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UNIQUENESS THEOREMS FOR TOMOGRAPHIC PHASE RETRIEVAL
WITH FEW CODED DIFFRACTION PATTERNS

ALBERT FANNJIANG

Abstract. 3D tomographic phase retrieval under the Born approximation for discrete
objects supported on a n×n×n grid is analyzed. It is proved that n projections are sufficient
and necessary for unique determination by computed tomography (CT) with full projected
field measurements and that n + 1 coded projected diffraction patterns are sufficient for
unique determination, up to a global phase factor, in tomographic phase retrieval. Hence
n + 1 is nearly, if not exactly, the minimum number of diffractions patterns needed for 3D
tomographic phase retrieval under the Born approximation.

1. Introduction

Tomography is a commonly used method in a wide range of applications such as computed
tomography [21], 3D diffractive imaging [7] and quantum state measurement [17].

Mathematically speaking, the forward model of tomography is based on various approxima-
tions of the nonlinear inverse scattering formulation (for example, the Lippmann-Schwinger
integral equation). A simplification common to all current tomographic methods (except for
geophysical applications) is based on either the Born or the Rytov approximation. The lat-
ter reduces to computed tomography (CT) in the limit of geometrical optics. The inversion
methods of CT, which ignores the diffraction and scattering effects, have been well studied
and documented [21]. On the other hand, the phase-unwrapping problem inherent to the
Rytov approximation (see Section 2) is a largely unsolved problem and a major road block
to its implementation [7].

An additional complication occurs in X-ray, optical scattering [2], electron diffraction [11,
12] as well as quantum state tomography [17], where only intensity measurements can be
performed. This gives rise to the phase problem which requires phase retrieval techniques
for solutions [10].

This brief note considers the imaging set-up based on the Born approximation where diffrac-
tion patterns (hence intensity-only measurements) in various directions are measured with
a coded aperture and used to determine the 3D object (Figure 1).

In particular, we address the uniqueness question: Under what measurement schemes and
with how many diffraction patterns, can one determine the 3D object uniquely (up to a
global phase factor)?

To answer this question in a quantitative way, it is instructive (even imperative) to work
with a discrete setting. After introducing the Born-projection approximation in Section
2 and laying out the discrete framework in Section 3, we recall some basic results about
diffraction patterns in Section 4, in particular how the use of a random mask can improve
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Figure 1. Diffraction pattern coded by a random mask placed behind the
object. Different projections can be implemented by orientating the object in
the corresponding direction, with the measurement set-up fixed. See, e.g. [19]
for an similar experimental set-up

the quality of the measurement data (see also Remark 5.3). In Section 5 we first prove
that with a random mask in the measurement of diffraction patterns, the tomographic phase
retrieval problem reduces to that of CT modulo a simple ambiguity (Theorem 5.1). We then
eliminate this ambiguity by deploying a sufficiently diverse set of n+1 projections under the
prior constraint that the object does not become part of a line segment in any projection
in the measurement scheme. As the uniqueness condition of n projections required for the
standard CT (Theorem 5.5) sets a lower bound on the number of diffraction patterns for
tomographic phase retrieval, the uniqueness condition of n+1 diffraction patterns (Theorem
5.8) is nearly optimal. We conclude with several remarks in Section 6.

2. Born and projection approximations

In scattering theory, the full field u = ui + us is written as the sum of the incident field ui
and the scattered field us. In the continuum setting, the full field u(r) is governed by the
Lippmann-Schwinger equation

u(r) = ui(r) +

∫
dr′G(r− r′)f(r′)u(r′)(1)

where f is the inhomogeneity, also called scattering potential, and G is the Green’s function
of the free-space Helmholtz equation [7].

Under the weak scatter assumption |us| � |ui|, u in the (first-order) Born approximation is
given by

u(r) = ui(r) +

∫
dr′G(r− r′)f(r′)ui(r

′).(2)

Under the Fresnel approximation (with the z-axis as the optical axis, say),

G(r) =
−1

4π

eiκ|r|

|r|
≈ −1

4π|z|
eiκ|z|ei

κ
2
x2+y2

|z|(3)
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and hence (2) becomes

ui(r)−
eiκz

4π

∫
dx′dy′

∫
dz′

f(x′, y′, z′)

|z − z′|
e
iκ
2

(x−x′)2+(y−y′)2
|z−z′| e−iκz

′
ui(x

′, y′, z′).(4)

We think of the scattering process as consisting of two stages: First, the plane wave (ui(r) =
eiκz) illuminates and exits the scattering object; second, the exit wave transmits through a
mask (located at z = 0) and propagates toward the detector.

