguments of E®% in Eq. (35) are at different mo-
menta p+k/2,p-k/2.

We substitute Eqgs. (29) and (35) into Eq. (34) and mul-
tiply by d”*f(p+k/2) from the left and with d%¢(p
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—k/2) from the right and solve the resulting equation al-
gebraically. This yields the coefficients

k k -1
ng<k,p>=(m p+y |- p-5)-it

F k ~ = k
x> {d“’“ (p + §>V(w1k)WZ§(p - 5)
n

k _ k k
xe”" P-5 -wg, P+ en Pty
L k
V- wod | - | | (36)

When the leading term W is invariant under the simulta-
neous transformations of Hermitian conjugation © and
frequency exchange w; <+ w9, so is Wy. This invariance is
manifest in the relation

CZ':(_ k,P, w1y, (1)2) = CZg(k,P, w9, (1)1) .

Finally, the O(1) terms yield the equation after adding a
regularizing term 2(Wy:

J J
24W, + K 'R —W, + —W,R K !
2 0 J(ﬁ?’j 2 (956} 244X

+2i[K;'p R W, - Wop RK;'=F, (37)

with

. i %/ w01 % a
F=2i | dq| e P ¥ V(q)W¢( p - —
2(01

q \. s
- Wl(P - J)VT(q)eﬂqw"’z}

2

J J
-K;'R—W-—WRK:'. 38
0 J&x] (7x] 7o ( )

Note again that F is invariant under the simultaneous
transformations of Hermitian conjugation ¥ and fre-
quency exchange w; < wy. We can, but need not, solve Eq.
(37) explicitly as Eq. (34). However, in order for the sec-
ond perturbation Wy to vanish in the limit ¢ — 0, F must
satisfy the solvability condition

lim Tr(G'K,FKg) = 0 (39)
£—0

for all random stationary matrices G satisfying Eq. (25).
This can be seen by transforming Eq. (37) into
Tr(G'Ky(37)K,), which by Eq. (25) implies
20Tr(G'K WyK)=Tr(G'K,FK,) and hence Eq. (39).

Fortunately, we do not need to work with the full solv-
ability condition (39). It suffices to require that Eq. (39) to
be fulfilled by all deterministic G, independent of X, such
that

K;'p,R,G-GpRK;' = 0. (40)

In other words, as in Eq. (29), we consider only a subspace
of the solution space of Eq. (25) and replace Eq. (39) with
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lim Tr(D™ (p, p)(F(x,%,p))) = 0,

{—0

V T7§7 V7p7x7i7

(41)

where D7¢” are defined in Eq. (31). As noted above, Egs.
(23), (33), and (38) are invariant under the simultaneous
transformations of Hermitian conjugation ' and fre-
quency exchange w;< wg, and therefore Eq. (41) must
also be invariant under the same transformations.

To summarize, we have constructed the three-term ex-

pansion W+ V’?W1+€W2, which is an approximate solu-
tion of the 2f Wigner—Moyal equation in the sense that
the left-hand side of Eq. (23) subtracting from the right-
hand side of Eq. (23) equals exactly

JO-2W; + K;' R, Wy + 0, WiRK; ']

. q
-2i\t f {elq "/‘”IV(q)W2<p - —)
2(1)1

a . 4
- wg(p - g)v*(q)e‘“ﬂ"’”’z} dgq

2

+{[-2W, + Kgleaij2 + axjszngl],

which vanishes in a suitable sense as {—0 [1].

With Egs. (35), (36), and (38), Eq. (41) is an implicit
form of the 2f-RT equations that determines the leading-
order coherence matrix. Our next step is to write Eq. (41)
explicitly in terms of the spectral densities of the medium
fluctuations.

5. 2f-RT EQUATIONS

Calculation with the left-hand side of Eq. (41) is tedious
but straightforward, as it involves only the second-order
correlations of V. This is carried out in Appendix B.

