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PHASE RETRIEVAL WITH ONE OR TWO DIFFRACTION PATTERNS BY

ALTERNATING PROJECTIONS WITH THE NULL INITIALIZATION

PENGWEN CHEN , ALBERT FANNJIANG , AND GI-REN LIU

Abstract. Alternating projection (AP) of various forms, including the Parallel AP (PAP), Real-
constrained AP (RAP) and the Serial AP (SAP), are proposed to solve phase retrieval with at most
two coded diffraction patterns. The proofs of geometric convergence are given with sharp bounds
on the rates of convergence in terms of a spectral gap condition.

To compensate for the local nature of convergence, the null initialization is proposed to produce
good-quality initial guess. Numerical experiments show that the null initialization is more accurate
than the spectral initialization and that AP converges faster to the true object than other iterative
schemes such as the Wirtinger Flow. In numerical experiments AP with the null initialization con-
verges globally to the true object.
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1. Introduction

With wide-ranging applications in science and technology, phase retrieval has recently attracted a
flurry of activities in the mathematics community (see a recent review [53] and references therein).
Chief among these applications is the coherent X-ray diffractive imaging of a single particle using
a coherent, high-intensity source such as synchrotrons and free-electron lasers.

In the so-called diffract-before-destruct approach, the structural information of the sample particle is
captured by an ultra-short and ultra-bright X-ray pulse and recorded by a CCD camera [16,17,54].
To this end, reducing the radiation exposure and damage is crucial. Due to the high frequency of
the illumination field, the recorded data are the intensity of the diffracted field whose phase needs
to be recovered by mathematical and algorithmic techniques. This gives rise to the problem of
phase retrieval with non-crystalline structures.

The earliest algorithm of phase retrieval for a non-periodic object (such as a single molecule) is the
Gerchberg-Saxton algorithm [33] and its variant, Error Reduction [31]. The basic idea is Alternating
Projection (AP), going all the way back to the works of von Neumann, Kaczmarz and Cimmino in
the 1930s [21, 37, 55]. And these further trace the history back to Schwarz [52] who in 1870 used
AP to solve the Dirichlet problem on a region given as a union of regions each having a simple to
solve Dirichlet problem.

For any vector y let |y| be the vector such that |y|[j] = |y[j]|,∀j. In a nutshell, phase retrieval is
to solve the equation of the form b = |A∗x0| where x0 ∈ X ⊆ Cn represents the unknown object,
A∗ ∈ CN×n the diffraction/propagation process and b2 ∈ RN the diffraction pattern(s). The subset
X represents all prior constraints on the object. Also, the number of data N is typically greater
than the number n of components in x0.
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Phase retrieval can be formulated as the following feasibility problem

Find ŷ ∈ A∗X ∩ Y, Y := {y ∈ CN : |y| = b}.(1)

From ŷ the object is estimated via pseudo-inverse

x̂ = (A∗)†ŷ.(2)

Let P1 be the projection onto A∗X and P2 the projection onto Y defined as

P2z = b� z

|z| , z ∈ CN

where � denotes the Hadamard product and z/|z| the componentwise division. Where z vanishes,
z/|z| is chosen to be 1 by convention. Then AP is simply the iteration of the composite map

P1P2y(3)

starting with an initial guess y(1) = A∗x(1), x(1) ∈ X .

The main structural difference between AP in the classical setting [21,37,55] and the current setting
is the non-convexity of the set Y, rendering the latter much more difficult to analyze. Moreover,
AP for phase retrieval is well known to have stagnation problems in practice, resulting in poor
reconstruction [31,32,43].

In our view, numerical stagnation has more to do with the measurement scheme than non-convexity:
the existence of multiple solutions when only one (uncoded) diffraction pattern is measured even
if additional positivity constraint is imposed on the object. However, if the diffraction pattern is
measured with a random mask (a coded diffraction pattern), then the uniqueness of solution under
the real-valuedness constraint is restored with probability one [28]. In addition, if two independently
coded diffraction patterns are measured, then the uniqueness of solution, up to a global phase factor,
holds almost surely without any additional prior constraint [28] (see Proposition 1.1).

The main goal of the present work is to show by analysis and numerics that under the uniqueness
framework for phase retrieval with coded diffraction patterns of [28], AP has a significantly sized
basin of attraction at x0 and that this basin of attraction can be reached by an effective initialization
scheme, called the null initialization. In practice, numerical stagnation of AP disappears under the
uniqueness measurement schemes of [28].

Specifically, our goal is two-fold: i) prove the local convergence of various versions of AP under
the uniqueness framework of [28] (Theorems 5.7, 6.3 and 7.3) and ii) propose a novel method of
initialization, the null initialization, that compensates for the local nature of convergence and results
in global convergence in practice. In practice AP with the null initialization converges globally to
the true object.

1.1. Set-up. Let us recall the measurement schemes of [28].

Let x0(n),n = (n1, n2, · · · , nd) ∈ Zd, be a discrete object function supported in

M = {0 ≤ m1 ≤M1, 0 ≤ m2 ≤M2, · · · , 0 ≤ md ≤Md}.
We assume d ≥ 2.

Define the d-dimensional discrete-space Fourier transform of x0 as∑
n∈M

x0(n)e−i2πn·w, w = (w1, · · · , wd) ∈ [0, 1]d.(4)
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However, only the intensities of the Fourier transform, called the diffraction pattern, are mea-
sured

M∑
n=−M

∑
m∈M

x0(m + n)x0(m)e−i2πn·w, M = (M1, · · · ,Md)

which is the Fourier transform of the autocorrelation

R(n) =
∑

m∈M
x0(m + n)x0(m).

Here and below the over-line means complex conjugacy.

Note that R is defined on the enlarged grid

M̃ = {(m1, · · · ,md) ∈ Zd : −M1 ≤ m1 ≤M1, · · · ,−Md ≤ md ≤Md}
whose cardinality is roughly 2d times that ofM. Hence by sampling the diffraction pattern on the
grid

L =
{

(w1, · · · , wd) | wj = 0,
1

2Mj + 1
,

2

2Mj + 1
, · · · , 2Mj

2Mj + 1

}
we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the diffraction pattern and the autocorrelation function become equivalent
via the Fourier transform [44,45].

A coded diffraction pattern is measured with a mask whose effect is multiplicative and results in
a masked object of the form x̃0(n) = x0(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded diffraction pattern is just the plain diffraction
pattern of a masked object.

We will focus on the effect of random phases φ(n) in the mask function µ(n) = |µ|(n)eiφ(n) where
φ(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, ∀n ∈ M (i.e. the
mask is transparent).

For simplicity we assume |µ|(n) = 1, ∀n which gives rise to a phase mask and an isometric propa-
gation matrix

(1-mask ) A∗ = cΦ diag{µ},(5)

i.e. AA∗ = I (with a proper choice of the normalizing constant c), where Φ is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically Φ ∈ C|M̃|×|M| is the sub-column matrix

of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

If the non-vanishing mask µ does not have a uniform transparency, i.e. |µ|(n) 6= 1, ∀n, then we can
define a new object vector |µ| � x0 and a new isometric propagation matrix

A∗ = cΦ diag

{
µ

|µ|

}
with which to recover the new object first.

When two phase masks µ1, µ2 are deployed, the propagation matrix A∗ is the stacked coded DFTs,
i.e.

(2-mask case) A∗ = c

[
Φ diag{µ1}
Φ diag{µ2}

]
.(6)

With proper normalization, A∗ is isometric.
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We convert the d-dimensional (d ≥ 2) grid into an ordered set of index. Let n = |M| and N the
total number of measured data. In other words, A ∈ CN×n.

Let X be a nonempty closed convex set in Cn and let

(7) [x]X = arg min
x′∈X

‖x′ − x‖

denote the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A∗x|, x ∈ X .(8)

We focus on the following two cases.

(i) One-pattern case: A∗ is given by (5), X = Rn or Rn+.

(ii) Two-pattern case: A∗ is given by (6), X = Cn (i.e. [x]X = x).

For the two-pattern case, AP for the formulation (1) shall be called the Parallel AP (PAP) as the
rows of A∗ and the diffraction data are treated equally and simultaneously, in contrast to the Serial
AP (SAP) which splits the diffraction data into two blocks according to the masks and treated
alternately.

Line object: As the vectorized version of the original object supported in M ⊂ Zd, x0 is a line
object if the convex hull of the original object support in Rd is a line segment.

Now we recall the uniqueness theorem of phase retrieval with coded diffraction patterns.

Proposition 1.1. [28] (Uniqueness of Fourier phase retrieval) Suppose that x0 is not a line object
and that x is a solution of the phase retrieval problem (8) for either the one-pattern or two-pattern
case. Then x = eiθx0 for some constant θ ∈ R with probability one.