In the first stage, consider the high Fresnel number regime

NF =
`2

λz0
� 1,(5)

where ` is the typical size to be resolved, λ the wavelength and z0 the thickness of the object.
In this limit (5),

−iκ

2π|z − z′|
e
iκ
2

(x−x′)2+(y−y′)2
|z−z′| −→ δ(x− x′, y − y′), as NF →∞

for all z 6= z′, the exit wave (4) at z = 0 is approximated by

vB(x, y) = 1− i

2κ

∫
dz′f(x, y, z′).(6)

The right hand side of (6) is the projection approximation under the first-order Born as-
sumption. On the other hand, the exit wave with the Rytov approximation is given by

vR(x, y) = exp

[
− i

2κ

∫
dz′f(x, y, z′)

]
.

Since

vB − 1 = ln vR mod 2πi,(7)

the Born scattered field is the unwrapped phase of the Rytov approximation.

In short, the Born-projection approximation is the linear approximation of the Rytov-
projection approximation and both approximations employ the projection approximation
[6].

The projection approximation corresponds to light propagation through the scatterer in
parallel straight lines. Its validity, however, depends on the spatial resolution of the imaging
system as follows.

Radiation of wavelength λ scattered by features of size `, that are to be resolved, would
have a maximum diffraction angle of the order of ∆θ = λ/`. Hence the maximum spread of
the radiation at the exit plane would be ∆θz0 where z0 is the thickness of the sample. The
projection approximation is valid if the spread is much smaller than the resolution, i.e.

λz0/`� `.(8)

which is exactly equivalent to the high Fresnel number regime (5) [22].
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At the second stage, the exit wave vB is first multiplied by the mask function µ and then
propagates into the far-field as F(µ · vB) where F is the Fourier transform in the transverse
variables. The measured coded diffraction pattern |F(µ · vB)|2 is given by

|F(µ · vB)|2 = |F(µ)|2 +
1

κ
={Fµ · F(µ

∫
fdz′)}+

1

4κ2
|F(µ

∫
fdz′)|2(9)

where = denotes the imaginary part. This technique, with or without coded aperture, is
sometimes called the propagation-based phase contrast method [22].

Tomographic microscopy based on the linear forward model ignoring the nonlinear term
|F(µ

∫
dz′f)|2 on the right hand side of (9) is a form of bright-field imaging (see [18, 23]).

As (9) represents the interference pattern between the reference wave F(µ) and the masked
object wave −iF(µ

∫
fdz′)/(2κ), reconstruction from the linear term in (9) can be performed

by conventional holographic techniques [25,26].

Adopting the dark-field mode of imaging (see [15] where the pupil or probe function plays the
role of coded aperture), we focus on the more challenging nonlinear term as the measurement
data and analyze the inherent information content therein. The nonlinear effect of a coded
aperture is a key ingredient of our set-up. The next key ingredient to an information-based
approach is discretization.

3. Discrete tomography

To motivate the discrete setup, consider the continuum setting. It is a classical result that
a compactly supported function on, e.g. the cube, is uniquely determined by the Fourier
transform (magnitude & phase) in any infinite set of projections ( [14], Proposition 7.8) while
for any finite set of projections, counterexamples to unique determination can be constructed
( [14], Proposition 7.9).

As a consequence, uniqueness with Fourier intensity data in the continuum setting would
require additional assumptions besides an infinite number of projections. It is not currently
known, however, what additional assumptions are needed to guarantee uniqueness with
intensity-only measurements.

Working with a discrete set-up we aim to derive a quantitative, information-based theory of
uniqueness. To this end, we adopt the framework of [1] whose main advantage is preserving
the fundamental Fourier slice theorem (Theorem 3.1).

For simplicity, we choose the physical units so that κ = 2π. Let Jk, lK denote the integers
between and including the integers k and l. We define a 3D n×n×n object as the set

f = {f(i, j, k) ∈ C : i, j, k ∈ Zn}(10)

where

Zn =

{
J−n/2, n/2− 1K if n is an even integer;
J−(n− 1)/2, (n− 1)/2K if n is an odd integer.