To state the full result in a concise form, let us intro-
duce the following quantities. Define the scattering ten-

sors 67(p,q)=[S,.(P,q)] as
Stone(P,@) = d7¥ (P)e] (@) Py (w(p — @)dF (P (@).
(42)

Using Eqgs. (15)—-(18), one can derive the alternative ex-
pressions for S:

Stant(P, @) = ¢ (P)AF (@ Vil ~ P (P ()
= 47 (BeF (@)W 0l - P (D) ().
(43)

With Eqgs. (15), (16), and (43) it is also straightforward to
check that

S0P, Q) = 1P, Q) = S],0(a, D). (44)

For any M,-valued field G(p), define the (¢,v) compo-
nent of the tensor &7(p,q):G(q) as

[67(P,0):G(@] = D, Sk P, DG o).
a,l

Define the tensors %7=[%} ] analogously to the total scat-
tering cross section as
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3(p)=m f 8O (p) - 0(q)&"(p,q):1dq

- f - (Q(p)- Q@) ' (p,q):Idq. (45)

The 2f-RT equation then reads as
Vo7 VW= 270° f a2 (p) - 2(q)

X eFa-Px&7(p q):W(q)dq

- P (PW () +Wi(P2Ti(p), Vr
(46)

Introducing the new quantity
W= e W (p),
we recast Eq. (46) into the following form:
Vo7V 07 +iBp - V, Q707

= 9 f HO(p) - 07(q))67(p,q): W (q)dq

- ' [27(P)W(p) + W(p)2"(p)]. (47)

This is the Rayleigh-type scaling behavior typical of a
random dielectric. The cubic, instead of quartic, power in
w is due to the appearance of w as the scaling factor in the
definition of 2f-WD [Eq. (19)]. The quartic-in-w law is re-
covered upon replacing x with x/w on the left-hand side of
Eq. (47).

A. Decoupling: Scalar 2f-RT Equation
Although, in view of Eq. (27), the zero eigenvalue Q°%=0
has multiplicity two in general, the nonzero eigenvalues
in media other than the simplest isotropic medium often
have multiplicity one, as we shall see in Section 6. This is
closely related to the birefringence effect. Under such cir-
cumstances, the 2f-RT equations take a much simplified
form, which we now state.

Because (V, j=1,2,3,4 are simple (multiplicity one),
expression (29) reduces to

W(x,p) = >, W(x,p)E(p,p).

In other words, the coherence matrices become scalars
and the different polarization modes decouple. Conse-
quently, Eq. (46) becomes a scalar equation,

Vo VW= 270 f Q7 (p) - 2(q)

X e Fa-P'xa7(p,q)W(q)dg
- 20°%7(p)W(p), V7, (48)
where

&7(p,q) =d] (P)e/(Q@)Pyip(w(p - q))di(Pe (q), (49)
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(p)=m f aQ7(p) - 2(q)&"(p,q)dq. (50)

Note that the Cauchy singular integral term in Eq. (50)

disappears whenever 37 and W commute as in the scalar
case. From Eq. (48) we can derive the scalar equation for

the quantity 207=e~# XW(p) as before.

6. SPECIAL MEDIA

In this section, we consider the eigenstructure of the dis-
persion matrix Kalpji)‘ij associated with the various back-
ground media for which the scattering tensor can be com-
puted explicitly. Throughout Subsections 6.B, 6.C, and
6.D, the symbol X stands for the cross (vector) product.

A. Isotropic Medium

In the simplest case of an isotropic medium, there are two
nonzero eigenvalues: Q*(p)=cy|p|, O (p)=—co|p|, each of
multiplicity two. Let p=p/|p| and let p%,p] be any pair
of unit vectors orthogonal to each other and to p so that
{p,p7,p} form a right-handed coordinate frame. Let
{a!,q7],q} be similarly defined. The eigenvectors are

1 . 1
-—Pp P
12€ * r@ *
e (p)=| ' =
1 R s 1 N )
——P. ~ 5 PL
V210 V210
1 . 1
p _
2e 2e,
e (p) = V4 €0 e~ (p) = V<4€o
=l ) pel
- —T—P. 5P
V2o V2uo

Denote the spectral densities of € and i by ®. and ¢,
respectively, and denote the cross spectral densities by

@, ©ye. We have 67=[Sj,,,] with
! Sétaaalin
Siond(P,) = Z[fbs(w(p -@)pq747'p’
- @, (wp-q)pfasap
- @, (op-q)paalp,

+® (o0p-@)pfa"a P (1)

for 7,¢&,a,,v=+. Equation (46) can now be written as

70’ |p[?