Remark 1.1. The main improvement over the classical uniqueness theorem [36] is that while
the classical result works with generic (thus random) objects Proposition 1.1 deals with a given
deterministic object. By definition, deterministic objects belong to the measure zero set excluded
in the classical setting of [36]. It is crucial to endow the probability measure on the ensemble of
random masks, which we can manipulate, instead of the space of unknown objects, which we can
not control.

The proof of Proposition 1.1 is given in [28] where more general uniqueness theorems can be found.
Proposition 1.1 is the basis of the measurement schemes studied in the present work and can further
be used to identify any fixed point x∗ of AP with the true solution if the norm condition ‖x0‖ = ‖b‖
is satisfied (Remark 4.3).

Phase retrieval solution is unique only up to a constant of modulus one no matter how many coded
diffraction patterns are measured. Thus a reasonable error metric for an estimate x̂ of the true
solution x0 is given by

(9) min
θ∈R
‖eiθx̂− x0‖.

Our framework and methods can be extended to more general, non-isometric measurement matrix
A∗ as follows. Let A∗ = QR be the QR-decomposition of A∗ where Q is isometric and R is
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upper-triangular. Indeed,

(10) Q = A∗(AA∗)−1/2

if A (and hence R) is full-rank. Now we can define a new object vector Rx and a new isometric
measurement matrix Q with which to recover Rx first.

1.2. Comparison with other work in literature. Much of recent mathematical literature on
phase retrieval focuses on generic frames and random measurements, see e.g. [1–5, 11, 14, 22, 24,
27, 35, 42, 47, 50, 53, 53, 56, 57, 59]. Among the mathematical works on Fourier phase retrieval e.g.
[7, 12, 13, 15, 18, 26, 28–30,36, 38, 39, 43, 46, 49, 51, 58], only a few focus on analysis and development
of efficient algorithms.

Despite the theoretical appeal of a convex minimization approach to phase retrieval [13–15], the
tremendous increase in dimension results in impractically slow computation for large problems. Re-
cently, new non-convex approaches become popular again because of their computational efficiency
among other benefits [12,46,47].

One purpose of the present work is to compare these newer approaches with AP, arguably the
simplest of all non-convex approaches. An important difference of the measurement schemes in these
papers from ours is that their coded diffraction patterns are not oversampled. In this connection, we
emphasize that reducing the number of coded diffraction patterns is crucial for the diffract-before-
destruct approach and it is better to oversample than to increase the number of coded diffraction
patterns. Another difference is that these newer iterative schemes such as the Wirtinger Flow
(WF) [12] are not of the projective type. In Section 8, we provide a detailed numerical comparison
between AP of various forms and WF.

More important, to compensate for the local nature of convergence we develop a novel procedure, the
null initialization, for finding a sufficiently close initial guess. The null initialization is significantly
different from the spectral initialization proposed in [11,12,47]. In Section 2.4 we give a theoretical
comparison and in Section 8 a numerical comparison between these initialization methods. We
will see that the initialization with the null initialization is more accurate than with the spectral
initialization and AP with the null initialization converges faster and produces more accurate results
than the Fourier-domain Douglas-Rachford algorithm studied in [18].

As pointed out above, there are more than one way of formulating phase retrieval, especially with
two (or more) diffraction patterns, as a feasibility problem. While PAP is analogous to Cimmino’s
approach to AP [21], SAP is closer in spirit to Kaczmarz’s [37]. SAP converges significantly faster
than PAP but produces less accurate results in the presence of measurement noise (Section 8).
In Sections 5 and 7 we prove that both schemes are locally convergent to the true solution with
bounds on rates of convergence. For phase retrieval with a Gaussian random measurement, local
convergence for PAP was proved in [47,56]. SAP with Fourier measurements were tested numerically
in [29,58] but its convergence was not proved.

Among the vast literature on AP, we mention only the most relevant literature and refer the reader
to the reviews [6,25] for a more complete list of references. Von Neumann’s convergence theorem [55]
for AP with two closed subspaces is extended to the setting of closed convex sets in [10, 20] and,
starting with [33], the application of AP to the non-convex setting of phase retrieval has been
extensively studied [7, 8, 31,32,43].

In [41] local convergence theorems were developed for AP for non-convex problems. However, the
technical challenge in applying the theory in [41] to phase retrieval lies precisely in formulating the
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precise conditions of the measurement schemes and verifying the main assumption of linear regular
intersection therein.

In contrast, in the present work, what guarantees the geometric convergence and gives an often
sharp bound on the convergence rate (as demonstrated in Fig 7) is the spectral gap condition
which can be readily verified under the uniqueness framework of [28] (see Propositions 5.4 and 6.1
below).

Reference [49] (Corollary 12) asserts the existence of a local basin of attraction of the feasible set (1)
which includes AP in the one-pattern case and PAP in the two-pattern case (but not SAP). From
this and the uniqueness theorem (Proposition 1.1) convergence to the true solution, up to a global
phase factor, follows (i.e. a singleton with an arbitrary global phase factor). However, Corollary 12
of [49] asserts a sublinear power-law convergence with an unspecified power. In contrast, we prove
a linear convergence and give a spectral gap bound on the convergence rate for various versions of
AP, including SAP which is emphatically not covered by [49].

Indeed, as further elaborated in Section 9, general purpose theorems for AP without regard to the
design of measurement schemes can only guarantee a sub-optimal sense of convergence.

The paper proceeds as follows. In Section 2, we discuss the null initialization versus the spectral
initialization. In Section 3, we formulate AP of various forms and in Section 4 we discuss the limit
points and the fixed points of AP. We prove local convergence to the true solution for the Parallel
AP in Section 5 and for the real-constraint AP in Section 6. In Section 7 we prove local convergence
for the Serial AP. In Section 8, we present numerical experiments and compare our approach with
the Wirtinger Flow and its truncated version [11,12]. In Section 9, we discuss the pros and cons of
our results and point out the open problems to be further studied.

2. The null initialization

For a nonconvex minimization problem such as phase retrieval, the accuracy of the initialization as
the estimate of the object has a great impact on the performance of any iterative schemes.

The following observation motivates our approach to effective initialization. Let I be a subset
of {1, · · · , N} and Ic its complement such that b[i] ≤ b[j] for all i ∈ I, j ∈ Ic. In other words,
{b[i] : i ∈ I} are the “weaker” signals and {b[j] : j ∈ Ic} the “stronger” signals. Let |I| be the
cardinality of the set I. Then {ai}i∈I , the columns of A, is a set of sensing vectors nearly orthogonal
to x0 if |I|/N is sufficiently small (see Section 2.4). This suggests the following constrained least
squares solution

xnull ∈ arg min

{∑
i∈I
|a∗ix|2 : x ∈ X , ‖x‖ = ‖x0‖

}
may be a reasonable initialization. Note that xnull is not uniquely defined as αxnull, with |α| = 1, is
also a null vector. Moreover, there may be more than one linearly independent null vectors.

We pause to emphasize that the constraint ‖xnull‖ = ‖x0‖ is introduced for ease of comparison and
is completely irrelevant when used in conjunction with AP since the AP map F (see (32) below
for definition) is scaling-invariant in the sense that F(cx) = F(x), for any c > 0. Also, in many
imaging problems, the norm of the true object, like the constant phase factor, is either recoverable
by other prior information or irrelevant to the quality of reconstruction.

Denote the sub-column matrices consisting of {ai}i∈I and {aj}j∈Ic byAI andAIc , respectively.
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Define a dual vector xdual as

xdual ∈ arg max
{
‖A∗Icx‖2 : x ∈ X , ‖x‖ = ‖x0‖

}
.(11)

Like xnull, xdual is not uniquely defined.

2.1. Isometric A∗. For isometric A∗, select any

xnull ∈ arg min

{∑
i∈I
|a∗ix|2 : x ∈ X , ‖x‖ = ‖b‖

}
.(12)

Since for an isometric A∗

‖A∗Ix‖2 + ‖A∗Icx‖2 = ‖x‖2,
we have

{xnull} = {xdual},(13)

i.e. the set of null vectors is the same as the set of dual vectors. Eq. (13) and (12) can be used to
construct a null vector from AIcA

∗
Ic

by the power method.

Let 1c be the characteristic function of the complementary index Ic with |Ic| = γN . The default
choice for γ is the median value γ = 0.5. Below xrand denote random initialization whose pixels are
given by, e.g. independent uniform random variables over [0, 1].