(11)
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We define three families of line segments, the x-lines, y-lines, and z-lines. Formally, a x-line,
denoted by `x(α,β)(c1, c2), is defined as

`x(α,β)(c1, c2) :

[
y
z

]
=

[
αx+ c1
βx+ c2

]
c1, c2 ∈ Z2n−1, x ∈ Zn(12)

To avoid wraparound of x-lines with |α|, |β| ≤ 1, we can zero-pad f in a larger lattice Z3
p

with p ≥ 2n− 1. This is particularly important when it comes to define the X-ray transform
by a line sum (cf. (18)-(20)) without wrapping around the object domain.

Similarly, a y-line and a z-line are defined as

`y(α,β)(c1, c2) :

[
x
z

]
=

[
αy + c1
βy + c2

]
c1, c2 ∈ Z2n−1, y ∈ Zn,(13)

`z(α,β)(c1, c2) :

[
x
y

]
=

[
αz + c1
βz + c2

]
c1, c2 ∈ Z2n−1, z ∈ Zn.(14)

We denote the sets of all x-lines, y-lines, and z-lines by Lx,Ly, and Lz, respectively.

Also, we denote the family of lines that corresponds to a fixed pair (α, β) and variable
intercepts (c1, c2) by `x(α,β), `y(α,β) and `z(α,β) for a family of parallel x-lines, y-lines, and
z-lines, respectively. Note that `x(1,β) = `y(1,β), `x(α,1) = `z(1,α) and `y(α,1) = `z(α,1).

Let fx be the continuous interpolation of f in the directions perpendicular to x as fol-
lows:

fx(i, y, z) =
∑
j∈Zn

∑
k∈Zn

f(i, j, k)Dp(y − j)Dp(z − k), y, z ∈ R(15)

where Dp is the p-periodic Dirichlet kernel given by

Dp(t) =
1

p

∑
l∈Zp

ei2πlt/p =

{
1, t = mp, m ∈ Z

sin (πt)
p sin (πt/p)

, else.

In particular, Dp(t) = 0 for t ∈ Z/Zp, i.e. [Dp(i− j)]i,j∈Zp is the p× p identity matrix.

Similarly we define the interpolation of f perpendicular to y and z, respectively, as

fy(x, j, z) =
∑
i∈Zn

∑
k∈Zn

f(i, j, k)Dp(x− i)Dp(z − k), x, z ∈ R;(16)

fz(x, y, k) =
∑
i∈Zn

∑
j∈Zn

f(i, j, k)Dp(x− i)Dp(y − j), x, y ∈ R.(17)

By interpolating from the grid points (15)-(17), we have extended f from Z3
p to the hyper-

planes x = i, y = j or z = k, where i, j, k ∈ Zp.

The main, and only, purpose for interpolating the discrete object is to make possible the
definition of a diversified set of the discrete X-ray transforms. Having extended the domain
of f to the hyperplanes x = i, y = j or z = k, where i, j, k ∈ Z2n−1, we define the discrete
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X-ray transforms as the line sums

fx(α,β)(c1, c2) =
∑
i∈Zn

fx(i, αi+ c1, βi+ c2),(18)

fy(α,β)(c1, c2) =
∑
j∈Zn

fy(αj + c1, j, βj + c2)(19)

fz(α,β)(c1, c2) =
∑
k∈Zn

fz(αk + c1, βk + c2, k)(20)

with c1, c2 ∈ Z2n−1. With zero-padding, we take Z2
p, p ≥ 2n− 1, as the domain of the X-ray

transforms.

Without the interpolation (15)-(17), the discrete X-ray transforms are not well-defined except
for (α, β) = (±1, 0), (0,±1), (±1,±1). For simplicity of terminology, we shall refer to X-ray
transforms simply as projections.

The 3D Fourier transform f̂ of the object f , supported in Z3
n ⊂ Z3

p, is given by

f̂(ξ, η, ζ) =
∑

i,j,k∈Zn

f(i, j, k)e−i2π(ξi+ηj+ζk)/p.(21)

Note that f̂ in (21) is a p-periodic function band-limited to Z3
n. The associated 1-D and 2-D

(partial) Fourier transforms are similarly defined p-periodic band-limited functions.

The Fourier slice theorem concerns the 2-D discrete Fourier transform f̂x(α, β), defined
as

f̂x(α,β)(η, ζ) =
∑
j,k∈Zn

fx(α,β)(j, k)e−i2π(ηj+ζk)/p(22)

and the 3-D discrete Fourier transform given in (21).

The following Fourier slice theorem resembles that of the continuous case [21] and plays a
central role in the framework of discrete tomography.