COf)'Vx =z

{ZJe‘iﬁ(“‘P”"é(pl -lal
400
X &*(p,q):W*(q)dg

—f &(lp| - la)&*(p,q):1dgW*

—V_V*j5(|p|—|q|)6*(p,q):ld<i}. (52)
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Property (44) and expression (51) imply that Si,,(p,q)
=S8;,,/d,p) and hence the Cauchy principal value term in
Eq. (45) disappears.

Often, in a scattering atmosphere for instance, x=0 is a
good approximation and in such cases the only nonzero
term in the scattering kernel is

1
StandP,@) = 7 Plw(p - Q)piata5p” (53)

This is the setting for which Chandrasekhar originally de-
rived his famous equation of transfer [20], and Eq. (52) is
just the two-frequency version of Chandrasekhar’s equa-
tion.

In the same setting, the new features in Eq. (562) be-
yond Chandrasekhar’s transfer equation are the fre-
quency shift 8 and the general form of the power spec-
trum @, In Chandrasekhar’s and other cases, the
medium consists of randomly distributed particles of size
smaller than the wavelength [3,21]. Such a discrete me-
dium corresponds to a random field V that is a sum of
&-like functions randomly distributed according to the
Poisson point process whose spectral density tensor ® can
be calculated.

B. Chiral Medium
A chiral medium is a reciprocal, biisotropic medium with
the constitutive matrix

el ixI
KO ) |: . j|
—ixI pol
where y e R is the magnetoelectric coefficient. To main-
tain a positive-definite K, we assume y*< eyuo. We then

have
co |2l —-ikI|| O -pX
K;pR =—— 4
0 Py 1—K2|:iKI 2"11]{px 0o | (54)

where z=1\uy/€>0 is the impedance and «=yxc, is the
chirality parameter. The four nonzero simple eigenvalues
are Q'=co|p|(1+x)7, Q®=colp|(1-0)", QP=colpl(x-1)7",
Q%=cy|p|(~k—1)"1 and their corresponding eigenvectors
are

L1, A2 A1, A2
—ip+tPL p, +P;
~1 ~Q ~1 A2
el ~ P, P e?~ P, P,
-— i -—ti—
V4 V4 V4 V4
L1, A2 A1, A2
—Ip.+tPL P, +P
A1 A2 Al A2
e~| p. Pl |, e ~[DPL P
—+i— ——i—
V4 V4 V4 V4

where p' =p*,p? =p;. Note also that Q*=-01, 03=-02.
As |k|<1 (since y®><eug), el,e? are the forward-
propagating modes and e?,e* the backward-propagating
modes.

For the medium fluctuation V we may use the biisot-
ropy form
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al  ju.bI
—igbl ol |
where a,b € R are stationary random functions of x with
power spectral densities ®,, P, and cross-spectral density
®,;. This particular form is derived from the commutativ-
ity relation (10).

The splitting into two distinct positive dispersion rela-
tions is a case of birefrigence where two distinct phase ve-
locities, cy/(1+ k), arise depending on the polarization. As
discussed in Subsection 5.A, due to the birefringence the
chiral medium does not depolarize the electromagnetic

waves. For the sake of space, we leave to the reader to
work out the scattering tensor from Egs. (49) and (50).

C. Birefrigence in Anisotropic Crystals

Generally speaking, an anisotropic medium permits two
monochromatic plane waves with two different linear po-
larizations and two different velocities to propagate in
any given direction [10]. This again gives rise to the bire-
fringence effect.