Algorithm 1: The null initialization

1 Random initialization: x1 = xrand
2 Loop:

3 for k = 1 : kmax − 1 do
4 x′k ← A(1c �A∗xk);
5 xk+1 ← [x

′
k]X /‖[x

′
k]X ‖

6 end

7 Output: x̂dual = xkmax‖x0‖/‖xrand‖.

In the case of nonunique xdual, the output of Algorithm 1 will depend on the (random) initialization
xrand. As shown in Section 8, the null initialization is remarkably accurate (Fig. 2 and 4) and
stable with respect to measurement noise (Fig. 9).

2.2. Non-isometric A∗. When A∗ is non-isometric such as the standard Gaussian random matrix
(see below), the power method is still applicable with the following modification.

For a full rank A, let A∗ = QR be the QR-decomposition of A∗ where Q is isometric and R is a
full-rank, upper-triangular square matrix. Let z = Rx, z0 = Rx0 and znull = Rxnull in eq. (8).
Clearly, znull is a null vector for the isometric phase retrieval problem b = |Qz| in the sense of
(12).

Let I and Ic be the index sets as above. Let

ẑ ∈ arg max
‖z‖=1

‖QIcz‖.(14)

Then

xnull = βR−1ẑ
7



where

β =
‖x0‖
‖R−1ẑ‖

may be an unknown parameter in the non-isometric case. As pointed out above, when xnull with
an arbitrary parameter β is used as initialization in conjunction with AP, the first iteration of AP
would recover the true value of β as AP is totally independent of any real constant factor.

2.3. The spectral initialization. Here we compare the null initialization with the spectral ini-
tialization used in [12] and the truncated spectral initialization used in [11].

Algorithm 2: The spectral initialization

1 Random initialization: x1 = xrand
2 Loop:

3 for k = 1 : kmax − 1 do
4 x′k ← A(|b|2 �A∗xk);
5 xk+1 ← [x

′
k]X /‖[x

′
k]X ‖;

6 end

7 Output: xspec = xkmax‖x0‖/‖xrand‖.

The key difference between Algorithms 1 and 2 is the different weights used in step 4 where the
null initialization uses 1c and the spectral vector method uses |b|2 (Algorithm 2). The truncated
spectral initialization uses a still different weighting

(15) xt-spec = arg max
‖x‖=1

‖A
(
1τ � |b|2 �A∗x

)
‖

where 1τ is the characteristic function of the set

{i : b]i] ≤ τ‖b‖/
√
N}

with an adjustable parameter τ . Both γ of Algorithm 1 and τ of (15) can be optimized by tracking
and minimizing the residual ‖b− |A∗xk|‖.
As shown in the numerical experiments in Section 8 (Fig. 2 and 4), the choice of weight significantly
affects the quality of initialization, with the null initialization as the best performer (cf. Section
2.4).

Moreover, because the null initialization depends only on the choice of the index set I and not
explicitly on the variation in the components of b, the method is noise-tolerant and performs well
with noisy data (Fig. 9).

2.4. Error bound. As in [11, 12] we assume for the rigorous error bound that the measurement
matrix is given by the complex Gaussian case A = <(A) + i=(A), where the entries of <(A),=(A)
are i.i.d. standard normal random variables. The following error bound is in terms of the closely
related error metric

‖x0x∗0 − xnullx∗null‖2 = 2‖x0‖4 − 2|x∗0xnull|2(16)

which has the advantage of being independent of the global phase factor.

According to [19], for

n < |I| � N � |I|2(17)
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we have the error bound

‖x0x∗0 − xnullx∗null‖2 ≤ c0‖x0‖4|I|/N(18)

with probability at least

1− c1 exp
(
−c2|I|2/N

)
where the constants c1, c2 are independent of the parameters in (17). Namely, the right hand side
of (18) can be made arbitrarily small with probability close to 1.

In comparison, the performance guarantees for the spectral initialization in [47], [12] (Theorem 3.3)
and [11] (Proposition 3) deal with a fixed level of relative error, independent of N .

We mention by passing that the initialization by the resampling techniques ( [47] and [12], Theorem
5.1) requires in practice a large number of coded diffraction patterns and does not apply to the
present set-up.

3. Alternating projections

First we introduce some notation and convention that are frequently used in the subsequent anal-
ysis.

The vector space Cn = Rn ⊕R iRn is isomorphic to R2n via the map

(19) G(v) :=

[
<(v)
=(v)

]
, ∀v ∈ Cn

and endowed with the real inner product

〈u, v〉 := <(u∗v) = G(u)>G(v), u, v ∈ Cn.(20)

We say that u and v are (real-)orthogonal to each other (denoted by u ⊥ v) iff 〈u, v〉 = 0. The
same isomorphism exists between CN and R2N .

Let y � y′ and y/y′ be the component-wise multiplication and division between two vectors y, y′,
respectively. For any y ∈ CN define the phase vector ω ∈ CN with ω[j] = y[j]/|y[j]| where |y[j]| 6= 0.
When |y[j]| = 0 the phase can be assigned any value in [0, 2π]. For simplicity, we set the default
value y[j]/|y[j]| = 1 whenever the denominator vanishes.

It is important to note that for the measurement schemes (5) and (6), the mask function by
assumption is an array of independent, continuous random variables. Hence the components of
y0 = A∗x0 are continuous random variables. Therefore b = |y0| almost surely vanishes nowhere.
However, we will develop the AP method without this assumption and without specifically appealing
to the structure of the measurement schemes (5) and (6) unless stated otherwise.

Let A∗ be any N × n matrix, b = |A∗x0| and

F (x) =
1

2
‖|A∗x| − b‖2 =

1

2
‖A∗x‖2 −

∑
j∈J

b[j]|a∗jx|+
1

2
‖b‖2(21)

where

J := {j : b[j] > 0}.
As noted above, for our measurement schemes (5) and (6), J = {1, 2, · · · , N} almost surely.

In view of (21), the only possible hinderance to differentiability over the reals for F is the sum-over-J
term. Indeed, we have the following result.
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Proposition 3.1. The function F (x) is infinitely differentiable in the real and imaginary parts of
x in the open set

{x ∈ Cn : |a∗jx| > 0, ∀j ∈ J}.(22)

In particular, for an isometric A∗, F (x) is infinitely differentiable in the neighborhood of x0 defined
by

‖x0 − x‖ < min
j∈J

b[j].(23)

Proof. Observe that

|a∗jx| = |a∗jx0 − a∗j (x0 − x)| ≥ b[j]− |a∗j (x0 − x)| ≥ b[j]− ‖x− x0‖,
and hence |a∗jx| > 0 if ‖x0 − x‖ < b[j]. The proof is complete. �

Consider the smooth function

f(x, u) =
1

2
‖A∗x− u� b‖2 =

1

2
‖A∗x‖2 −

∑
j∈J
<(x∗ajb[j]u[j]) +

1

2
‖b‖2(24)

where x ∈ Cn and

u ∈ U := {(u[i]) ∈ CN : |u[i]| = 1, ∀i}.(25)

We can write

F (x) = min
u∈U

f(x, u)(26)

which has many minimizers if x∗ajb[j] = 0 for some j. Since

∇uf
(
x,

A∗x

|A∗x|

)
= 0(27)

we select by convention the minimizer u = A∗x/|A∗x| where again u[j] = 1 if a∗jx = 0. Define the
complex gradient

∇xf(x, u) :=
∂f(x, u)

∂<(x)
+ i

∂f(x, u)

∂=(x)
= AA∗x−A(u� b)(28)

and consider the alternating minimization procedure

u(k) = arg min
u∈U

f(x(k), u),(29)

x(k+1) = arg min
x∈X

f(x, u(k))(30)

each of which is a (constrained) least squares problem.

By (27) and (28), the minimizer (30) is given by

x(k+1) = (A∗)†(u(k) � b), u(k) =
A∗x(k)

|A∗x(k)|(31)

where the pseudo-inverse
(A∗)† = (AA∗)−1A

of A∗ becomes A if A∗ isometric which we assume henceforth.

Eq. (31) can be written as the fixed point iteration

(32) x(k+1) = F(x(k)), F(x) =

[
A

(
b� A∗x

|A∗x|

)]
X
.
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In the one-pattern case, (32) is exactly Fienup’s Error Reduction algorithm [31].

The AP map (32) can be formulated as the projected gradient method [34, 40]. In the small
neighborhood of x0 where F (x) is smooth (Proposition 3.1), we have

∇F (x) = ∇xf(x, u) = AA∗x−A(b� u), with u =
A∗x

|A∗x|(33)

and hence

F(x) = [x−∇F (x)]X .(34)

The object domain formulation (32) is equivalent to the Fourier domain formulation (3) by the
change of variables y = A∗x and letting

P1y = A∗[Ay]X , P2y = b� y

|y| .

