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Abstract

Hypersingular integrals of the type

1
o 2ym=1)2
L(T,,m,r) :% L(s)(1 S,) ds, |r] <1
-1

(s—r)

and

1
; 1— 2\m—1/2
Ia(Ummvr) :% u (S)((S — :),4) ds, |V| <1
-1

are investigated for general integers o (positive) and m (nonnegative), where T,(s) and U,(s) are the
Chebyshev polynomials of the first and second kinds, respectively. Exact formulas are derived for the cases
a=1,2,3,4 and m =0,1,2,3; most of them corresponding to new solutions derived in this paper.
Moreover, a systematic approach for evaluating these integrals when o > 4 and m > 3 is provided. The
integrals are also evaluated as || > 1 in order to calculate the stress intensity factors. Examples involving
crack problems are given and discussed with emphasis on the linkage between mathematics and mechanics
of fracture. The examples include classical linear elastic fracture mechanics, functionally graded materials,
and gradient elasticity theory. An appendix, with an alternative derivation of the formulae, supplements the
paper.
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1. Introduction

Finite and boundary element methods are two of the most frequently used numerical ap-
proaches for solving crack problems in fracture mechanics. An alternative approach is the integral
equation method, which is more efficient (e.g. it reduces a partial differential equation (PDE) in
two dimensions to an one-dimensional integral equation) and, in general, is more accurate than
the aforementioned methods. The accuracy of the integral equation method relies on the ana-
lytical evaluation of singular kernels to cancel the singularity. In general, the cancellation of
singularity is not trivial, in particular, in the case of hypersingular integrals. This is the main
concern of this paper.

Integral equations arising in static crack problems in fracture mechanics are typically Fredholm
integral equations of the form

/d kernel(x,#)D(t)dt = p(x), c¢<x<d, (1)

where kernel(x, ¢) is, in general, a singular function of (x,¢); D(¢) is the unknown, called density
function; p(x) is some known (input) function corresponding to the loading on the crack faces;
and the interval (c,d) refers to the crack surfaces where 2a = d — ¢ denotes the crack length. By
means of the Fourier transform method, we write

kernel(x, ?) = /_OO K (&)= dé. (2)

The singular part of the kernel can be separated from the regular part, by decomposing the
Fourier transform as

K(&) = Ko () + [K(S) — Ko ()], (3)
singular nonsingular

which can be accomplished through asymptotic analysis (discussed later in this paper). Such
analysis is not an easy task for complicated K(&). This is another relevant issue to be addressed in
this paper.

Once the decomposition (3) is accomplished, the integral Eq. (1) can be rewritten as

7[ o2 [ Tk D)+ 7)) = pl), ¢ <x<d. @

where 7[ denotes an improper integral; ¢, is a constant associated to the singular kernel 1/(¢ — x)”;

k(x,t) is the nonsingular (regular) kernel; f(x) is a function standing for the free term; and « is a
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positive integer which determines the degree of the singularity. If « = 1, the integral Eq. (4) is called
a Cauchy singular integral equation, and the singular term is evaluated as a Cauchy principal-value
(CPV) integral. If o« > 2, it is called a hypersingular integral equation and the singular term is

evaluated as a Hadamard finite-part (HFP) integral [1-7]. Here the notation f and = refer to

CPV and HFP integrals, respectively. Most papers published in the literature involve either o = 1
[8-10] or & = 2 [11-13], and not much has been done with & > 3. Thus another focus of this paper is
to deal with hypersingular integral equations with o > 3 which arise naturally in gradient elasticity
theories (see Example 3 in Section 7).

After normalization (discussed in Section 3.1), the singular and/or hypersingular integrals
which involve Chebyshev polynomials (7,, first kind; U,, second kind) and weight function
(1 —s5*)"""2 m >0, with singularity o > 1 are defined by

1 s)(1 —s2)" 112
L = PO < )
and
1 s)(1 —s2)" 12
Ix(U,,,m,r):j[ Gl )((sl_ry) ds, | <. (6)

The scope of this paper is as follows. First, Cauchy singular integrals, i.e. o = 1, are evaluated
and exact formulas are derived for general m. The new results here are closed form analytical
solutions for 1,(7,,m,r), m>1 and L,(U,,m,r), m = 2. Once I,(T,,m,r) and I,(U,,m,r) are
known, hypersingular integrals 7,(7,,m,r) and I,(U,,m,r), o =2, can be found by successive
differentiation (with respect to r) in the sense of finite-part integrals; formulas for L(7,,m,r),
m > 1 and L(U,,m,r), m > 2 are derived in this manner. In the cases where o > 3, evaluation of
hypersingular integrals becomes tedious and the formulas are lengthy. Thus 7,(7,,m,r) and
L,(U,,m,r) are provided only for o = 3,4 and general m.

