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Abstract—The issue of resolution with complex-field measurement
is first reviewed with emphasis on superresolution, discrete
versus continuous measurement, and full versus compressive
measurement.

The main focus of the paper is on the other extreme: one-bit
intensity measurement which collects the least amount of infor-
mation from each sensor by proper thresholding. Reconstruction
from one-bit intensity measurement is related to reconstruction
from zero-crossings and is much harder than reconstruction from
complex-field measurement. The proposed method, dubbed the
null vector, is a linearization of phase retrieval and takes the
form of a quadratic optimization with a row submatrix subject
to an ellipsoidal constraint.

The null vector differs from the spectral vector in two ways:
(i) the former uses an ellipsoidal constraint while the latter
uses the spheroidal constraint; (ii) the former uses binary,
threshold-crossing information while the latter uses the intensity
information to weight the quadratic optimization (i.e. row sub-
matrix versus weighted matrix). Both contribute to the superior
performance of the null vector.

Further, the question of optimal weighting is explored to improve
the performance of the null vector.

Index Terms—Resolution length, one-bit intensity measurement,
null vector, spectral vector, optimal weighting

I. INTRODUCTION

Consider the standard setup of imaging point objects located
at pj ∈ [0, 1], j = 1, ..., s from signals received by sensors
located at qk, k = 1, . . . , N

y[k] =

s∑
j=1

c[j]e−2πiqkpj + η[j]

where η is the measurement noise. With wave field measured
by a sufficient number of sensors uniformly deployed in
[−Ω,Ω], the resolution length (RL) is 1/(2Ω), modulo some
constant factor close to 1 [2].

Let us discretize the continuum system by replacing pj by the
closest grid point from the set {m/M : m = 0, . . . ,M −
1}.

Invited paper to 2017 Asilomar Conference on Signals, Systems, and
Computers. This work was supported by the National Science Foundation
under Grant DMS-1413373.

0 1p1 p2 p3 p4

1/M

and setting the unknown vector: x0[m] = c[j] if m/M is the
closest point to some pj and zero otherwise. We then obtain
the finite linear model: y = Φx0 + e with the sensing matrix
Φ = [e−2πiqkm/M ] ∈ CN×M where the total error e now
includes both the noise η and gridding (model) error. This
object vector x0 can represent an extended object if the grid
spacing is sufficiently small.

If e = 0, then the sampling theorem for unit-band limited, dis-
crete M -periodic signals implies that finite Nyquist sampling
contains the complete information about x0. If e 6= 0, how-
ever, continuum sampling is not equivalent to finite Nyquist
sampling. For example, if η = 0 but e 6= 0, then the error-free
signal y(t) is analytic in t ∈ R and by analytic continuation can
be recovered from sampling any infinite set with cluster points
while this is generally not possible with finite sampling.

A. Full-field measurement: Superresolution

The optimal recovery theory of Donoho [12] concerns the
minimax error

E = inf
x

sup
x0

‖x− x0‖, s.t. ‖Φx− Φx0‖ < ε.

for the linear inversion problem with a grid spacing = 1/F
RL (F ≥ 1) and full continuous measurement data y(t), t ∈
[−Ω,Ω].

Donoho proves that unique inversion is more or less equivalent
to the condition of object separation > 2 RL and that if the
minimum separation > 4 RL, then E ≤ cεF 2s+1. Demanet &
Nguyen [11] extend the results and prove E ∼ εF 2s−1 for s
point objects separated at least by 1/F RL. Neither [12] nor
[11] provides any practical reconstruction scheme.

B. Full-field measurement with separated objects

Candès & Fernandez-Granda [3], [4] consider the L1-min
principle

min ‖x‖1, ‖y − Φx‖1 < ε (1)



with the minimum separation ≥ 4 RL and full continuum mea-
surement data y(t), t ∈ [−Ω,Ω] and prove ‖x̃− x‖1 ≤ cεF 2,
which is an improvement over the error bound of [12].

For comparison, the single-snapshot MUSIC algorithm [20] is
a gridless method and can uniquely recover the object vector
from the error-free data without any assumption of minimum
separation if the number of equally spaced measurement data
N ≥ 2s−1. Liao and Fannjiang [14], [17] prove noise stability
for the single-snapshot MUSIC if the minimum separation > 2
RL by deriving a discrete Ingham inequality. The discrete
Ingham inequality implies that the condition number of the
MUSIC sensing matrix is less than 3xmax/xmin where xmax

and xmin are respectively the largest and smallest (nonzero)
components of the object vector whenever the minimum sep-
aration is greater than 2(1 − 4π/N)−1/2 RL. Moreover, for
minimum separation δ < 1 RL, empirical evidence shows
an error amplification factor δ−α with an exponent α slightly
greater than 2s− 1, indicating the superresolution of MUSIC
is not far from the one given in [11].