Where F (x) is not differentiable, the right hand side of (33) is an element of the subdifferential
of F . Therefore, the AP map (32) can be viewed as the generalization of the projected gradient
method to the non-smooth setting.

We shall study the following three versions of AP. The first is the Parallel AP (PAP)

F(x) = A

(
b� A∗x

|A∗x|

)
(35)

to be applied to the two-pattern case. The second is the real-constrained AP (RAP)

F(x) =

[
A

(
b� A∗x

|A∗x|

)]
X
, X = Rn, Rn+(36)

to be applied to the one-pattern case.

The third is the Serial AP defined as follows. Following [29] in the spirit of Kaczmarz, we partition
the measurement matrix and the data vector into parts and treat them sequentially.

Let A∗l , bl, l = 1, 2, be the individual masked measurement matrices and data, respectively. We can
write

A∗ =

[
1√
2
A∗1

1√
2
A∗2

]
, b =

[
1√
2
b1

1√
2
b2

]
, with bl = |A∗l x0|, l = 1, 2,

where A∗l , l = 1, 2, are isometric.

Let y ∈ CN be written as y = [y>1 , y
>
2 ]>. Instead of (1), we now formulate the phase retrieval

problem as the following feasibility problem

Find ŷ ∈ ∩2l=1 (A∗lX ∩ Yl) , Yl := {yl : |yl| = bl}.(37)

As the projection onto the non-convex setA∗lX∩Yl is not explicitly known, we use the approximation
instead

(38) Fl(x) = Al

(
bl �

A∗l x

|A∗l x|

)
, l = 1, 2,

and consider the Serial AP (SAP) map

F(x) = F2(F1(x)).(39)

In contrast, the PAP map (35)

(40) F(x) = A

(
b� A∗x

|A∗x|

)
=

1

2
(F1(x) + F2(x))

11



is the arithmetic average of F1 and F2. By Proposition 1.1 x0 is the only fixed point of both F1

and F2 (see Section 4 for definition).

4. Fixed points

We study the fixed points of PAP and RAP.

Following [29] we consider the the generalized AP (PAP) map

Fσ(x) :=

[
A

(
b� σ � A∗x

|A∗x|

)]
X
, X = Cn or Rn or Rn+(41)

where

σ ∈ U, σ[j] = 1, if a∗jx∗ 6= 0.(42)

We call x∗ a fixed point of AP if there exists

σ ∈ U = {u = (u[i]) ∈ CN : |u[i]| = 1, ∀i}
satisfying (42) such that the fixed point equation

x∗ = Fσ(x∗)(43)

holds [29]. In other words, the definition (43) allows flexibility of phase where A∗x∗ vanishes.

The following result identifies any limit point of the AP iterates with a fixed point of AP.

Proposition 4.1. The AP iterates x(k) = Fk(x(1)) with any starting point x(1), where F is given
by (35) or (36), is bounded and every limit point is a fixed point of AP in the sense (42)-(43).

Proof. Due to (26) , (29) and (30),

(44) 0 ≤ F (x(k+1)) = f(x(k+1), u(k+1)) ≤ f(x(k+1), u(k)) ≤ f(x(k), u(k)) = F (x(k)), ∀k,
and hence AP yields a non-increasing sequence {F (x(k))}∞k=1.

For an isometric A∗,

∇xf(x, u) = x−A(u� b),
and

F(x) = [x−∇xf(x, u)]X , u =
A∗x

|A∗x| .

implying

x(k+1) = [x(k) −∇xf(x(k), u(k))]X .(45)

Now by the convex projection theorem (Prop. B.11 of [9]).

(46) 〈x(k) −∇xf(x(k), u(k))− x(k+1), x− x(k+1)〉 ≤ 0, ∀x ∈ X
Setting x = x(k) in Eq. (46) we have

(47) ‖x(k) − x(k+1)‖2 ≤ 〈∇xf(x(k), u(k)), x(k) − x(k+1)〉.
Furthermore, the descent lemma (Proposition A.24, [9]) yields

(48) f(x(k+1), u(k)) ≤ f(x(k), u(k)) + 〈x(k+1) − x(k),∇xf(x(k), u(k))〉+
1

2
‖x(k+1) − x(k)‖2.

12



From Eq. (44), Eq. (48) and Eq. (47), we have

F (x(k))− F (x(k+1)) ≥ f(x(k), u(k))− f(x(k+1), u(k))(49)

≥ 〈x(k) − x(k+1),∇xf(x(k), u(k))〉 − 1

2
‖x(k+1) − x(k)‖2

≥ 1

2
‖x(k+1) − x(k)‖2.

As a nonnegative and non-increasing sequence, {F (x(k))}∞k=1 converges and then (49) implies

lim
k→∞

‖x(k+1) − x(k)‖ = 0.(50)

By the definition of x(k) and the isometry of A∗, we have

‖x(k)‖ ≤ ‖A(b� u(k−1))‖ ≤ ‖b‖,

and hence {x(k)} is bounded. Let {x(kj)}∞j=1 be a convergent subsequence and x∗ its limit. Eq.

(50) implies that

lim
j→∞

x(kj+1) = x∗.

If A∗x∗ vanishes nowhere, then F is continuous at x∗. Passing to the limit in F(x(kj)) = x(kj+1)

we get F(x∗) = x∗. Namely, x∗ is a fixed point of F .

Suppose a∗l x∗ = 0 for some l. By the compactness of the unit circle and further selecting a

subsequence from the previous subsequence, still denoted by {x(kj)}, we have

lim
j→∞

A∗x(kj)

|A∗x(kj)| =
A∗x∗
|A∗x∗|

� σ(51)

for some σ ∈ U satisfying (42) which is to account for the difference in the limit on the left
hand side and a∗l x∗/|a∗l x∗| = 1 on the right (by our convention). Now passing to the limit in

F(x(kj)) = x(kj+1) we have

x∗ = Fu(x∗)

implying that x∗ is a fixed point of AP. �

Since the true object is unknown, the following norm criterion is useful for distinguishing the phase
retrieval solutions from the non-solutions among many coexisting fixed points.

Proposition 4.2. Let F be the AP map (32) with isometric A∗. If a fixed point x∗ of AP in the
sense (42)-(43) satisfies ‖x∗‖ = ‖b‖, then x∗ is a phase retrieval solution almost surely. On the
other hand, if x∗ is not a phase retrieval solution, then ‖x∗‖ < ‖b‖.

Remark 4.3. If the isometric A∗ is specifically given by (6) or (5), then by Proposition 4.2 and
Proposition 1.1 we can identify any fixed point x∗ with the unique phase retrieval solution x0, if the
norm condition ‖x∗‖ = ‖b‖ is satisfied.

Proof. By the convex projection theorem (Prop. B.11 of [9])

‖[v]X ‖ ≤ ‖v‖, ∀v ∈ Cn(52)
13



where the equality holds if and only if v ∈ X . Hence

‖x∗‖ =

∥∥∥∥[A( A∗x∗
|A∗x∗|

� b� u
)]
X

∥∥∥∥(53)

≤
∥∥∥∥A( A∗x∗

|A∗x∗|
� b� u

)∥∥∥∥
≤

∥∥∥∥ A∗x∗|A∗x∗|
� b� u

∥∥∥∥ = ‖b‖.

Clearly ‖x∗‖ = ‖b‖ holds if and only if both inequalities in Eq. (53) are equalities. The second
inequality is an equality only when

(54)
A∗x∗
|A∗x∗|

� b� u = A∗z for some z ∈ Cn.

By Eq. (52) and (54) the first inequality in Eq. (53) becomes an equality only when z ∈ X .

Since AA∗ = I the fixed point equation (43) implies z = x∗ and

A∗x∗
|A∗x∗|

� b� u = A∗x∗.

Thus b = |A∗x∗|. �

5. Parallel AP

Define

Bx = Adiag

[
A∗x

|A∗x|

]
(55)

Bx =

[
<(Bx)
=(Bx)

]
.(56)

When x = x0, we will drop the subscript x and write simply B and B.

Whenever F (x) is twice-differentiable at x, we have as before

∇F (x) =
∂F (x)

∂<(x)
+ i

∂F (x)

∂=(x)
(57)

= A(A∗x− b� u), u =
A∗x

|A∗x|
and

∇2F (x)ζ := ∇〈∇F (x), ζ〉(58)

=
∂〈∇F (x), ζ〉

∂<(x)
+ i

∂〈∇F (x), ζ〉
∂=(x)

, ∀ζ ∈ Cn.

Recall from (20) that 〈u, v〉 := <(u∗v).