2. Related work

Singular integral equations have played an active role in the field of solid mechanics, partic-
ularly in the solution of fracture mechanics problems. According to the notation introduced in
equation (4), these equations can be classified by the order of singularity «. The case « = 1 has
been widely used and well developed [14]. A rich field of application of singular integral equations
is in fracture mechanics of bimaterial [8,15,16] and nonhomogeneous materials. In the latter case,
the investigation of crack behavior in nonhomogeneous materials has found many applications to
functionally graded materials (FGMs) (e.g. [17-23]). Another use of singular integral equations
involves FGMs for high temperature applications, so that thermal stress intensity factors (SIFs)
can be numerically calculated [24-27]. Application of hypersingular integral equations for o > 2
can be found in [3,11-13].

Quadrature formulas which involve hypersingular integrals with « <2 have been drawing a
considerable amount of concentration [5,28-32] after Kutt [1] first introduced the HFP idea in his
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work. One of the key steps in the derivations involves the fact that higher order singular integrals
can be obtained from lower order ones by a careful exchangeability of differentiation and inte-
gration [4,5], e.g.

sl gL ) (g 1 gl o,
%_I(S—r)d+1d _oc7[_l @r[(s—r)l}d PP | (s—r)“d’ lr| < L. (7)

For instance, in order to find

7[ g(s) ds, [l <1,
~1 (s—7)

it suffices to know how to evaluate

1
][ g(s) ds, |r] <1

18— F

This important concept is applied later in this paper.

Another motivation for numerical evaluation of hypersingular integrals is due to the boundary
element method, and the reader is directed to the literature in the field such as the recent book by
Bonnet [33]; the review articles by Tanaka et al. [34] and Sladek and Sladek [35]; or the papers by
Liu and Rizzo [36], Toh and Mukherjee [37], Paulino et al. [38], and Hui and Mukherjee [39].
Research work has been focused on singularity with « = 2 for two-dimensional problems and
o = 3 for three-dimensional problems (see Eq. (4)).

3. Theoretical aspects

First, relevant concepts involving integration and approximation are given. These concepts
position the contribution of the work with respect to the available literature. Next, a discussion on
the influence of the density function on the corresponding singular integral equation formulation
is presented. Afterwards, basic properties of the Chebyshev polynomials are provided. These
properties are heavily used in the analytical derivations that follow.

3.1. Integration and approximation

As far as the integration and numerical procedures are concerned, the integral Eq. (4) may be
normalized through the following change of variables

2 c+d 2 c+d
s-d_c<t— > > and r—d_c<x— 7 >, (8)

which leads to the normalized version of the integral equation (4) written as !

! The notations in this paper have been chosen as following: x and ¢ refer to the physical quantities and have
dimension of “Length’; r and s are normalized (dimensionless) variables, corresponding to x and ¢, respectively.
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7[ D(SB)“ ds + /1 A (r,s)D(s)ds+ F(r)=P(r), —-1<r<l. (9)

G
The density function D(s) is further assumed to have the representation
D(s) = R(s) W (s). (10)
The weight function W (s) determines the singular behavior of the solution D(s) and has the form
Wi(s)=(1—s)""(14+s5)". (11)

In general, m; # m, and the corresponding integrals, which involve Jacobi polynomials P\™2)(s),
are of the type

][1 (1 =)™ (1 4 )™ Pmm)(s) ds (12)

§—r

and can be expressed in terms of the gamma and the hypergeometric functions [40,41]. In this
paper, only the case m; = m;, is considered and m,;, m, are set to be
1

my=my; =m-—s. (13)

Thus W (s) can be expressed as
W(S):(I—S2)m_l/27 m=0,1,2,.... (14)

The value of m is determined by the order of singularity «. As « = 1, one may apply Mus-
khelishvili’s procedure [42,43] to the corresponding (Cauchy) singular integral equation and find
m = 0. Thus the solution D(s) to the Cauchy singular integral Eq. (9) takes the form

D(s) = %. (15)

In this case, which consists of the majority of the work involving applications of integral
equations to fracture mechanics [15,44,45], R(s) is chosen to be

R(s) = a,T,(s) (16)
and because of that, the CPV integral /,(7,,0,r) can be evaluated exactly [3,40,46]:

! T,(s) 0, n=0,
11(Tn,0,r)—][1mds— {nUn_l(r), n>l. a7
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Another reason for choosing the expansion (16) is that with respect to the weight function
W(s) =1/V'1 —s2, the class of the Chebyshev polynomials of first kind 7,(s) is an orthogonal
family [40]:

' 19T, mom=n=0
/_(S) (j') ds=4¢ /2, m=n mn=1273,... (18)
—1 I —s 0, m#n, mn=0,1,2,...

With this orthogonal property a Galerkin-type method (Krenk [28]) may be applied to find the
coefficients a, in Eq. (16).

If « = 2, then m = 1, and the solution D(s) to the hypersingular integral Eq. (9) is characterized
by

D(s) = R(s)V1 — s2. (19)

Correspondingly, R(s) is chosen to be
R(s) = _b,Uy(s) (20)

because of the same reasons for the case o = 1, namely, analytical evaluation and orthogonal
property. With respect to the first reason, the HFP integral ,(U,, 1,7) can be evaluated analyt-
ically [3]:

1
U, (s)V1 —s?
L(U,,1,r) :7[ Mdj: —(n+ 1)nU,(r), n=0. (21)
-1
According to the second reason, by orthogonality,

1
ST age. 72 m=n mn=012,...,
/—lUm(S)Un(S)l sds_{07 mtn ma—012.. (22)

and one may apply Galerkin-type methods [28] to find the coefficients b, in Eq. (20).