C. Compressive measurement with separated objects

The above works assume either full continuous or discrete
samples. We next discuss gridless compressive imaging results
with sparse (O(s) or O(s2)) random samples.

Tang et al. [21] consider the error-free case (ε = 0 in (1)) and
prove exact recovery by L1-minimization with O(s) random
samples if the minimum separation ≥ 4 RL.

On the other hand, multi-shot MUSIC with joint sparsity is
developed in [13] which assumes O(s2) random samples for
performance guarantee of object support recovery for e 6= 0
if the minimum separation = O(1) RL independent of grid
spacing.

Fannjiang and Liao [16] develop another gridless approach
to compressive imaging with O(s2) random samples based on
the idea of coherence band. The band-exclusion and local opti-
mization techniques therein can improve standard compressed
sensing algorithms for accurate and efficient recovery if the
minimum separation ≥ 3 RL.

A different approach to resolution analysis is to set the grid
spacing = 1 RL (i.e. F = 1) and consider measurement of
physical quantities less informative than the complex wave
field. For the rest of the paper, we discuss the extreme case
of signal recovery from one-bit intensity measurement and its
extension.

II. ONE-BIT INTENSITY MEASUREMENT

For intensity-only as well as one-bit measurements, it is more
convenient to begin with the two-dimensional case.

Let x[n1, n2], n1, n2 ∈ N be a finite array. Let
X(z1, z2), z1, z2 ∈ C, denote the two-dimensional z-transform
of x and X(ω1, ω2) the two-dimensional Fourier transform

of x where ω1, ω2 ∈ R, are the Fourier variables. Recall
Bezout’s theorem, a generalization of the fundamental theorem
of algebra:

If X(z1, z2) and Y (z1, z2) are complex polynomials
of degrees c and d with no common factors, then X
and Y have at most c ·d distinct common zeros over
C2.

As a corollary, if X(z1, z2) is irreducible over C2, X(ω1, ω2)
is real-valued and changes sign over R2, then sgn{X(ω1, ω2)}
(i.e. the set of zero crossings) determines X uniquely, up
to a constant factor [8], [9]. This is because in two (or
higher) dimensions having zero crossings implies the existence
of infinite zeros for X(ω1, ω2). A similar result holds for
general band-limited functions [10] and 1-D bandpass signals
of bandwidth less than one octave [18]. Zero crossings are a
type of one-bit measurement data.

Although Bezout’s theorem implies unique determination of
signal from zero crossings in the Fourier transform, actual
reconstruction from zero crossings is difficult because in
practice only a finite set of Fourier samples (on the order
of the degree of X) are available. Also the case of complex
X(ω1, ω2) is left out.

For general signals we propose a practical reconstruction
method based on threshold crossings of |X(ω1, ω2)|.

Consider the nonlinear signal model: b = |y|, y = A∗x0 +
e,A∗ ∈ CN×M , where | · | denotes entrywise modulus.
We propose a thresholding rule for the magnitude data b
and a method for recovering x0 from the resulting binary
data.

For our examples, A∗ is either a random Gaussian matrix or
1-D coded Fourier matrix A∗ = Φ diag[µ] where Φ is the
oversampled DFT and µ = (exp{iθ[j]})Mj=1 with i.i.d. uniform
random variables θ[j] over [0, 2π). To increase the number of
measurement data in the latter case, more than one random
masks may be used.

A. Intensity threshold-crossing

We want to select a threshold to separate the “weak” signals
from the “strong” signals. Let I ⊂ {1, · · · , N} be the support
set of the weak signals and Ic its complement such that b[i] ≤
b[j] for all i ∈ I, j ∈ Ic. In other words, {b[i] : i ∈ Ic} are
the strong signals. Denote the sub-column matrices consisting
of {ai}i∈I and {aj}j∈Ic by AI and AIc , respectively. Let
bI = |A∗Ix0| and bIc = |A∗Icx0|.

The significance of the weak signal support I lies in the fact
that I constains the best loci to “linearize” the problem since
A∗Ix0 ≈ 0.

For a full rank A, let A∗ = QR be the QR-decomposition of
A∗ where Q is isometric and R is an invertible upper-triangular
square matrix. Let QI and QIc be the sub-row matrices of Q



corresponding to the index sets I and Ic, respectively. Clearly,
A∗I = QIR and A∗Ic = QIcR. Let |I| be the cardinality of
the set I . We always assume |I| ≥ M so that A∗I and QI
have a trivial null space and hence preserve the information
of x0.

Let z0 = Rx0. Since bI = |QIz0| is small, the rows of QI are
nearly orthogonal to z0. A first approximation can be obtained
from xnull = R−1znull where

znull ∈ arg min
{
‖QIz‖2 : z ∈ CM , ‖z‖ = ‖b‖

}
.