Proposition 5.1. Suppose |a∗jx| > 0 for all j ∈ J = {i : b[i] > 0} (i.e. F (x) is smooth at x by

Proposition 3.1). For all ζ ∈ Cn, we have

(59) 〈∇F (x), ζ〉 = <(x∗ζ)− b><(B∗xζ),
14



and

〈ζ,∇2F (x)ζ〉 = ‖ζ‖2 − 〈= (B∗xζ) , ρx �= (B∗xζ)〉(60)

= ‖ζ‖2 − 〈B>x G(−iζ), ρx � B>x G(−iζ)〉
with

ρx[j] = lim
ε→0+

b[j]

ε+ |a∗jx|
, j = 1, · · · , N.

Proof. Rewriting (21) as

F (x) =
1

2
‖A∗x‖2 −

∑
j∈J

fj(x) +
1

2
‖b‖2, fj(x) := b[j]|a∗jx|,(61)

we analyze the derivative of each term on the right hand side of (61).

Since AA∗ = I, the gradient and the Hessian of ‖A∗x‖2/2 are x and I, respectively.

For fj , we have Taylor’s expansion in the real and imaginary parts of x

(62) fj(x+ εζ) = fj(x) + ε〈∇fj(x), ζ〉+
ε2

2
〈ζ,∇2fj(x)ζ〉+O(ε3)

where

(63) 〈∇fj(x), ζ〉 =
b[j]

|a∗jx|
〈a∗jx, a∗jζ〉, j ∈ J

and

〈ζ,∇2fj(x)ζ〉 =
b[j]

|a∗jx|

∣∣∣∣∣<(a∗jx)

|a∗jx|
=(a∗jζ)−

=(a∗jx)

|a∗jx|
<(a∗jζ)

∣∣∣∣∣
2

, j ∈ J.(64)

Observe that

〈
a∗jx

|a∗jx|
, a∗jζ〉 = <(B∗xζ)[j], j ∈ J

and
<(a∗jx)

|a∗jx|
=(a∗jζ)−

=(a∗jx)

|a∗jx|
<(a∗jζ) = =(B∗xζ)[j] = B>x G(−iζ)[j], j ∈ J

which, together with (62) and (64), yield the desired results (59) and (60). �

Next we investigate the conditions under which ∇2F (x0) is positive definite.

5.1. Spectral gap. Let λ1 ≥ λ2 ≥ . . . ≥ λ2n ≥ λ2n+1 = · · · = λN = 0 be the singular values
of B with the corresponding right singular vectors {ηk ∈ RN}Nk=1 and left singular vectors {ξk ∈
R2n}2nk=1.

Proposition 5.2. We have λ1 = 1, λ2n = 0, η1 = |A∗x0| and

ξ1 = G(x0) =

[
<(x0)
=(x0)

]
, ξ2n = G(−ix0) =

[
=(x0)
−<(x0)

]
15



Proof. Since

B∗x = Ω∗A∗x, Ω = diag

[
A∗x0
|A∗x0|

]
we have

<[B∗x0] = B>ξ1 = |A∗x0|, =[B∗x0] = B>ξ2n = 0(65)

and hence the results. �

Proposition 5.3.

λ2 = max{‖=[B∗u]‖ : u ∈ Cn, iu ⊥ x0, ‖u‖ = 1}(66)

= max{‖B>u‖ : u ∈ R2n, u ⊥ ξ1, ‖u‖ = 1}.

Proof. Note that

=[B∗u] = B>G(−iu).

The orthogonality condition iu ⊥ x0 is equivalent to

G(x0) ⊥ G(−iu).

Hence, by Proposition 5.2, ξ2 is the maximizer of the right hand side of (66), yielding the desired
value λ2.

�

We recall the spectral gap property that is a key to local convergence of the one-pattern and the
two-pattern case.

Proposition 5.4. [18] Suppose x0 ∈ Cn is not an line object. For A∗ given by (5) or (6) with
independently and continuously distributed mask phases, we have λ2 < 1 with probability one.

Remark 5.5. We emphasize that Proposition 5.4 does not assume any object constraint besides
the assumption of non-line object even in the one-pattern case (5).

Proposition 5.6. Let

(67) λ2(x) = max{‖=(B∗xu)‖ : u ∈ Cn, 〈u, ix〉 = 0, ‖u‖ = 1}.
Let γ be a convex combination of x and x0 with 〈x0, x〉 > 0. Then

(68) ‖=(B∗γ(x− x0))‖ = ‖B>γ G(−i(x− x0))‖ ≤ λ2(γ)‖x− x0‖.

Proof. Since 〈x0, x〉 > 0,

(69) c1 := ‖γ‖−2〈γ, x0〉 > 0, c2 := ‖γ‖−2〈γ, x〉 > 0

and we can write the orthogonal decomposition

(70) x0 = c1γ + γ1, x = c2γ + γ2

with some vectors γ1, γ2 satisfying 〈γ1, γ〉 = 〈γ2, γ〉 = 0.

By (55),

=(B∗γγ) = =(|A∗γ|) = 0

and hence

=(B∗γ(x− x0)) = =(B∗γ(γ2 − γ1))
16



from which it follows that

‖x− x0‖−1‖=(B∗γ(x− x0))‖ ≤ ‖γ2 − γ1‖−1‖=(B∗γ(γ2 − γ1))‖ ≤ λ2(γ)

by the definition (67). The derivation of (68) is complete upon observing that

=(B∗γ(x− x0)) = B>γ G(−i(x− x0)).
�

5.2. Local convergence. We state the local convergence theorem for arbitrary isometric A∗, not
necessarily given by the Fourier measurement.

Theorem 5.7 (PAP). For any isometric A∗, let b = |A∗x0| and F be given by (35). Suppose
λ2 < 1 where λ2 is given by (66).

For any given 0 < ε < 1 − λ22, if x(1) is sufficiently close to x0 then with probability one the AP

iterates x(k+1) = Fk(x(1)) converge to x0 geometrically after global phase adjustment, i.e.

(71) ‖α(k+1)x(k+1) − x0‖ ≤ (λ22 + ε)‖α(k)x(k) − x0‖, ∀k
where α(k) := arg minα{‖αx(k) − x0‖ : |α| = 1}.

Proof. By Proposition 3.1 and the projected gradient formulation (34), we have F(x) = x−∇F (x).

From the definition of α(k+1), we have

‖α(k+1)x(k+1) − x0‖ ≤ ‖α(k)x(k+1) − x0‖(72)

≤ ‖α(k)x(k) −∇F (α(k)x(k))− x0 +∇F (x0)‖

Let g(x) = x−∇F (x) and γ(t) = x0 + t(x− x0). By the mean value theorem,

(73) g(x)− g(x0) =

∫ 1

0

[
I −∇2F (γ(t))

]
(x− x0)dt

and hence with x = α(k)x(k) the right hand side of (72) equals

‖
∫ 1

0
(I −∇2F (γ(t)))(α(k)x(k) − x0)dt‖

= ‖
∫ 1

0
Bγ(t)(ργ(t) � B>γ(t)G(−i(α(k)x(k) − x0)))dt‖

by (60), and is bounded by

‖
∫ 1

0
Bγ(t)

(
(ργ(t) − 1J)� B>γ(t)G(−i(α(k)x(k) − x0))

)
dt‖(74)

+‖
∫ 1

0
Bγ(t)

(
1J � B>γ(t)G(−i(α(k)x(k) − x0))

)
dt‖

where 1J is the indicator of J = {j : b[j] > 0}.
Since α(k) is chosen to minimize

‖α(k)x(k) − x0‖2 = ‖x(k)‖2 + ‖x0‖2 − 2〈α(k)x(k), x0〉,
we have

x∗0(α
(k)x(k)) > 0, ∀k.(75)
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First we claim that for any given ε > 0 and sufficiently small ‖α(k)x(k) − x0‖ we have

‖Bγ(t)
(
1J � B>γ(t)G(−i(α(k)x(k) − x0))

)
‖ ≤ (λ22 + ε/2)‖α(k)x(k) − x0‖.(76)

We postpone the proof of the claim till the end.

By the above claim we bound (74) by(
sup
t∈(0,1)

‖ργ(t) − 1J‖∞ + λ22 + ε/2

)
‖α(k)x(k) − x0‖.

For any ε > 0, if x(1) is sufficiently close to x0, then by continuity

(77) sup
t∈(0,1)

‖ργ(t) − 1J‖∞ ≤ ε/2,

and we have from above estimate

‖α(2)x(2) − x0‖ ≤ (λ22 + ε)‖α(1)x(1) − x0‖.
By induction and the assumption that λ22 + ε < 1, we have

‖α(k+1)x(k+1) − x0‖ ≤ (λ22 + ε)‖α(k)x(k) − x0‖
from which (71) follows.

Now let us prove the above claim.