The only optically isotropic crystal is the cubic crystal.
All the other types of crystals are optically anisotropic in
general. In the system of principal dielectric axes, the
permitivity—permeability tensor of a crystal, which is al-
ways a real, symmetric matrix, can be diagonalized as
Ko=diag[e,,€,,¢,,1,1,1]. One type of anisotropic crystal
is the uniaxial crystal for which €,=€,=€, # ¢,=¢ (if the
distinguished direction, the optic axis, is taken as the z
axis). There exist two distinct dispersion relations for the
forward modes:

2 2. 32

0 | e« [P3 PLTP

=, = — + .
VeEr € €

The backward modes correspond to —Q°,-Q¢. The corre-
sponding wave-vector surface consists of a sphere and an
ovaloid, a surface of revolution. ()° corresponds to the or-
dinary wave with a velocity independent of the wavevec-
tor, and ()¢ corresponds to the extraordinary wave with a
velocity depending on the angle between the wave vector
and the optic axis [10].

Let d°,d° be the associated left eigenvectors. Set K
=diag[e, ,€,,¢] and let a“ solve the following symmetric
eigenvalue problem:

-pXx (K§)lp xa’=(Q%%a%  o=e,o. (55)

Then the left eigenvectors d can be written as

g [P 56
~\ Qoae )’ o=e,0. (56)

The same formula applies to the backward modes. Equa-
tion (55) has the following solutions:

p?ﬂvﬁ)T

a’=(-py,p1,0)", a°= (pl,pz,—
Ps3

from which we see that the wave is linearly polarized.
The other type of anisotropic crystal is the biaxial crys-

tal for which there are also two distinct, but more compli-

cated, dispersion relations, both associated with the ex-
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traordinary waves [10]. In contrast, the two distinct
dispersion relations of a chiral medium give rise to two or-
dinary waves, as the two-wave-vector surface consists of
two concentric spheres centered at p=0.

It should be emphasized that a plane wave propagating
in an anisotropic crystal is linearly polarized in certain
planes, whereas a plane wave propagating in the isotropic
medium is in general elliptically polarized and is linearly
polarized only in particular cases. In the anisotropic as
well as the chiral media, the different polarizations de-
couple in the RT equations, and the depolarization effect
is absent.

D. Gyrotropic Medium

In the presence of a static external magnetic field H,
the permittivity tensor K§ is no longer symmetrical; it is
generally a complex Hermitian matrix. Here we consider
the simplest such constitutive relation,

D=¢E-igxE, B=H, (57)

where g=fH_, f € R, is the gyration vector. Equivalently,
we can write

1 1
w(éol)+ igxXD- —ggTD)

In this case there are two distinct forward dispersion re-
lations [9]

Q2
| ?g

Ql
O'=c, P+ g, VP=c

>

where cy=1/ \“"6_0- Clearly the wave-vector surface consists
of two spheres of the same radius but different centers.
This should be contrasted with the case of chiral media
for which the wave-vector surface consists of two concen-
tric spheres of different radii.

The associated (left) eigenvectors d?,0=1,2 can be
written as in Eq. (56) with a“ solving Eq. (55) and K§ cor-
responding to Eq. (57). Let g=g1f)i+g2f)i +g3sp. We can
write the three-dimensional vector a” as a”:f)i+7(,f)2l
with

a
g5-81- (- 1)7\(g} +8)° + 4ee;

2(g182 — 1€83)

Vo = , o=1,2.

We see that the wave is in general elliptically polarized or
linearly polarized when g is orthogonal to the wave vector
P and circularly polarized when g is parallel to p. Again,
the simplicity of the eigenvalues implies that depolariza-
tion is absent in the gyrotropic media.