Theorem 3.1. [1] (Fourier slice theorem) For a given family of x-lines `x(α, β) with fixed

slopes (α, β) and variable intercepts (c1, c2). Then the 2D discrete Fourier transform f̂x(α,β)
of the x-projection fx(α,β) and the 3D discrete Fourier transform f̂ of the object f satisfy the
equation

f̂x(α,β)(η, ζ) = f̂(−αη − βζ, η, ζ).(23)

Likewise, we have

f̂y(α,β)(ξ, ζ) = f̂(ξ,−αξ − βζ, ζ),(24)

f̂z(α,β)(ξ, η) = f̂(ξ, η,−αξ − βη).(25)

3.1. Continuum limit. One can justify the above discrete framework, especially the in-
terpolation scheme (15)-(17) and the related line average (18)-(20), from the perspective of
continuum limit.
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Suppose the discrete object f above is the restriction of some smooth function f∗ supported
on [−1/2, 1/2]3 in the sense that

f(i, j, k) = f∗

( i
n
,
j

n
,
k

n

)
or some local average of f∗ about each grid point. As p→∞, the Dirichlet kernel has the
limit

lim
p→∞

pDp(pt) = δ(t),

Dirac’s delta function. For a sufficiently smooth f∗, the right hand side of (15), after proper
normalization, approaches the limit∫

f∗(x, y
′, z′)δ(y − y′)δ(z − z′)dy′dz′ = f∗(x, y, z)

In other words, the interpolation becomes exactly an identity in the continuum limit. Like-
wise, the discrete X-ray transforms (18)-(20), after proper normalization, become line inte-
grals (i.e. the continuous X-ray transforms).

Finally, in the continuum limit, Theorem 3.1 gives rise to the standard Fourier slice theo-
rem. In other words, the discrete framework is a structure-preserving discretization of the
continuous setting.

4. Diffraction patterns

For ease of notation, we denote by t the direction of projection, x(α, β), y(α, β) or z(α, β).
Let T denote the set of directions t employed in the tomographic measurement. Let
p = 2n− 1.

Let the Fourier transform of the projection ft be written as

Ft(e
−i2πw) =

∑
n∈Z2

p

e−i2πn·wft(n), w ∈
[
− 1

2
,
1

2

]2
,

where ft vanishes outside Z2
n. In the absence of a random mask (µ ≡ 1), the continuous

diffraction pattern in the far field can be written as

|Ft(e
−i2πw)|2 =

∑
n∈Z2

2p−1

∑
n′∈Z2

p

ft(n
′ + n)ft(n′)

 e−i2πn·w, w ∈
[
− 1

2
,
1

2

]2
,(26)

[8]. Here and below the over-line notation means complex conjugacy. The expression in the
brackets in (26) is the autocorrelation function of ft.

The diffraction patterns are then uniquely determined by sampling on the grid

w ∈ 1

2p− 1
Z2
2p−1(27)

or by Kadec’s 1/4-theorem on any following irregular grid [27]

{wjk, j, k ∈ Z2p−1 : |(2p− 1)wjk − (j, k)| < 1/4}.(28)
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With the Nyquist, regular (27) or irregular (28), sampling, the diffraction pattern contains
the same information as does the autocorrelation function of ft.

4.1. Inherent ambiguities. The following standard result explicates all the ambiguities
corresponding to the same diffraction pattern.

Proposition 4.1. [13] Let the z-transform Ft(z) =
∑

n∈Z2
p
ft(n)z−n be given by

Ft(z) = αz−m
q∏

k=1

Fk(z), m ∈ N2, α ∈ C(29)

where Fk, k = 1, . . . , q, are non-monomial irreducible polynomials. Let Gt(z) be the z-
transform of another finite array gt(n). Suppose |Ft(e

−i2πw)| = |Gt(e
−i2πw)|,∀w ∈ [0, 1]2.

Then

Gt(z) = |α|eiθz−q
(∏
k∈I

Fk(z)

)(∏
k∈Ic

Fk(1/z̄)

)
, for some q ∈ N2, θ ∈ R,(30)

where I is a subset of {1, 2, . . . , q}.

Remark 4.2. The undetermined monomial factor z−q in (30) corresponds to the translation

invariance of the Fourier intensity data while the altered factors Fk(1/z̄) corresponds to the
conjugate inversion invariance of the Fourier intensity data (see Corollary 4.4 below). The
conjugate inversion of ft, called the twin image, is defined by Twin(ft)(n) = f̄t(−n).