Let ξ1(t) and η1(t) be the leading singular (unit) vectors for B>γ(t) and Bγ(t), respectively. As in

Proposition 5.2, we have

ξ1(t) =
G(γ(t))

‖G(γ(t))‖ , η1(t) =
|A∗γ(t)|
‖A∗γ(t)‖ .

The the continuous dependence of ξ1(t) and η1(t) on α(k)x(k) implies that for any δ > 0

sup
t∈[0,1]

‖ξ1(t)− ξ1(0)‖ < δ1, sup
t∈[0,1]

‖η1(t)− η1(0)‖ < δ1(78)

if ‖α(k)x(k) − x0‖ is sufficiently small. Likewise, for any given δ2 > 0,

sup
t∈[0,1]

| λ
2
2(t)

λ22(0)
− 1| < δ2.(79)

We note that λ2(0) > 0 since Bx0 is full-rank.

By (75)

〈α(k)x(k), ix0〉 = 〈x0, iα(k)x(k)〉 = 0(80)

and hence

〈γ(t),−i(α(k)x(k) − x0)〉 = t〈α(k)x(k),−i(α(k)x(k) − x0)〉+ (1− t)〈x0,−i(α(k)x(k) − x0)〉 = 0.

So the following quantity

w :=
G(−i(α(k)x(k) − x0))
‖G(−i(α(k)x(k) − x0))‖

.

is orthogonal to ξ1(t). By (68), ‖B>γ(t)w‖ ≤ λ2(t) so we can write

1J � B>γ(t)w = (c1η1(t) + c2η⊥(t))λ2(t)
18



for some constants c1, c2 ∈ R, c21 + c22 ≤ 1, and some unit vector η⊥(t) ∈ RN orthogonal to η1(t).
Indeed,

c1λ2(t) = 〈1J � η1(t),B>γ(t)w〉.(81)

On the other hand, by the orthogonality between ξ1(t) and w,

〈η1(t),B>γ(t)w〉 = 〈Bγ(t)η1(t), w〉 = 〈ξ1(t), w〉 = 0.(82)

Moreover, for any t ∈ [0, 1],

‖1J � η1(t)− η1(t)‖ ≤ ‖1J � η1(t)− η(0)‖+ ‖η1(t)− η1(0)‖
≤ ‖η1(t)− η(0)‖+ ‖η1(t)− η1(0)‖
≤ 2‖η1(t)− η1(0)‖

and hence by (78)

sup
t∈[0,1]

‖1J � η1(t)− η1(t)‖2 < 2δ1.(83)

The estimates (81), (82) and (83) imply

|c1| ≤ 2δ1/λ2(0).(84)

Finally, combining (84) and (79), we obtain

‖Bγ(t)
(
1J � B>γ(t)w

)
‖ = ‖Bγ(t)(c1η1(t) + c2η⊥(t))‖λ2(t)(85)

= λ2(t)
√
c21 + c22‖Bγ(t)η⊥(t)‖2

≤ λ2(t)
√
c21 + c22λ

2
2(t)

≤ λ22(0) + ε/2

by choosing δ1, δ2 properly. The proof of the claim is complete. �

6. Real-constrained AP

In the case of x0, x ∈ Rn (or Rn+), we adopt the new definition

λ̃2 := max{‖=(B∗)u‖ : u ∈ Rn, ‖u‖ = 1} = ‖=(B∗)‖(86)

which differs from the definition (67) of λ2 in that u has all real components and hence the condition

〈u, ix0〉 = 0 is always satisfied. Since the test function u is more restricted in (86) we have λ̃2 ≤ λ2
defined in (66) in the one-pattern case.

The spectral gap property λ2 < 1 holds even with just one coded diffraction pattern for any complex
object.

Proposition 6.1. [18] Let x0 ∈ Cn be not a line object. For A∗ given by (5) with independently
and continuously distributed mask phases,

λ2 = max{‖=[B∗u]‖ : u ∈ Cn, iu ⊥ x0, ‖u‖ = 1} < 1

and hence λ̃2 < 1 with probability one.

Following verbatim the proof of Proposition 5.6, we have the similar result.
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Proposition 6.2. Let x0, x ∈ Rn (or Rn+) with x∗x0 > 0. Let γ be a convex combination of x and
x0. Then

(87) ‖=(B∗γ(x− x0))‖ ≤ λ̃2(γ)‖x− x0‖
where

λ̃2(γ) := max{‖=(B∗γ)u‖ : u ∈ Rn, ‖u‖ = 1}.

The following convergence theorem is analogous to Theorem 5.7.

Theorem 6.3 (RAP). For any isometric A∗, let b = |A∗x0| and F be given by (36). Suppose

λ̃2 < 1 where λ̃2 is given by (86).

For any given 0 < ε < 1 − λ̃22, if x(1) is sufficiently close to x0 then with probability one the AP

iterates x(k+1) = Fk(x(1)) converge to x0 geometrically after global phase adjustment, i.e.

(88) ‖α(k+1)x(k+1) − x0‖ ≤ (λ̃22 + ε)‖α(k)x(k) − x0‖, ∀k
where α(k) := x(k)∗x0/|x(k)∗x0| and α(k) = 1 if x0 ∈ Rn+.

Proof. From the definition of α(k+1), we have

‖α(k+1)x(k+1) − x0‖ ≤ ‖α(k)x(k+1) − x0‖(89)

Recalling (34), we write

x(k+1) =
[
x(k) −∇F (x(k))

]
X
.

By the properties of linear projection,

α(k)x(k+1) =
[
α(k)x(k) −∇F (α(k)x(k))

]
X

(90)

and hence the right hand side of (89) equals

‖[α(k)x(k) −∇F (α(k)x(k))]X − [x0 −∇F (x0)]X ‖
≤ ‖α(k)x(k) −∇F (α(k)x(k))− x0 +∇F (x0)‖.(91)

The rest of the proof follows verbatim that of Theorem 5.7 from (73) onward, except with λ2
replaced by λ̃2. �

7. Serial AP

To build on the theory of PAP, we assume, as for two coded diffraction patterns, A = [ 1√
2
A1,

1√
2
A2]

where A∗l ∈ CN/2×n are isometric and let bl = |A∗l x0| ∈ RN/2.

By applying Theorem 5.7 separately to F1 and F2, we get the following bound

(92) ‖α(k+1)x(k+1) − x0‖ ≤ ((λ
(2)
2 λ

(1)
2 )2 + ε)‖α(k)x(k) − x0‖, ∀k,

where

λ
(l)
2 = max{‖=[B∗l u]‖ : u ∈ Cn, iu ⊥ x0, ‖u‖ = 1}, Bl = Aldiag

{
A∗l x0
|A∗l x0|

}
,

l = 1, 2.
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But we can do better. By the projected gradient formulation (34), we have Fl(x) = x−∇Fl(x), l =
1, 2. Let dFl be the Jacobian matrix of Fl. Similar to the calculation in Proposition 5.1, we
have

G(dFlξ) = G(iBl=(B∗l ξ))

=

[
−=(Bl)
<(Bl)

]
B>l G(−iξ), ∀ξ ∈ Cn.

Equivalently, we have

G(−idFlξ) = BlBTl G(−iξ), ∀ξ ∈ Cn.

Hence, by the isomorphism Cn ∼= R2n via G(−iξ), we can represent the action of dFl on R2n by the
real matrix

BlB>l =

[
<(Bl)
=(Bl)

] [
<(B>l ) =(B>l )

]
(93)

and the Jacobian matrix of F2F1 by

D := B2B>2 B1B>1(94)

which is the product of the Jacobian matrices of F2 and F1. Define

‖D‖⊥ := max{‖Dξ‖ : ξ ∈ R2n, ξ ⊥ ξ1, ‖ξ‖ = 1}.(95)

We have the following bound.

Proposition 7.1.

‖D‖⊥ ≤ (λ
(2)
2 λ

(1)
2 )2.

Remark 7.2. By Proposition 6.1, λ
(l)
2 < 1, l = 1, 2, and hence ‖D‖⊥ < 1.

Proof. Since ξ1 = G(x0) is the fixed point for both B1B>1 and B2B>2 , the set {ξ ∈ R2n : ξ ⊥ ξ1} is
invariant under both. Hence, by the calculation

‖B2B>2 B1B>1 ξ‖ = ‖B2B>2 ξ′‖, ξ′ = B1B>1 ξ
≤ (λ

(2)
2 )2‖ξ′‖

≤ (λ
(2)
2 )2(λ

(1)
2 )2‖ξ‖

the proof is complete.

�

We now prove the local convergence of SAP.