When o = 3, then m > 1. For instance, with m = 2, the weight function W(s) = (1 —s?)*?,
neither 7, (s) nor U,(s) is an orthogonal family. However, if collocation method is applied, one does
not need the orthogonal property, as long as the expansion function R(s) is chosen such that

7[ Rs)(1=5)"

(s—r)

can be evaluated analytically. For example, if R(s) is expanded as a Chebyshev polynomial of the
first kind 7,(s) or the second kind U,(s), i.e.
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o0

R(s) = ianTn(s) or R(s)= anUn(s) (23)

n

then the evaluation of

1 2\m—1/2 ! 2\m=1/2
1(T,,m,r) —7[ Z’(S)E; ::)3 ds or I(U,mr) —7[ U"(S)((Sl__;)“) ds

for general m =0,1,2,... and « = 1,2,3,... is a necessary step for the numerical approach to
the integral equation (9). This is the one of main tasks in this paper and is addressed in Sections 4
and 5.

3.2. Selection of the density function

Usually the unknown function D(¢) in Eq. (1) can be chosen as the displacement profile (e.g.
u(t)—a displacement function), the (first) derivative of the displacement function (du(¢)/d¢, de-
noted by ¢(¢#)—the slope function), or a higher derivative of u(¢). The choice of the unknown
function D(¢) will affect the degree of singularity in the formulation. For example, consider the
standard mode III crack problem in a free space [47] and a linear elastic fracture mechanics
(LEFM) setting. If D(¢) is chosen to be the slope function ¢(z), then the governing integral
equation is the Cauchy singular integral equation

det

c =X

=px), c<x<d. (24)

However, if D(¢) is chosen to be the displacement function w(¢), then the hypersingular integral
equation with « = 2 is obtained,

D(t) = w(t), 7[ YO 4 px), c<x<d. (25)

The differences between the above two formulations are discussed next.

Note that the higher singularity in (25) does not constitute more difficulty in solving the
equation since hypersingular integrals can be evaluated exactly with suitable basis functions [48].
So the choice of the density functions should be dictated by considerations other than the order of
singularity in the resulting equations. There are situations, however, in which the displacements
appear to be more natural than the slopes, e.g., in periodic [13] or three-dimensional crack
problems. Sometimes, a formulation with higher singular kernels results in simpler nonsingular
kernels in the decomposition (3) (see Section 7 for discussion of examples).

3.3. Properties of Chebyshev polynomials

The evaluation of Cauchy singular and hypersingular integrals which involve the Chebyshev
polynomials 7,(s) and U, (s) highly depends on the special properties of these polynomials. They
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are listed here for the sake of completeness and because they will be of much use later in the
development of this work. Most of them (but not all) can be found in [3,40].

¢ Definition of Chebyshev polynomials of the first kind:
T,(s) = cos[ncos ' (s)], n=0,1,2,... (26)
e Definition of Chebyshev polynomials of the second kind:

sin[(n + 1) cos™!(s)]

U,(s) = Slos 1G] n=0,1,2,... (27)
e Iterative (recursive) properties:

STo(s) = YT () + i ()], m>1, (28)

sU(8) = Y01 () + U (9], n> 1, (29)

Tu(s) = JUn(s) = Upals)], n>2, (30)

Un(s)(1 = %) = 5T,11(s) = Toy2(s), n=0. (31)

By means of Eq. (28), one may rewrite Eq. (31) above as

1

U (s) :m[

T,(s) = Tyals)], 0. (32)

Thus an additional equality, which is useful in handling cubic hypersingular integrals can be
derived: 2

w@u—mmﬁqmw Hxﬂﬂ—ﬂ

= _%E 12(8) = Un(s) +3Usa(s) [ VI =82, n=2 (33)
= —ilUna(s) — 2Un(5) + U, a(s)|V1I =52, n=2.

e Derivatives:

d,(s)

dS = nUnfl(S)v nz 17 (34)
dUn(s) 1 n+2 n
- 5 >
ds 1 —s? 2 Un-1(s) B w1 (S) n=1 (35)

2 The equation number is stacked above the equal sign to show how the equations are being derived and connected.
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4. Cauchy singular integral formulas (x=1)

This section mainly evaluates /,(7,,m,r) and I, (U,, m,r), which are defined in Egs. (5) and (6).
The new result here is that the singular integral formulas are found for general m. In order to
obtain this new result, two well known Cauchy singular integral formulas are introduced [40]: one
is already stated in Eq. (17), and the other one is

Il(Un, 1,1") =

1 V1 — §2
][ Uils)vl = s* ds = —nT,.(r), n=0, (36)
-1

S—r

which can be obtained as follows

win = f BOETaE ] B
17 g [Up1(r) = Upy1(r)]
W L (7).
The integral formulas for m =0,1,2,3,... are derived below. The general formulas have the

restriction of minimum 7. For instance, Egs. (30) and (33) are only true for n > 2, and Egs. (34)
and (35) are valid for n > 1. The lower n terms can not be derived by general formulas, and are
given in [49].