Next consider a random mask µ(n) = eiφ(n) where φ(n) are independent, continuous random
variables over [−π, π). To fix the idea, let the mask be placed between the object and
the detectors (Figure 1) so that the measured diffraction pattern is the intensities of the

Fourier transform of the masked projection f̃t(n) = ft(n)µ(n), i.e. the µ-coded diffraction
pattern.

Let ft be not part of a line object. An object is part of a line object if its support is a subset

of a line. Consequently, the masked projection f̃t(n) is not part of a line object.

Recall [8] that the z−transform of the non-line masked object projection is irreducible, up
to a monomial as stated below.

Proposition 4.3. [8] Suppose ft is not a line object and let µ be the phase mask with phase
at each point continuously and independently distributed over [−π, π). Then with probability

one the z-transform of the masked object f̃t = ft � µ does not have any non-monomial
irreducible polynomial factor.

The masked object is also called the exit wave in the parlance of optics literature. In
other words, a coded diffraction pattern is just the plain diffraction pattern of a masked
object.

The following corollary will be useful for subsequent analysis.
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Corollary 4.4. Under the assumptions of Proposition 4.3, if another masked object projec-

tion g̃t := νgt produces the same diffraction pattern as f̃t = µ � ft, then for some p and
θ

f̃t(n + p) = e−iθg̃t(n) or eiθ Twin(g̃t)(n)(31)

for all n.

Proof. Let F̃t and G̃t be the z-transforms of f̃t and g̃t, respectively. By Proposition 4.3 and
(30),

G̃t(z) = eiθz−pF̃t(z) or eiθz−pF̃t(1/z̄), for some p, θ and all z.

which after substituting z = exp (−i2πw) becomes

G̃t(e
−i2πw) = eiθeiw·pF̃t(e

−i2πw) or eiθeiw·pF̃t(e−i2πw), for some p, θ and all z.

Note that G̃t(e
−i2πw) and F̃t(e

−i2πw) are the Fourier transforms of g̃t and f̃t, respectively.
Therefore in view of Remark 4.2 we have

g̃t(n) = eiθf̃t(n− p) or eiθ Twin(f̃t)(n− p),

which is equivalent to (31). �

By Corollary 4.4, for some mt ∈ Z2, θt ∈ R, we have

gt(n)ν(n) = eiθtft(n + mt)µ(n + mt)(32)

or Twin(gtν)(n) = e−iθtft(n + mt)µ(n + mt).

Since Twin(gt)(n) = ḡt(−n), we rewrite (32) as

gt(n)ν(n) =

{
eiθtft(n + mt)µ(n + mt)

eiθt f̄t(−n + mt)µ̄(−n + mt)
(33)

If µ is completely known, i.e. ν = µ, then (33) becomes

gt(n)µ(n) =

{
eiθtft(n + mt)µ(n + mt)

eiθt f̄t(−n + mt)µ̄(−n + mt).
(34)

Our goal is to prove that with a sufficiently large T , (33) yields g = f and µ = ν, up to a
constant phase factor, almost surely, i.e. mt = 0 and θt = const. for all t and eventually
design an efficient algorithm to reconstruct f .

5. Uniqueness theorems

Our first main result is that with the help of a random mask, tomographic phase retrieval
reduces to computed tomography modulo the ambiguity that the object projection is inde-
pendent of the direction used in the measurement scheme.
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Theorem 5.1 (Reduction to CT modulo an ambiguity). Consider a random phase mask
µ(n) = exp[iφ(n)] with independent, continuous random variables φ(n) ∈ R. Suppose that ft
is a non-line object for all t ∈ T . If g is supported in Z3

n and produces the same diffraction
patterns as f for all t ∈ T , then with probability one either

gt = eiθ0ft, ∀t ∈ T(35)

or

gt = gt′ , ∀t, t′ ∈ T ,(36)

(including the special case ft = ft′ ,∀t, t′ ∈ T ).

Remark 5.2. If f is a non-planar object than it follows that ft is a non-line object for all
t.

Remark 5.3. With a plain (instead of random) mask, the twin-object ambiguity g(n) =

eiθ0f(−n) can not be eliminated.

Proof. Suppose that, for some t0 ∈ T , the first alternative in (34) holds true, i.e.

gt0(n) = eiθt0ft0(n + mt0)λt0(n + mt0)(37)

with

λt0(n) = µ(n)/µ(n−mt0),

implying

ĝt0 = eiθt0ei2πmt0 ·k/pf̂t0 ? λ̂t0(k).