Theorem 7.3 (SAP). Let A = [ 1√
2
A1,

1√
2
A2] with isometric A∗1 and A∗2, b = |A∗x0| and F be given

by (39). Suppose ‖D‖⊥ < 1 where ‖D‖⊥ is given by (95).

For any given 0 < ε < 1− ‖D‖⊥, if x(1) is sufficiently close to x0 then with probability one the AP

iterates x(k+1) = Fk(x(1)) converge to x0 geometrically after global phase adjustment, i.e.

(96) ‖α(k+1)x(k+1) − x0‖ ≤ (‖D‖⊥ + ε)‖α(k)x(k) − x0‖, ∀k
where α(k) := arg minα{‖αx(k) − x0‖ : |α| = 1}.
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cameraman

(a) Cameraman (b) Barbara

phantom

(c) Phantom

Figure 1. Test images: (a) Cameraman (b) Barbara (c) Phantom

Proof. At the optimal phase α(k) adjustment for x(k), we have

=(x∗0α
(k)x(k)) = 0

and hence

(97) 〈α(k)x(k) − x0, ix0〉 = 〈α(k)x(k), ix0〉 = <((α(k)x(k))∗ix0) = 0

which implies that

w(k) := −i(α(k)x(k) − x0)
is orthogonal to the leading right singular vector ξ1 = G(x0) of B∗l , l = 1, 2:

ξ1 ⊥ G(w(k)), ∀k(98)

cf. Proposition 5.2.

We have for k = 1, 2, 3, · · ·
‖α(k+1)F2F1(x

(k))− x0‖ ≤ ‖α(k)F2F1(x
(k))− x0‖

= ‖F2F1(α
(k)x(k))−F2F1(x0)‖

= ‖DG(w(k))‖+ o(‖w(k)‖)
≤ max

ξ⊥ξ1
‖ξ‖=1

‖Dξ‖‖w(k)‖+ o(‖w(k)‖),

where D defined in (94) is the Jacobian matrix of F2F1, and hence

‖w(k+1)‖ ≤ ‖D‖⊥‖w(k)‖+ o(‖w(k)‖).(99)

By induction on k with w(1) sufficiently small, we have the desired result (96).

�

8. Numerical experiments

8.1. Test images. Let C,B and P denote the 256× 256 non-negatively valued Cameraman, Bar-
bara and Phantom images, respectively (Fig. 1).
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For one-pattern simulation, we use C and P for test images. For the two-pattern simulations, we
use the complex-valued images, Randomly Signed Cameraman-Barbara (RSCB) and Randomly
Phased Phantom (RPP), constructed as follows.

RSCB: Let {βR(n) = ±1} and {βI(n) = ±1} be i.i.d. Bernoulli random variables. Let

x0 = βR � C + iβI �B.

RPP: Let {φ(n)} be i.i.d. uniform random variables over [0, 2π] and let

x0 = P � eiφ.

We use the relative error (RE)

RE = min
θ∈[0,2π)

‖x0 − eiθx‖/‖x0‖

as the figure of merit and the relative residual (RR)

RR = ‖b− |A∗x|‖/‖x0‖
as a metric for setting the stopping rule.

8.2. Wirtinger Flow. WF is a two-stage algorithm proposed by [12] and further improved by [11]
(the truncated version).

The first stage is the spectral initialization (Algorithm 2). For the truncated spectral initialization
(15), the parameter τ can be optimized by tracking and minimizing the residual ‖b−|A∗xk|‖.
The second stage is a gradient descent method for the cost function

Fw(x) =
N

2
‖|A∗x|2 − b2‖2(100)

where a proper normalization is introduced to adjust for notational difference and facilitate a direct
comparison between the present set-up (A∗ is an isometry) and that of [12]. A motivation for using
(100) instead of (21) is its global differentiability.

Below we evaluate these two stages separately and use the notation WF to denote primarily the
second stage defined by the WF map

Fw(x(k)) = x(k) − s(k)

‖x(1)‖2∇Fw(x(k))(101)

= x(k) − s(k)

‖x(1)‖2A
(
N
(
|A∗x(k)|2 − |b|2

)
�A∗x(k)

)
,

for k = 1, 2, · · · , with s(k) is the step size at the k-th iteration. Each step of WF involves twice
FFT and once pixel-wise operations, comparable to the computational complexity of one iteration
of PAP.

In [12] (Theorem 5.1), a basin of attraction at x0 of radius O(n−1/2) is established for WF for a

sufficiently small constant s(k) = s. No explicit bound on s is available. A disadvantage of WF is
that the iterates diverge if the stepsize is too large (see Section 8.6 for more details).

For comparison, consider the projected gradient formulation of PAP

F(x(k)) = x(k) −∇F (x(k))(102)

= x(k) −A
((

1− b

|A∗x(k)|

)
�A∗x(k)

)
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(a) xspec (b) xt-spec (τ2 = 4.6) (c) xnull (γ = 0.5) (d) xnull (γ = 0.74)

(e) xspec (f) xt-spec (τ2 = 4.1) (g) xnull (γ = 0.5) (h) xnull (γ = 0.7)

Figure 2. Initialization with one pattern of the Phantom ((a) RE(xspec) = 0.9604,
(b) RE(xt-spec) = 0.7646, (c) RE(xnull) = 0.5119, (d) RE(xnull) = 0.4592) and the
Cameraman ((e) RE(xspec) = 0.8503, (f) RE(xt-spec) = 0.7118, (g) RE(xnull) =
0.4820, (h) RE(xnull) = 0.4423).

which is well-defined if supp(b) ⊆ supp(A∗x). Eq. (102) implies a constant step size 1.

In addition, it may be worthwhile to compare the “weights” in ∇Fw and ∇F :

N
(
|A∗x(k)|2 − |b|2

)
= N |A∗x(k)|2

(
1− |b|2
|A∗x(k)|2

)
in ∇Fw(103)

versus

1− b

|A∗x(k)| in ∇F .(104)

Notice that the factor N |A∗x(k)|2 in (103) is approximately Nb2 if x(k) ≈ x0. Like the truncated
spectral initialization, the truncated Wirtinger Flow seeks to reduce the variability of the weights
in (103) by introducing 3 new control parameters [11].

8.3. One-pattern experiments. Fig. 2 shows that the null initialization xnull is more accurate
than the spectral vector xspec and the truncated spectral vector xt-spec in approximating the true
images. For the Cameraman (resp. the Phantom) RR(xnull) can be minimized by setting γ ≈ 0.70
(resp. γ ≈ 0.74). The optimal parameter τ2 for xt−spec in (15) is about 4.1 (resp. 4.6).

Next we compare the performances of PAP and WF [12] with xnull as well as the random initial-
ization xrand. Each pixel of xrand is independently sampled from the uniform distribution over
[0, 1].
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Figure 3. Semi-log plot of RE versus iteration in the one-pattern case with the (a)
Cameraman and (b) Phantom. WF is tested with the optimized step size s = 0.2.

To account for the real/positivity constraint, we modify (101) as

Fw(x(k)) =

[
x(k) − s(k)

‖x(1)‖2∇Fw(x(k))

]
X

, X = Rn, Rn+.(105)

As shown in Fig. 3, the convergence of both PAP and WF is faster with xnull than xrand. In all
cases, PAP outperforms WF.

Also, the median value γ = 0.5 for initialization is as good as the optimal value. The convergence
of PAP with random initial condition xrand suggests global convergence to the true object in the
one-pattern case with the positivity constraint.

8.4. Two-pattern experiments. We use the complex images, RSCB and RPP, for the two-
pattern simulations.

Fig. 4 shows that xnull is more accurate than the xspec and xt−spec in approximating x0. The
difference in RE between the initializations with the median value and the optimal values is less
than 3%.

Fig. 5 shows that for the two-pattern case PAP outperforms WF, both with the null initializa-
tion.

As Fig. 6 shows, SAP converges much faster than PAP and takes about half the number of iterations
to converge to the object. Different samples correspond to different realizations of random masks,
showing robustness with respect to the ensemble of random masks. SAP with the null initialization
also outperforms the Fourier-domain Douglas-Rachford algorithm [18].