4.1. 1;(T,,m,r),m=0,1,2,3

b 11(7—;1,0,7"):
This is Eq. (17).
° 11(7—;17 1,7‘)2
DTV =82, gl 1 [U(s) = Upa(s)]V1 — 82
———ds = = ds
1 s—r 2/ s—r
(36) g [T,o1(r) — Tyt ()], n>2. (37)

o [\(T,,2,r):

][1 T(s)(1 — 5*)*” (3o>][1 L[Un(s) = Upa(s)](1 = %)™
-1 wn 1 -

L) = 21 (7) + Tys0)] = [T 5() = 2151 0) + Ty ()]

- _g[Tnfs(’”) =3T,1(r) + 3T, (r) — T,3(r)], n=4 (38)
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L] ]1(7},,3,7’):

ds

S —r S —r

][_llTn(S)(l 5/2 20]7{ LUL(s) = Uy a(s)](1 = 82

(41

AT 5(r) = 4T,05() + 6T, 1) = AT (7) + s (1)

3
—[Tis(r) = 4T, 1 (r) + 61,1 (r) — 4T,53(r) + Tous(r)]}, n=6
= ;2 [T,—s5(r) = 5T,3(r) + 10T,y (r) — 107,11 (r) + 5T,43(r) — Toy5(r)],
n=6. (39)
42. L;(U,,m,r),m=12,3
L] ]1(U,1, 1,}"):
This is Eq. (36).
L] ]1(Un,2,l"):
][‘ U, (s) il_—rsz)” e % VT (s) — T;ff(,s,w -
- (37) T -
= Z{[Tn—l(r) = T (N)] = [Topa(r) = Tys(n)]}, n=2
=211 () =2 () + Ta (], n>2. (40)
L 1](Un,3,7‘)§
][1 U()(1 =) | 21 ][1 [7(s) = Tua())(1 =)™
- s—r 2/ s—r
D 1—”6 [Tyo1(F) = 3T,01(r) + 3T5(r) — Tm( )

= [Ts(r +301(r) = 3Ta(n)]}y, n=4

= —E[Tns(r) — 4T, 1 (r) + 6T, (r) — 4Tn+3(’”) + Tiys(r)l, n=4

~—

— 3Tn 1(1"

~—

4.3. IJ(T,,,m,r) andl;(U,,,m,r)

At this point one may easily see the procedural steps above, which take advantage of recursive

properties (30) and (32) between the Chebyshev polynomials 7,(s) and U,(s). > For instance,

3 Another way of evaluating 7, (7, m, r) and I, (U,, m, r) is by using the recursive property through 7, (s) only, which is
discussed in Appendix A
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2 m+1
1 Tn(s)(1—s%)""2
—1 s—r

/e 1
£ Gl

-1 5—Tr

I @

ds

Equation (17) or (36)

Fig. 1. Evaluation of [;(7,,m,r) and I,(U,, m,r) for general m. The procedure reduces integrals with higher m to those
with lower m.

evaluation of Il(Tn,4 r) filﬂ(s)(l—s2)7/2/(s—r)ds can be reduced to evaluation of
L(U,,4,r) JC U,(s )7/ 2/ (s —r)ds. which, in turn, can be reduced to evaluation of

I(T,,3,r) f T,(s s2)*% /(s — r) ds. After a suitable number of steps, this reduction leads to
either (17) or (36) ThlS procedure is summarized in Fig. 1.

o [\(T,,m,r), where m > 1, and n > 2m

1 7;1 s 1 . S2 m71/2 . 1 2m—1 2m—1 ) 2 _ 1
][ (5)( ) ds = n(—1) * <2> (—1)j< " >Tn+12m+2j(r)‘ (42)
71 S —r ]:0 .]
e [,(U,,m,r), where m > 2, and n > 2m — 2
1 Un s 1 _ S2 m—1/2 " 1 2m—2 2m-2 ) 2 . 2
][ ( )( ) dS = 7'5(—1) <§> (—1)]< " . )Tn+32m+2j(r)' (43)

The usual notation

(3) =

denotes the binomial coefficients.
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5. Hypersingular integral formulas (a > 2)

Once a Cauchy singular integral formula has been reached, all other hypersingular integral
formulas may be obtained successively by taking differentiation with respect to r, and making use
of the finite-part integral formula (7).