7. GEOMETRICAL 2f-RT

We have seen in Subsection 5.A how a scalar 2f-RT equa-
tion naturally arises in a birefringent medium. In this
section, we show that a scalar 2f-RT equation can also
arise in a depolarizing medium such as the isotropic me-
dium discussed in Subsection 6.A. Depolarization can mix
different polarization modes and result in scalar-like co-

herence matrices W'=~WI, 7=+ (see Subsection 6.A for
notation). The other purpose of this section is to show
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smooth transition from Eq. (46) to the Fokker—Planck
equation, previously derived for the scalar waves [1,7], in
geometrical optics through rapid depolarization.

Let us start with the general setting and replace ®(-) in
Eq. (47) with y*®(-/y), where the small parameter vy is
roughly the ratio of the wavelength to the correlation
length of the medium fluctuations. In other words, we
consider the geometrical optics regime. The quartic power
in yis indicative of Rayleigh-type scattering. Consider the
change of variable q=p+ yk in the scattering term of Eq.

(47). With this and the ansatz 207=e "fPTXW" the scatter-
ing term becomes approximately

2ma’y ! f dk8Q7(p + vk) - Q(p))d* (p)d}"(p)

XDy (k) D, e (p + YK)eI™ (p + vk)

)/2
X |:m7(p) + ’}/k . mef(p) + EklkjaplﬂpjﬂnT(p) .

(58)

The first term in Eq. (58) cancels exactly with
37(p)207(p)+207(p)= " (p) on the right-hand side of Eq.
(47). The second term in Eq. (58) yields the first-order dif-
ferential operator

l mo’dj € dF D) ef e (9,0, 0]

X J kil (k - V0@, (wk)kdk

+2m0’d7 dP Y, gy lef ey ]
o

X J klﬁ(k-VpQT)CDSifg(a)k)kdk:| VL7, (59)

where &' is the derivative of the Dirac delta function. The
third term in Eq. (58) yields the second-order differential
operator

mw®ddr Y efer™ f ok - V,07
XD (k) ke, dkd, 3, 7. (60)

In order to match the left-hand side of Eq. (47), which is
a scalar in the case of complete depolarization, Eq. (60)
and each term in Eq. (59) must be proportional to &, as
well. This happens, for instance, for the isotropic medium
with Eq. (563). In this case,

w3
(59) = w0y, f k-V,(k-p)d (k- )P (wk)kdk - V20,

(1)3
(60) = 73, — f Sk - P)® (k) ke, dKd, d, W7,
CO m n

and hence the 2f-RT equation (47) becomes
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xcoP - V420" +1Bco|p|W* =V, - DV,20*

with the diffusion coefficient
Tw®
D= 4—f 8k - Pp)D (wk)kk'dk, (61)
Co

which is the same Fokker—Planck-type equation derived
by a rigorous, probabilistic method from the geometrical
optics of the scalar wave previously [6].

Applying the same procedure to the scalar 2{-RT equa-
tion for the quantity 207 of the birefringence case dis-
cussed in Subsection 5.A, we obtain

V)™V W +iBp - VO™ =V, - DV, 07,
where the diffusion coefficient D is given by
D(p) = mo’d] (p)e/(p)dj(p)e] (P)

X f 8k - P) D7 k) Kk dkk.

8. CONCLUSION

Starting with the symmetrical Wigner—Moyal equation
(23), we have systematically derived the 2f-RT equations
(46)—(48) in the radiative transfer regime characterized
by weak-coupling scaling (9). The main assumptions
about the medium are that the background is uniform
and has a either positive or negative definite constitutive
matrix and that the fluctuations are zero-mean statisti-
cally homogeneous processes.

We now turn to the antisymmetrical Wigner—Moyal
equation (24) and discuss the consequence of its leading-
order terms, which are

In view of Eq. (29) this is equivalent to 1=Q7p). Note
again that the variable p has the dimension of inverse ve-
locity. Therefore the two-space-time correlations of the
time-dependent polarized wave field u are given approxi-
mately by

(u(ty,x1)u’ (¢, %,))

— 2 ffezwﬁte—lwrlff oP (y+BX)QI]Z§(X,p)
ral Q%(p)=1

XE™*(p,p)dQ(p)dwds, (62)

with Xx=w(X]+Xy)/2,y=w(X;-X9)/{, where QHT=[QB;§] is
the solution to Eq. (47) and dQ(p) is the area element of
the surface Q%(p)=1.