Fig. 7 shows the semi-log plot of RE versus iteration for the (a) one-pattern and (b) two-pattern

cases. The dotted lines represent the geometric series {λ̃2k2 }200k=1, {λ2k2 }200k=1 and ‖D‖k⊥ (the pink
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(a) |Re(xt-spec)| (τ2 = 5) (b) |Re(xnull)| (γ = 0.5) (c) |Re(xnull)| (γ = 0.63)

(d) |Im(xt-spec)| (τ2 = 5) (e) |Im(xnull)| (γ = 0.5) (f) |Im(xnull)| (γ = 0.63)

(g) |xt-spec| (τ2 = 5) (h) |xnull| (γ = 0.5) (i) |xnull| (γ = 0.6)

Figure 4. Initialization with two patterns for RSCB ((a)(d) RE(xt-spec) = 1.3954,
(b)(e) RE(xnull) = 0.5736, (c)(f) RE(xnull) = 0.5416) and RPP ((g)RE(xt-spec) =
1.3978, (h) RE(xnull) = 0.7399, (i) RE(xnull) = 0.7153)

line in (a) and the red and the blue lines in (b)), which track well the actual iterates (the black-
solid curve in (a) and the blue- and the red-solid curves in (b)), consistent with the predictions of
Theorems 5.7, 6.3 and 7.3. In particular, SAP has a better rate of convergence than PAP (0.7946
versus 0.9086).
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Figure 5. Semi-log plot of RE and RR versus iteration for PAP and WF with two
patterns. WF is tested with the optimized step size (a) s = 0.2 and (b) s = 0.15.
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Figure 6. Semi-log plot of RE versus iteration of PAP and SAP in the two-pattern
case (γ = 0.5).

8.5. Oversampling ratio. Phase retrieval with just one coded diffraction pattern without the
real/positivity constraint has many solutions [28] and as a result AP with the null initialization
does not perform well numerically.

A natural question then is, Would happen if we measure two coded diffraction patterns each with
fewer samples?

The amount of data in each coded diffraction pattern is measured by the oversampling ratio

ρ =
Number of data in each coded diffraction pattern

Number of image pixels
,

which is approximately 4 in the standard oversampling.
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Figure 7. RE on the log scale versus iteration with (a) one pattern and (b) two
patterns (PAP in red, SAP in blue). The solid curves are the AP iterates and the
dotted lines are the geometric series predicted by the theory.
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Figure 8. Semi-log plot of RE vs. iteration of SAP, PAP and WF with two patterns
and the null initialization (γ = 0.38 and 0.4 for RSCB and RPP, respectively).

For the two-pattern results in Fig. 8, we use ρ = 1.65, 1.96 (respectively for RSCB and RPP) and
hence N ≈ 3.3n, 3.92n (respectively for RSCB and RPP). For n = 256×256, 3.3n ≈ 216269, 3.92n ≈
256901 are both significantly less than (2

√
n − 1)2 = 261121, the number of data in a coded

diffraction pattern with the standard oversampling.

As expected, convergence is slowed down for both methods (much less so for SAP) as the over-
sampling ratio decreases. Nevertheless, both SAP and PAP converge rapidly to the true solution,
reaching machine precision, within 500 and 1200 iterations, while WF fails to converge within 4000
steps for RSCB and stagnates after 3000 iterations for RPP.
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Figure 9. RE versus NSR of the null initialization (γ = 0.5)

8.6. Noise stability. We test the performance of AP and WF with the Gaussian noise model
where the noisy data is generated by

bnoisy = |A∗x0 + complex Gaussian noise|.
The noise is measured by the Noise-to-Signal Ratio (NSR)

NSR =
‖bnoisy − |A∗x0|‖2

‖A∗x0‖2
.

As pointed out in Section 2.3, since the null initialization depends only on the choice of the index set
I and does not depend explicitly on b, the method is more noise-tolerant than other initialization
methods.

Let x̂null be a unit leading singular vector of AIc . In order to compare the effect of normalization,
we normalize a null vector in two different ways

Case 1. xnull = α‖bnoisy‖ · x̂dual(106)

Case 2. xnull = α‖x0‖ · x̂dual(107)

and then compute their respective relative errors versus NSR. As shown in Fig. 9, the slope of
the increase in RE versus NSR is less than 1 in all cases. Remarkably, the slope is much smaller
than 1 for small NSR when the performance curves are strictly convex and independent of the way
of normalization. In particular, the difference between the two cases is not noticeable until NSR
> 0.1. For larger NSR, however, the proper normalization with ‖x0‖ (Case 2) can significantly
reduce the error.

The difference between the initialization errors of RPP and RSCB would disappear by and large
after the AP iteration converges, indicating the null initialization enters the basin of attraction of
the noisy feasibility set for both images, see Fig. 11.

Next, we compare the performance of AP and WF with the null initialization in the noisy case.
Noisy data would affect the choice of step size for WF. For example, in contrast to the noiseless
case shown in Fig. 5, the WF iterates diverge, respectively, with s = 0.2 for RSCB at NSR = 0.3
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Figure 10. Relative error versus iteration with (a) (b) one and (c) (d) two patterns
at NSR = 0.1, 0.2, 0.3 (The step size of WF is s = 0.1.)

and with s = 0.15 for RPP at NSR = 0.2. We choose a smaller step size s = 0.1 with which all
subsequent WF iterations converge eventually.

Fig. 10 shows the RE versus iteration of AP and WF at NSR = 0.1, 0.2, 0.3. Convergence is
achieved well within 500 iterations for both AP and WF in (a)(b)(c). For RPP in (d), convergence
is slowed down at higher NSR, especially for WF. We observe that while SAP converges the fastest
but PAP achieves the lowest error except for RPP at NSR = 0.3 where PAP has not yet converged
in 2000 iterations. The improved accuracy of PAP over SAP may be explained by the averaging
effect in (40).

Fig. 11 shows the RE of AP and WF with the null initialization with 500 iterations for the one-
pattern case and 1000 iterations for the two-pattern case. In view of Fig. 10, Fig 11 (a)(b)(c)
exhibit fully convergent error curves while the error curves in Fig. 11(d) are fully convergent only
for NSR ≤ 0.2.
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Figure 11. RE versus NSR with one (top row, 500 iterations) and two (bottom
row, 1000 iterations) patterns (The step size of WF is s = 0.1.).

Clearly, AP consistently achieves a smaller error than WF, with a noise amplification factor slightly
above 1. For RPP, WF, PAP and SAP fail to converge in 1000 steps beyond 20%, 25% and 28%
NSR, respectively, hence the scattered data points. Increasing the maximum number of iterations
can bring the upward “tails” of the curves back to roughly straight lines as in other plots.

As in Fig. 9, if ‖x0‖ is known explicitly, we can apply AP with the normalized noisy data

b̂noisy = bnoisy
‖x0‖
‖bnoisy‖

and improve the performance shown in Fig. 10 and 11. And the improvement is particularly
significant for larger NSR. For simplicity of presentation, the results are omitted here.
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9. Conclusion and discussion

Under the uniqueness framework of [28] (reviewed in Section 1.1), we have proved local geometric
convergence for AP of various forms and characterized the convergence rate in terms of a spectral
gap. Other literature either demands a large number of coded diffraction patterns [12,13] or asserts
sublinear convergence [49]. More importantly, we have demonstrated the null initialization to be
an effective initialization method with numerical performance superior to the spectral initialization
and its truncated version [11,12]. In practice AP with the null initialization is a globally convergent
algorithm for phase retrieval with one or two coded diffraction patterns.

Of course, a positive spectral gap does not necessarily lead to a significantly sized basin of attraction
for the true object. By Remark 5.5 AP with just one coded diffraction pattern without the realness
constraint still has a positive spectral gap and thus converges geometrically if the initialization is
sufficiently close to the true object. However, the null initialization with one coded pattern without
the realness constraint is evidently outside of the basin of attraction of AP (not shown). This
is likely because the corresponding phase retrieval has many solutions and thus no initialization
method can possibly succeed. On the other hand, AP with one coded diffraction pattern under
the realness constraint converges globally with randomly selected initial guess (Fig. 3) because the
uniqueness of solution is restored.

This observation points to the importance of the design of measurement scheme besides the choice
of algorithm (e.g. AP versus WF). Results that do not take the measurement scheme into account
(e.g. [41, 49]) are likely to be sub-optimal in both theory and practice.

A reasonable question is, How much can the measurement scheme be relaxed from that of [28]? Fig.
8 gives a tentative answer to one aspect of the question: the number of measurement data may be
reduced by as much as half and still maintains a good numerical performance. Another aspect of
the question is about the type of masks to be used in measurement: Indeed, besides the fine-grained
(independently distributed) masks discussed in Section 1.1, the coarse-grained (correlated) masks
can have a good numerical performance as well (see [29,30]).

A shortcoming of the present work is that we were unable to provide a useful estimate for the size
of the basin of attraction for AP; our current estimate is pessimistic due to technical difficulty (not
shown). Another is that we were unable to give an error bound for AP in the case of noisy data.
And finally it remains an open problem to prove global convergence of our approach (AP + the
null initialization).

These questions are particularly enticing in view of superior numerical performances that strongly
indicate a large basin of attraction, a high degree of noise tolerance and global convergence from
randomly selected initial data.
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