5.1 L(T,,m,r)

By means of

! _2ym=1/2 1 o 2\m=1/2
7[ ACIUEES ds:g][lTn(s)a 2"
1 -

(S—l") dr §—r

one readily obtains

e [)(T,,0,r) (see also [3]):

1
T, d 1 —1
7[ #ds:n_(]’kl(r)(”)L iUH(r)_" U, n=2.
-1

VI— (s — 1) dr T1-7| 2 2
(44)
o L(T,1,r):
S LEVI—¢ nd (4T
7[1 6P ds = 5 5[7}71(1’) —Toa(r)] = E[(n — DU, »(r) — (n4+ DU(r)], n=2.
(45)
L 12(7;,,2,1"):

 [Bst) = 3T1() + 3T (1) — Tooo(0)]
[(n—3)U, 4(r) = 3(n — 1)U, »(r) + 3(n + 1) U,(r)

—(n+3)U,2(r)], n=4 (46)
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[ ] 12(7—;1,3,7‘):
7[‘ T, (s)(1 sj)m i
1 (S - V)
n d
=3 E[Tn75(r) — 5T,3(r) + 107,y (r) — 10T, (r) + 5T,45(r) — Tpu5(r)]
= 510 = 5)Uy-o(r) = 5(n = 3)Up-4(r) + 10(n = DUy 2(r) = 10(n + DU, (1)

7[ 11 Tn(S)g - :;)W ds = n(~1)"" @

2m—1
Jj=0
52. L(U,,m,r)

The following equality

7[ Un(s)(1—s2)’"*1/2ds d][‘ U,(s)(1 — 2" /2 .

(S—r)2 :a 1 §—r

leads to:

e (U, 1,r) (see also [3]):

1
U,(s)V1 —s?
7[ GoIVL 2 4 —ndiml(r) 2 2+ DU, n=0,
-1 (S - I’) r
which is the same as (21).
L4 IZ(Unazar):
1
U,(s)(1 — s2)*? nd
7[ % ds =3 ST 1(r) = 2T (1) + Tous(7)
-1 -
(34)

2 2= 1)Up2(r) =200+ DU + (1 + 3 Ui (),

(2m—1
x (—1)’< y )(n+1—2m+2f>Un—2m+2f(r)'

n

=

2.

695

(48)

(50)



696 Y.-S. Chan et al. | International Journal of Engineering Science 41 (2003) 683-720
b ]2((];13 3> I")Z
T,3(r) = 4T, 1 (r) + 6T, 11 (r) — 4T,13(r) + Tus5(r)]

= ——[(n=3)U,a(r) —4(n—1)U,2(r) + 6(n+ 1)U, (r)
—4(n+3)Upa(r) + (n+ 5)Upia(r)], n=4. (51)

e (U,,m,r), where m > 2, and n > 2m — 1:

R

x ) (~1Y < 2mj— 2) (n+3 =2m + 2))Upp2-2m12j(7). (52)

5.3. L(T,,m,r)

By means of

one obtains:

e I(7,,0,r):
7[1 B e T it D4 Uy () — 208 — 3)Uy ()
V=2 (s —r) 8(1 —r2)? . .
+(n—17U(r)], n=3. (53)
L] 13(71,,,1,1")1
"LoVI—2 o o INPYE .
F IS e s 0 = () = 2+ 200
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o (T,,2,r):
7[1 Tn(S)(l—s2)3/2 & T 3+ DUsalr)
L = 32(1 —12) nt
+ [(n+3)(n+4) +3n(n+ DU, (r)
— B+ 1)(n+2)+3(n—1)(n—2)|U, ()
+Ba(n— 1)+ (n—3)(n — H]U,_5(r)
—(n=3)(n—-2)U,s(r)}, n=5. (55)
L4 ]3(T,,,3,V)Z
' L= x
7[1 G TR 2y (07 497 4 20)Unis(r) = 6 + 61+ 10)Uyes (1)

+15(n* +3n 4+ 4) U, (r) — 20(n* +2)U,_(r)
+15(n* = 3n+4)U, 3(r) — 6(n* — 6n + 10)U,_s(r)
+ (7 =9 +20)U, 1(r)], n=17. (56)

o I(T,,m,r), where m > 1, and n > 2m + 2:

1
T;? 1 — 2\m—1/2 1 2m+1 2m—1 S 2m =1
7[ a0 (5) e e (T e -am 2
-1 j=0

[(n +2-2m+ 2]) n—1— 2m+2j(r) (n —2m + 2]) n+1 2m+21<r>]
(57)

54. 13((],”7’}’[, I’)

By means of

one gets:

o (U, 1,r):
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o (U,,2,r):
LU= n : )
%_lvds—m[—(n +5n46)U,.3(r) + 3n" + 9+ 12)U, 41 (r)
— (3? +3n+6)U, 1 (r) + (n* —n)U, 5(r)], n=3. (59)
e (U, 3,r):
LU= & ) )
7[ lvds—m[(n +9n+20)U,.s5(r) — (5n° + 31n + 54)U,5(r)

+ (10n* + 34n + 48) U, (r) — (10n* + 6n + 20)U,_ (r)

+ (57° — 11ln 4+ 12)U,_3(r)

—(n* =5n+6)U, 5(r)], n=S5. (60)
o (U, m,r), where m > 2, and n > 2m:

! §)(1 — )12 o 2m2 [ 2m—2
7[ U (s)(1 ) ds:(—l)m<%> 3 Z(—l)’( ' )(n+3—2m+2j)

3
(s—r) = J

X [(n =+ 4 — 2m -+ 2j)Un+1_2m+2j(r)
— (l’l +2—-2m+ 2j)Un+3—2m+2j(r)]- (61)