We now prove that the second alternative in (34) can not hold. Otherwise, suppose that for
some t ∈ T ,

gt(n) = eiθtft(−n + mt)νt(−n + mt)(38)

with

νt(n) = µ(n)/µ(−n + mt).

implying

ĝt(k) = f̂t ? ν̂t(k)e−i2πmt·k/p

where ? denotes the discrete convolution over the periodic grid Z2
p.

Let Pt denote the origin-containing (continuous) plane orthogonal to t in the Fourier space.
By Fourier slice theorem, for all k ∈ Pt ∩ Pt0 , ĝt0(k) = ĝt(k) and hence

eiθt0ei2πmt0 ·k/pf̂t0 ? λ̂t0(k) = eiθte−i2πmt·k/pf̂t ? ν̂t(k), ∀k ∈ Pt ∩ Pt0

implying

eiθt0ei2πmt0 ·k/p
∑
n∈Z2

n

eiφ(n)e−iφ(n−mt0 )ft0(n)e−i2πn·k/p(39)

= eiθte−i2πmt·k/p
∑
n∈Z2

n

e−iφ(n)e−iφ(−n+mt)f̄t(n)ei2πn·k/p, ∀k ∈ Pt ∩ Pt0 .
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We now show that eq. (39) can not hold for any mt0 ,mt. Consider any n that ft0(n) 6= 0.
Due to the statistical independence of φ(·) and the sign of the phases in

eiφ(n)e−iφ(n−mt0 )ft0(n)e−i2πn·k/p, e−iφ(n)e−iφ(−n+mt)f̄t(n)ei2πn·k/p

appearing in the summation on either side of (39), the phase factor eiφ(n) on the left can not
be balanced without setting mt0 = 0. This then implies

eiθt0ft0(n)e−i2πn·k/p = eiθte−i2πmt·k/pe−iφ(n)e−iφ(−n+mt)f̄t(n)ei2πn·k/p

which cannot hold since the left hand size is deterministic while the right hand side is
random. Consequently, (38) is false almost surely, which leaves the first of (34) the only
viable alternative.

If, however, ft0(n) = 0 for all n, then the same argument implies that ft(n) = 0 for all n.
Hence the first alternative of (34) still follows, i.e.

gt(n) = eiθtft(n + mt)λt(n + mt), ∀t ∈ T ,(40)

for some mt.

Consider two arbitrary, distinct directions t = t1, t2 ∈ T . By the Fourier slice theorem,

eiθt1ei2πmt1 ·kf̂t1 ? λ̂t1(k) = eiθt2ei2πmt2 ·kf̂t2 ? λ̂t2(k), ∀k ∈ Pt1 ∩ Pt2(41)

implying

eiθt1ei2πmt1 ·k/p
∑
n∈Z2

n

eiφ(n)e−iφ(n−mt1 )ft1(n)e−i2πn·k/p(42)

= eiθt2ei2πmt2 ·k/p
∑
n∈Z2

n

eiφ(n)e−iφ(n−mt2 )ft2(n)e−i2πn·k/p, ∀k ∈ Pt1 ∩ Pt2 .

Due to the statistical independence of φ(·), the randomness on the both sides of (42) can
not balance out unless

mt1 = mt2(= m0)(43)

λt1 = λt2 .(44)

Eq. (44) means independence of λt from t ∈ T and justifies the simplified notation

λt(n) = λ0(n) := µ(n)/µ(n−m0) for some m0 ∈ Z2 and all t ∈ T .(45)

With this, (42) reduces to

eiθt1
∑
n∈Z2

n

eiφ(n)e−iφ(n−m0)ft1(n)e−i2πn·k/p = eiθt2
∑
n∈Z2

n

eiφ(n)e−iφ(n−m0)ft2(n)e−i2πn·k/p,(46)

for all k ∈ Pt1 ∩ Pt2 .

The function λ0 defined in (45) is either 1 (if m0 = 0) or random (if m0 6= 0). If m0 = 0,
then, by (40), gt = eiθtft for all t ∈ T . By Fourier slice Theorem,

f̂t(k) = f̂t0(k), ∀k ∈ Pt ∩ Pt0

ĝt(k) = ĝt0(k), ∀k ∈ Pt ∩ Pt0

and hence θt = θ0 for some θ0 ∈ R and all t ∈ T . In other words, gt = eiθ0ft,∀t ∈ T .
11



If m0 6= 0, then (46) and the statistical independence of φ(·) imply that

eiθt1 f̂t1 = eiθt2 f̂t2 , ∀t1, t2 ∈ T .(47)

Hence by (40) and (43)

gt1 = gt2 , ∀t1, t2 ∈ T ,
almost surely. In other words, gt is independent of t ∈ T with probability one.