In view of the isometry property

‖z‖2 = ‖QIz‖2 + ‖QIcz‖2 = ‖b‖2

minimizing ‖QIz‖2 is equivalent to maximizing ‖QIcz‖2 over
{z : ‖z‖ = ‖b‖}. This leads to the alternative variational
principle

xnull ∈ arg max
{
‖A∗Icx‖

2 : x ∈ CM , ‖Rx‖ = ‖b‖
}

(2)

solvable by the power method (Algorithm 1).

Algorithm 1: The power method for the null vector
1 Input: QR-decomposition of A∗, Ic, ‖b‖.
2 Initialization: z1
3 for k = 1, 2, 3, · · · do
4 z′k ← Q∗(1c �Qzk), where 1c is the indicator function of Ic
5 zk+1 ← z

′
k/‖z

′
k‖

6 until ‖zk+1 − zk‖ is sufficiently small.
7 end
8 Output: xnull = ‖b‖R−1znull, znull = zk+1.

B. Performance guarantee

To the end of proving a performance guarantee, we consider
the following simplified version of the null vector

x̂null ∈ arg min
{
‖A∗Ix‖2 : x ∈ CM , ‖x‖ = ‖x0‖

}
(3)

which is close to xnull when the oversampling ratio L = N/M
of the i.i.d. Gaussian matrix is large or when the measurement
matrix is isometric (R = I) as for the coded Fourier matrix.
Like xnull, x̂null can also be efficiently computed by the power
method by iterating λ−AIA∗I , where the constant λ is chosen
to be around the leading singular value of AI . Numerical
experiments show that x̂null as approximation of x0 is close to
xnull for L ≥ 8. But for L = 4, xnull is a significantly better
approximation than x̂null. Note that L = 4 is near the threshold
of having an injective intensity map: x0 −→ |A∗x0|2 for a
generic A∗ [1]. We have the following performance guarantee
for x̂null.

Theorem 1. [6], [7] Let A be a M×N i.i.d. complex Gaussian
matrix and b = |A∗x0|. Let σ := |I|/N < 1, ν = M/|I| <
1. Then for any x0 ∈ CM the error bound

‖x0x∗0 − x̂nullx̂∗null‖F/‖x0‖2 ≤ c0
√
σ (4)
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(b) Gaussian with colored noise
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(c) Fourier with white noise
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Figure 1. Log-log plot of RE for the coded Fourier case vs. L of the null
vector method with various α, the spectral and the truncated spectral method.

holds with probability at least 1 − 5 exp
(
−c1|I|2/N

)
−

4 exp(−c2M). Here ‖·‖F denotes the Frobenius norm.

By Theorem 1, we have that, for N = CM lnM and |I| =
CM,C > 1,

‖x0‖−2‖x0x∗0 − x̂nullx̂∗null‖F ≤
c√

lnM

with probability exponentially (in M ) close to one, implying
crude reconstruction from one-bit intensity measurement is
easy.

Theorem 1 also gives a simple guideline

M < |I| � N � |I|2

for the choice of |I| to achieve a small σ with high probability.
In particular, the choice

|I| = dMLαe = dM1−αNαe, α ∈ [0.5, 1)

yields the (relative) error bound O(L(α−1)/2), with probability
exponentially (in n) close to 1, achieving the asymptotic
minimum at α = 1/2 (the geometric mean rule).

Given the wide range of effective thresholds, the null vector
is robust as the noise tends to mess up the indices near the
threshold and can be compensated by choosing a smaller
I , unspoiled by noise and thus satisfying the error bound
(4).

C. Numerical experiments

For numerical experiments, we use the relative error,

RE := ‖x0‖−2‖x0x∗0 − x̂x̂∗‖F,

as the figure of merit.



For comparison, we consider the spectral vector [19]

xspec ∈ arg max
{
‖diag[b]A∗x‖2 : x ∈ CM , ‖x‖ = ‖x0‖

}
computed by the power method (Algorithm 2).

Algorithm 2: The power method for the spectral vector
1 Input: A, b, ‖x0‖.
2 Initialization: x1
3 for k = 1, 2, 3, · · · do
4 x′k ← A(|b|2 �A∗xk);

5 xk+1 ← x
′

k/‖x
′

k‖;
6 Until ‖xk+1 − xk‖ is sufficiently small.
7 end
8 Output: x̂spec = xk‖x0‖.

Two major differences between Algorithms 1 and 2 are (i) the
QR step in Algorithm 1 and the lack of it in Algorithm 2; (ii)
Algorithm 1 uses 1c while Algorithm 2 uses |b|2 to weight the
power method in step 4. Both factors contribute to the superior
performance of Algorithm 1.