5.5 Li(T,,m,r)

By means of

one reaches the following results:

o [4(T,,0,r):
0
n(s i
% Wmds:m[(lf—l—&lz—l—11n—|—6)U,,,4(r)
-1
— (3n® + 6n* — 250 — 44)U,_»(r) + (3n® — 5n* — 190 4 37)U,(r)
—(n* =510 +Tn = 3)U,2(r)], n=4. (62)
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o I,(T,, 1,r):
1
7[_1 T((SS)*_/IV):—SZ =i d 07 = U(r) = 3+ 90+ 12)Ur)
+ (3n® + 91— 12)U,(r) — (n® —n)U,a(r)], n=4.
o I,(T,,2,r):
7[1 LE( =)y = (73 + 61> + 110 + 6)U, 14 (r)
L =1 192(1 — 2)’ .
— (51 + 18n* +43n + 30)U, 2(7)
+ (10n° + 12n* 4 134n — 36) U, (r)
— (10 — 120% + 134n + 36) U, _»(r)
+ (50 — 18n* + 43n — 30)U,_4(r)
— (n* —6n* + 11ln — 6)U,_6(r)], n=6.
o I,(T,,3,r):

! 5/2
T,(s)(1 —s%) T [ <1 3 , 47 >
] ds = — (577 +6n’ +n+30)0,
EENCE) 384(1—r2)7 [ \2 3 +o(r)

197
n +30n* + " + 120> U,4a(r)

N

327
n + 54n? +7n + 180) Un+2(7')
325
n® +30n* + -+ 90> U,(r)
325
n® —30n° + - 90> U,_»(r)

327
n® — 54n” + == 180) U,_a(r)

S R R

1
n —30n* + %n — 120) U, 6(r)

N = I

47
n® — 6n’ - 3o> Ung(r)}, n=S8.

699
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o [,(T,,m,r), where m > 1, and n > 2m + 3:

1

31—

(s=7)

[=}

J=
X {[(}’Z + 2 — 2m + 2])(1’1 + 3 — 2m -+ 2j)]Un_2_2m+2j(r)
— [2(n = 2m+2j)’ 4+ 4(n — 2m+2j) — 6]U,_yn2;(r)

+{(n=2m+2j)(n =1 =2m+ 2))]Uys2-2mi2s(r) }-

5.6. Lj(U,,m,r):

By means of

one obtains

d [4(Una 1,?‘):
1 o2\1/2
7[ Mdsz%[—(zlf—i-%’lzﬁ-11n+6)Un—2(r)
B (s —7) 24(1 — r?)
+ (2}13 + 6}’12 —Jn — 6)Un(r) — (n3 — n)UnJrz(l’)], n=2.
d [4(Un727r):
1 232
7[ U =) g ™ 4602+ a4+ 6)Up o)
-1 (s =) 96(1 —r?)

— (4n° + 18n* + 44n + 30) U, (r)
+ (6 + 18n* + 54n + 42)U,(r)
— (4n* + 60 +20n + 18)U,_»(r)

+ (= n)U,_4(r)], n=4

7[1 T(s)(1 _Szszl/z ds— (1! <%>2m+21 n Zm—l(_l)j<zmj_ 1) (11— 2m+2)

(66)

(67)

(68)
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° I4(Una 37 I")Z

1 252
o [ (e )
L =) 1o2(1 -y L A2 ?

+ (3n® + 270> + 93n 4+ 117)U, 4(r)

15 285

— | =n*+45n +in+165 U,i2(r)
2 2

+ (10%* + 30n* + 1101 + 90) U, (r)

< D +@n) Uy >(r) + (3% — 9> + 21n — 15)U, 4(r)
1, 11
SN + 3n? +—n—3 (r)|, n=6. (69)

o I,(U,,m,r), where m > 2, and n > 2m + 1:

7[11 U,,(s)((sl _—:)?ml/z ds = (~1)" (%) o % (1_—’22)2 2;]7__02(—1)1‘(2"1],_ ? ) (n+3—2m+2))

xA{[(n+4=2m+2j)(n+5—2m+2))|Up—am12(r)
— [2(n = 2m + 2) + 12(n — 2m 4 2) + 10]Up22 20012:(r)
+[(n+2=2m+2j)(n+1=2m+2))|Upis-2mi2;(r)}.  (70)

6. Evaluation of stress intensity factors

An important task is to evaluate the SIFs at both crack tips, since the propagation of a crack
starts around its tips. In mode III crack problems, standard SIFs can be calculated from

Kmn(d) = llrl?+ 2n(x —d)o,.(x,0), (x>d) (71)
and
Kum(c) = }Lrg} V2n(c —x)0,,(x,0), (x<c). (72)

Note that the limit is taken from outside of the crack surfaces and towards both tips. Usually
the left-hand-side of integral Eq. (4) is the expression for ,.(x,0) which is valid for x is inside the
crack surfaces (c,d) as well as outside of (c¢,d). Thus to calculate SIFs, the key is to evaluate the
following integrals (after proper normalization and a change of variables described in Eq. (8)):
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U7 s\ (] — 22
Sx(T,,,m,r):/_ L(s)(1 ) ds, r¢&(-1,1) (73)

1 (s —r)

and

U () (] — s2) 072
S, (U, m,r) :/ 010 ) ds, r¢&(-1,1). (74)

0 (s—r)"

Note that the above integrals are not singular as x # ¢ for ¢ € (¢,d) and x & (¢, d).