Let us turn to the remaining undesirable alternative:

gt(n)µ(n) = eiθtft(−n + mt)µ(−n + mt), ∀t ∈ T(48)

or, equivalently, (38).

For two distinct projections t = t1, t2 ∈ T , (38) implies

e−iθt1 f̂t1 ? ν̂t1(k) = e−iθt2 f̂t2 ? ν̂t2(k), ∀k ∈ Pt1 ∩ Pt2 .(49)

which, at k = 0, means

e−iθt1
∑
j,k∈Zn

f̂t1(j, k)ν̂t1(−j,−k) = e−iθt1
∑
j,k∈Zn

f̂t2(j, k)ν̂t2(−j,−k).

The rest of the argument follows exactly the same pattern as that following (46).

�

In view of Theorem 5.1, with a randomly coded aperture, the uniqueness problem of phase
retrieval is only slightly more difficult than that of computed tomography, with only the
additional ambiguity (36) to resolve.

First let us digress and consider some generic schemes that guarantee uniqueness for com-
puted tomography.

Example 5.4. Let T consist of the projections represented as (20):

T = {(αl, βl, 1) : l = 1, . . . ,m},(50)

for some m ∈ Z and suppose (35) holds, i.e.

gt = eiθ0ft, ∀t ∈ T .
By the Fourier slice theorem, we have

ĝ(j, k,−αlj − βlk) = eiθ0 f̂(j, k,−αlj − βlk), l = 1, . . . ,m,(51)

where both ĝ(j, k, ·) and f̂(j, k, ·) are p-periodic signals bandlimited to π(n− 1)/p (for odd

integer n, cf. (11)). In order to conclude that ĝ = eiθ0 f̂ , it suffices to have

|{αlj + βlk (mod p) : l = 1, . . . ,m}| ≥ n, ∀(j, k) 6= (0, 0),(52)

which is also a necessary condition for the validity of ĝ = eiθ0 f̂ , in general (see [20]).

Slightly modifying the observation in Example 5.4, we can state the following uniqueness
theorem for 3D discrete computed tomography.

12



Theorem 5.5 (Uniqueness of CT). Let T be any one of the following three sets of projec-
tions:

(x) {(1, αl, βl) : l = 1, . . . ,m}
(y) {(αl, 1, βl) : l = 1, . . . ,m}
(z) {(αl, βl, 1) : l = 1, . . . ,m}.

Then g = eiθ0f , whenever gt = eiθ0ft for all t ∈ T and some constant θ0 ∈ R, if and only if
the condition (52) holds true.

Remark 5.6. The condition (52) can be achieved with overwhelming probability by randomly
and independently selecting n pairs of (αl, βl) (i.e. m = n) with the uniform distribution over
the square |αl|, |βl| < 1, [3].

In view of the Fourier slice theorem, the redundancy in 3D discrete CT due to the overlap of
Fourier planes with different normal vectors (i.e. the common lines) can be roughly estimated
as follows. Every pair of Fourier planes share a common line of about n degrees of freedom.
There are in general n(n− 1)/2 pairs from n distinct Fourier planes and hence n2(n− 1)/2
degrees of information overlap. As oversampling the projection planes (cf. (27) & (28))
compensates the information overlap, n generic projections contain sufficient information
for determining the n3 degrees of freedom in the object.

In X-ray diffractive imaging, a most commonly used scheme is rotated projections about an
axis orthogonal to the directions of projection. For example,

{(αl, 0, 1) : l = 1, . . . ,m},
where αl are distinct numbers, represents a sequence of projections rotated about the y-axis.
More generally, rotated projections forming the same angle arctan(γ) with, say, the z-axis,
can be represented as

{(γ cos tj, γ sin tj, 1) : j = 1, . . . ,m}.

Next, we demonstrate that with one additional projection to the scheme such as in Example
5.4, one can eliminate the possibility (36) and resolve the uniqueness problem for tomographic
phase retrieval.