The truncated spectral vector [5] uses a still different weight-
ing

xt-spec ∈ arg max{‖A
(
1trim � |b|2 �A∗x

)
‖ : ‖x‖ = ‖x0‖}

where 1trim is the characteristic function of the set{
i : b(i) ≤ τ ‖b‖√

N

}
for some threshold τ , meant to remove

large spurious data.

We test the null vector and the spectral methods [5], [19] for
two different signals: the white noise and a colored noise with
M = 160. Fig. 1 is the log-log plots of RE versus L for (a)(b)
the Gaussian matrix and (c)(d) the 1-D coded Fourier matrix.
We see that the performance of the null vector is robust with
respect to the choice of the measurement matrix and the signal.
Moreover, the error curve for the null vector has a slope around
0.5 roughly independent of α (legend), indicating a universal
behavior for large L.

III. TOWARD OPTIMALLY WEIGHTED POWER METHOD

To further improve the performance of the null vector method,
let us consider a more general weight function w ∈ [0, 1] in
Algorithm 1:

xw ∈ arg max
{
‖
√
w �A∗x‖2 : x ∈ CM , ‖Rx‖ = ‖b‖

}
(5)

or equivalently

xw ∈ arg min
{
‖
√

1− w �A∗x‖2 : x ∈ CM , ‖Rx‖ = ‖b‖
}

To demonstrate the importance of the QR step, we also test
the version without QR:

x̂w ∈ arg max
{
‖
√
w �A∗x‖2 : x ∈ CM , ‖x‖ = ‖x0‖

}
. (6)

(a) Gaussian with QR, L = 4 (b) Gaussian with QR, L = 8

(c) Gaussian w/o QR, L = 4 (d) Gaussian w/o QR, L = 8

Figure 2. RE vs. τ for the Gaussian case (a)(c) with or (b)(d) without QR at
L = 4 (top) and L = 8 (bottom).

(a) Fourier with L = 4 (b) Fourier with L = 8

Figure 3. RE vs. τ for the coded Fourier case at (a) L = 4 or (b) L = 8

Let us consider two types of continuous weight functions with
a threshold τ in terms of ξ = b̃[j] ≡ b[j]/‖b‖∞:

w1(ξ) =

{∣∣∣ ξτ ∣∣∣α ξ ≤ τ,
1 ξ > τ,

α = 1 (7)

w2(ξ) =

{
0 ξ < τ,∣∣∣ ξ−τ1−τ

∣∣∣α ξ ≥ τ, α = 0.1. (8)

The Heaviside function Hτ = Ic in Algorithm 1 can be viewed
as the limiting case α → ∞ in (7) or α → 0 in (8) while
the spectral vector corresponds to τ = 1, α = 2 in (7) or
τ = 0, α = 2 in (8).

We consider L = 4, 8 for numerical demonstration. We set
M = 200 for the subsequent figures.

Fig. 2 (a)(b) shows RE for (5), while (c)(d) for (6), with w =
w1, w2, Hτ versus τ in the Gaussian case. Clearly the QR
step has a significant effect on the performance of all three
cases.
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Figure 4. Average RE of 10 trials versus NSR with τ = 0.3, 0.15, 0.3 for
w1, w2, Hτ , respectively.

Fig. 3 shows the corresponding results for the 1-D coded
Fourier case for L = 4, 8. Since the 1-D phase-coded
oversampled Fourier matrix is isometric, the QR step is not
needed.

Clearly from Fig. 2 and Fig. 3 the power method with either
w1 or w2 performs better than with Hτ for all τ . Interestingly,
the error curve for Hτ is close to the larger of the two error
curves for w1 and w2. The behaviors for w1 and w2 appear
to be complementary as τ is a “lower” threshold of w2 and a
“upper” threshold of w1.

Fig. 2 (a)(b) and Fig. 3 also demonstrate the existence of an
optimal threshold, not far from τ = 0.15 for w2 and τ = 0.3
for w1 and Hτ . For noisy data, Fig. 4 shows the average RE
versus the noise-to-signal (NSR) ratio. For these parameters
w2 is the best performer.

IV. CONCLUSION

We have demonstrated the feasibility of complex signal re-
construction from one-bit intensity measurement by proper
thresholding in Theorem 1 and numerical experiments. The
proposed method, dubbed the null vector, can be viewed as
a linearization of phase retrieval and takes the form of a
quadratic optimization with a row submatrix subject to an
ellipsoidal constraint, determined by the QR factorization of
the measurement matrix.

The simplicity of the null vector method makes it an effective
initialization scheme for other more sophisticated approaches
to phase retrieval [6], [7].

From the perspective of the weighted power method, the null
vector method corresponds to weighting which has a lower
threshold and is thus robust w.r.t. noise. By keeping the same
feature and adjusting the weighting profile as in (8) we can
significantly improve the performance of the weighted power
method.
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