The strategy to evaluate S,(7,,m,r) and S,(U,,m,r) for general integers o (positive) and m
(nonnegative) is similar to the process for evaluating 7,(7,,m,r) and I,(U,,m,r). It consists of
evaluating the integrals S| (7, m,r) and S, (U,, m, r) by means of the reduction procedure described
in Section 4.3, and taking differentiation (with respect to r) to obtain S,(7,,m,r) and S,(U,,m,r)
for « > 2. The relevant derivations are provided below. The range of r is restricted to |r| > 1 for
each formula provided in this Section 6.

6.1. S;(T,,m,r) and S;(U,,m,r)

d Sl(TmO)r):
This is a well known integral [46]:

(s =)V =52 - V=T /r n=0 75)

Sl(Tn,O,r):/_l &ds- (r—mw/r)

e Si(U,1,r):

/1 Un(s)V1 —s? ds@l/l T,(s) ds_1/1 Tuals) 4
-1 s—r 20 (s=7r)V1 s 2 )0 (s—-rV1-s2
n+1
B —n(r—m\/rz - 1) . n=0. (76)
r

o Si(T,,1,r):

ds —
S 3 1

(£>nm*/r2—l<}’—m‘/”2_l> , n=2. (77)
v r

/1 Ti(s)V1 — s ds@@/l Uy (s)V1 — 52 1/1 Ua(s)VI =57 |
B 2 -1 s —r _

1 s—r s—r
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Sl((]nazar):

ds — ds

1 s—r 2

/IMdS@%/IM l/lm

1 S —r 1 S —r

n+1
(2)ﬂ(72—1)<1’—m\/72—1> , n=2.
r

o S1(Ty,2,r):

o Si(Ty,2,r):
/_:Mdszg(ﬁ—l)<r—|—:’m>z'

o Si(T,,2,r):

LT (s)(1 — s2)2 n
/ (s)(1 —5%) FRCUIC m|r| (P — 1) (r r [ 1 1) L ons2
_ r

1 s—r r

Thus we obtain the following formulas for S,(7,,m,r) and S,(U,,m,r):

1 o 2\ym=1)/2
S1<Tn,m,r>:/ LOA=s) 4

1 S —r

n
9

= 71(—1)'"Hm(r2 - (r _ v — 1> m>=0 and n>=2m.

r r

1 _o2ym—1/2
Sl(Un7m>r) :/ (]”(S)(l i ) dS

—1 §S—r

:n(—l)m(rz—l)m1<r—|r|\/r2—l) , m=1 and n>=2m-2.
r

6.2. S;(T,,m,r) and S,(U,,m,r)

703

(79)

(80)

(81)

(82)

(83)

Differentiating (with respect to r) the formulas for S|(7,,m,r) and S;(U,,m,r), we obtain the

formulas for S,(7,,m,r) and S,(U,, m,r).
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/_1 U1 =) n(n + 1)@m(’—@m>nﬂ

1 (s—r)2
n+1
+2nr<r—|r|vr2—1> , n=0 (84)
r
and
1 232 "
/%ds_—@(rz—1)3/2<r—|—:|\/r2—1>7 n>2. (85)
1 S —r

Formulas (84) and (85) are used in calculating SIFs for the examples discussed in Section 7.

6.3. S;(T,,m,r) and S;(U,,m,r)

The following formulas are obtained by differentiating twice (with respect to r) the corre-

sponding formulas obtained in Section 6.1.

/IM@:E[<nz+zn+3>_3(nH) "]

s 2 21

x<r_'_:'\/ﬁ>"+l, n>0, (86)
[ B a - () (1) s
/T(z(l_—_>)/d:37n(‘uﬁ>(l— ). (85)

/l Mds:g{<r—|—:|m>"ﬂ [(n2+2n+3)_3(n+1) I’ ]

1 (s—r) rr—1

x<r_‘r‘m>"1[<n2_zn+3>_3<n_1> I }} n>2.

r 2 —1

The above formulas are used in calculating the SIFs for the examples discussed in the Section 7.
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7. Examples

Three examples are presented here which emphasize various aspects of singular integral
equation formulations and their linkage to fracture mechanics. These examples are:

1. Internal mode I crack in an infinite strip.
2. Mode III crack problem in nonhomogeneous materials.
3. Gradient elasticity theory applied to a mode III crack.

The first and last examples consider homogeneous materials, and the second example considers
nonhomogeneous materials, which has relevant applications to the field of FGM [48,50]. The first
two examples are from classical elasticity, and the last one is from gradient elasticity theory. The
first example involves mode I cracks and the last two examples involve mode III cracks. All
the examples are formulated by using hypersingular integral equations. For the first two examples
the order of singularity « is 2, and for the last example « is 3. A detailed comparison between U,
and 7, representations is given in the first example. A discussion on the influence of the density
function on the order of singularity of the integral equation is presented in the second and third
examples. The description of the examples is summarized in Table 1. It is worth mentioning that
the crack displacement profiles are plotted with respect to the normalization parameters adopted
here.