Example 5.7 (Resolution of ambiguity (36)). Let T consist of the projections represented
as (18):

T = {(1, αl, βl) : l = 1, . . . , n} ∪ {(0, α0, β0)}
satisfying (52) and (α0, β0) 6= (0, 0).

In terms of the X-ray transform, (36) means that, for some c(·, ·) independent of α, β,

ĝx(α,β)(j, k) = c(j, k)(53)

and hence by Fourier Slice Theorem

ĝ(−αj − βk, j, k) = c(j, k)(54)

for j, k ∈ Zp.
13



Let

ĝ(ξ, η, ζ) =
∑
m

ĝηζ(m)e−2πimξ/p(55)

with

ĝηζ(m) =
∑
l

ĝη(m, l)e
−2πilζ/p(56)

and

ĝη(m, l) =
∑
k

g(m, k, l)e−2πikη/p.(57)

By the support constraint supp(g) ∈ Z3
n, (55) becomes the n× n Vandermonde system

V ĝηζ =


c(η, ζ)
c(η, ζ)

...
c(η, ζ)

 .(58)

with

V = [Vij], Vij = e−2πiξij/p, ξi = −αiη − βiζ.(59)

which is nonsingular if and only if {ξi : i = 1, . . . , n} has n distinct members.

Since the system (58) has a unique solution for (η, ζ) 6= (0, 0), we identify ĝηζ(·) to be the
discrete δ-function located at 0 with amplitude c(η, ζ) for (η, ζ) 6= (0, 0).

For η,m 6= 0, ĝηζ(m) = 0 for all ζ and hence ĝη(m, l) = 0 for all l. Likewise for (57), we
select n distinct, nonzero values for η to perform inversion of the Vandermonde system and
obtain

g(m, k, l) = 0, m 6= 0.(60)

In other words, g is supported on the y − z plane. Consequently the projection in the
direction of (0, α0, β0) of g would be a line object, contradicting to the assumption of non-
line projection in Theorem 5.1. Therefore, (36) is false and (35) holds true almost surely for
the scheme T under the assumptions of Theorem 5.1.

Slightly extending the above analysis, we are ready to state the final result.

Theorem 5.8. Let T be any one of the following three sets of projections:

(x′) {(1, αl, βl) : l = 1, . . . , n} ∪ {(0, α0, β0)}
(y′) {(αl, 1, βl) : l = 1, . . . , n} ∪ {(α0, 0, β0)}
(z′) {(αl, βl, 1) : l = 1, . . . , n} ∪ {(α0, β0, 0)}

satisfying condition (52) (with m = n) and (α0, β0) 6= (0, 0). Then under the assumptions
of Theorem 5.1, we have g = eiθ0f , for some constant θ0 ∈ R, with probability one.

14



6. Conclusion and discussions

The key to our approach is Theorem 5.1 which essentially reduces 3D discrete tomographic
phase retrieval to computed tomography (CT).

Uniqueness condition for CT (Theorem 5.5) sets a lower bound n on the number of diffraction
patterns needed for tomographic phase retrieval since each diffraction pattern contains no
more information than the corresponding projection (ft determines the autocorrelation of ft
but not vice versa). Therefore, Theorems 5.8 is nearly, if not exactly, sharp in terms of the
required number of diffraction patterns.

On the other hand, Theorem 5.8 (condition (52) in particular) defines a fairly general class
of measurement schemes. A natural question is, Which one is optimal and in what sense?
This will be the subject of our forthcoming study.

In realistic measurements, noise is inevitable. And because of the significant amount of over-
sampling (cf. (27)-(28)), independent noise in the data necessarily results in an inconsistent
inverse problem, i.e. there is no object whose tomographic data coincide with the given noisy
data. This is characteristic of the ill-posedness of inverse problems in general. Noise stability
analysis for tomographic phase retrieval is technically challenging and currently lacking. In
practice, however, noisy reconstruction can often be effectively performed by utilizing prior
information and regularization such as Tikhonov regularization [18].

Other useful regularizations include sparsity-promoting priors such as `1 and total variation
regularizations. In our setting, for a sparse object whose projection ft is supported on a
much smaller set than Z2

p, the diffraction pattern can be measured at a comparably small

(up to a poly-logorithmic factor of n), randomly selected subset of Z2
2p−1 from which the

autocorrelation of ft can be recovered by `1-minimization method with the random partial
Fourier matrix as the sampling matrix in (26) (see [5,24]). The total-variation regularization
can be used for gradient-sparse objects [9]. Similar approaches have been implemented in
3D digital holography [16], [4].
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