Parallel to the case of scalar waves, one can also work
out the implications of the polarization on the problems of
imaging and time-reversal communications, as discussed
in the Introduction and references therein, from the 2f-RT
theory developed here.
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APPENDIX A: DERIVATION OF THE
WIGNER-MOYAL EQUATION

Applying the operator R;d/dx; to W we have

1 " J X y
= 3 e 'P waIRj—Ul — + —
(2m) o \w; 20
JF Y 2 it
XUy — - — |dy - “PYR;
2 (O 2(1)2 y (277)3 f ¢ J

b.¢ y J X y
XUy —+ — | —U}| — - dy.
w1 2w1 O'yl (05 2(1)2

Integrating by parts with the second integral and using
(6) we obtain

J 21 ot x y b’ y
R—W(x,p) = “PYK| —+ — |U| —+ —
]ﬂxj (x.p) 2m? ¢ w1 2wy ! w; 2w

Inserting the spectral representation of K into the equa-
tion and using definition (19), we then obtain Eq. (7).

o,a,l,m

Jolole24p ol
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APPENDIX B: CALCULATION OF EQ. (41)

1. Propagation Terms
We first show that

Ti[D"" (K5 'Rya, W + 6, WR K] = 27,07 VW,
Consider the following calculation:

K61Rj(9xjw = Vp[KBIPJRj] . [VXWZ{]ea',ﬂeo',ﬁ

= Vp[Kalpj

- K[—)lijj[Vpeo',a] . [Vngg]e"’a

Rie”] - [V, W Je™t!

= VPQU . VXWZ{e" “e”’ﬁ + (Qg - Kalijj)

X[Vpe™]- [V Wy lem<.

Upon the operation Tr[D7¢*(-)] the second term vanishes,

while the first term reduces to V,Q7-Vy WT by Eq. (28)
and the fact that d™¢ is a left elgenvector of the matrix
K, ij with the eigenvalue (7.

The other term, Tr[D 714, WR K;'], gives the identical
result.

2. Scattering Kernel
The (s,j) element of the matrix

J_ 9
(F)+ K(‘)leEW - EWRngl

J J

. q
=9 J dq<elq*ﬂw1V(q)wl<p - —)
2(1)1
q . .
- wl(p - —)VT(q>e-Lq*W2>
2(1)2

has the expression

> 2o} f dk(Q7(p +K) - Q7(p) - i0)'dP" (p + K) Wi K) W (Pl "(P)ES (P + K, p) - 2i0]

R}

o pill-wn/opK % T 1 “2 *
e Wo lp+-{1+— k (ngsi(— w9K)
2 w1
- 1 w9 ¢ 1 w9
XegT|p+=|1+— |k|dP*|p+=-| —-1]k
eg p 2 w1 f p 2 [OF]
1 Wy 1/ wy 1 w1
XEF“lp+-|(1+— |kp+- 21k -2y | dk( Q7 p+-|1-— |k
2 w1 2 w1 2 w9
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1w - om
—O° p-—-{—+ 11k | -i¢ et(l—wl/wz)k XWU'{
2\ wy 7
d n 1 w1 k . 1 w1
Xdo% +—1-— o, _ =41
ro\P 2 Wy % \P 2\ wy
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1 w1

Wy

1 w1 1 w1
k|EZ¥ p+-|1-— |kp-—-|—+1]k
2 w9 2 Wy

+ 2w f dk(Q7(p) - Q7(p - k) - i0) "W, (P) Vi (- 03K)eg ™ (P)AF (P - KES,“(p,p - K).

Using the identity

1
lim — ={md(x) + —
o x—1¢ x

and the symmetry properties (15), (16), and (27), we ob-

tain

in the limit £ —0 Eq. (46) from Eq. (41).
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