7.1. Internal mode I crack in an infinite strip

Consider a crack in an infinite strip of homogeneous material, as illustrated by Fig. 2. The
governing partial differential equations (PDEs) and boundary conditions are:

2 QPu(x,y) Qu(x,y)
2 ) ) o _
Vu(x,y)+K_1< a2 3y )—O, 00 < X,y < 00,
2 [(d%(x,y) Q%v(x,y)
2 ) ) _ .
Vv(x,y)—i—K_l( 3 + axdy )-O, 00 < X,y < 00,

Uxx(ovy) - ny(ouy) - Gxx(hay) = ny(hvy) = 07 —00 <y < 00,

0yy(x,0) =0, 0<x<h,

UW(X,O) = _p(x)a X € (C,d),

v(x,0) =0, x¢[cd],
where u and v are the x and y components of the displacement vector; g;; is the stress tensor; x is
an elastic constant (k = 3 — 4v for plane strain, x = (3 — v)/(1 + v) for plane stress, and v is the
Poisson’s ratio). This problem has been studied by Kaya and Erdogan [3] by means of a U,

representation, and it has also been used as a benchmark problem by Kabir et al. [51]. Here both
U, and T, are employed and compared.
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Table 1

Description of the examples
Description Example 1 Example 2 Example 3
Homogeneous material Vv Vv
Nonomogeneous material v
Classical elasticity Vv V4
Gradient elasticity i
Crack mode 1 I 111
Density function displacement (v) displacement (w) slope (¢)
Degree of singularity o 2 2 3
Weight function exponent, m — (1/2) 12 12 32
Representation U,, T, U, T, T,

Fig. 2. A mode I crack in an infinite strip.

The governing integral equation can be written in the form given by Eq. (4) as in [3]

given by

Av(x) = v(x,0") — v(x,07),

and the kernel k(x, ¢) is given by Kaya and Erdogan [3, Egs. (51)—(54c), p. 112]. It is worth noting
that as 2 — oo (see Fig. 2), the integral equation for the half plane is recovered (symmetry ar-

1+«

’ Av(t) d )
%Cmd”[ k(x, ) Av(t)dt = _ﬂ( ke

where G = u is the shear modulus, the primary variable is the crack opening displacement Av

c<x<d

)p(x), c<x<d,

gument) and the kernel k(x, ¢) is reduced to a much simpler form *

4 To be consistent with the notation adopted in this paper, we have used symbols different from those used by Kaya

and Erdogan [3]. For instance, upper case K(¢,x) is used by Kaya and Erdogan [3], instead of k(¢,x).
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-1 12x 12x2
k(x,t) = 5+ 3= i
(t+x)" (t+x) (t+x)

After normalization, the corresponding integral equation can be written in a fashion similar to Eq.
), ie.’

7[ D(s))2 ds & / | A (r,5)D(s)ds = P(r), —1<r<l1, (92)

L (s—
where D(s) is the unknown function, the regular kernel is
—1 N 125 + (4

e%/l",S: 5 c - —c .
- [((r+9)+2(22)] [r+9)+2(22)]  [(r+9) +2(42)]

and the loading function is

P(s) = —n(lg“)p«d;"’)wd;"’).

The case ¢ > 0 represents an internal crack, which is the case of interest in this work. Based on
the dominant behavior of the singular kernels of the integral equation (92), the solution takes the
form

D(s) = R(s)V1 — s%.

Here the representation function R(s) is approximated in terms of Chebyshev polynomials of first
and second kinds, i.e.

R(s)=> a,U,(s) and R(s)=> b,T,(s).

n=0 n=0

The unknown coefficients a, and b, are determined by selecting an appropriate set of collocation
points

2n—1 .
r; = COS <%>, j=12...,N+1; for U, representation,

rj = COS <%>, j=12,...,N+1; for T, representation.

Once the solution is obtained, the SIFs can be calculated from ¢

> Again, the notation is different from the one adopted by Kaya and Erdogan [3].
¢ Kaya and Erdogan [3] do not consider the factor /7 in the definition of SIFs, equations (93) and (94). Note that
this does not affect the normalized SIFs (see Table 2).
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Table 2

Normalized SIFs for an internal crack in a half-plane
dic N+1 U, representation T, representation Ref. [3]

Ki(c) Ki(d) Ki(c) Ki(d) Ki(c) Ki(d)
my/mld—c)/2 my/m(d=c)/2 my/md—c)/2 my/md=c)/2 my/md—c)/2 my/md—c)/2

1.01 15 3.6437 1.3292 3.8037 1.3313 3.6387 1.3298
1.05 10 2.1541 1.2535 2.1920 1.2543 2.1547 1.2536
1.1 10 1.7583 1.2108 1.7655 1.2111 1.7587 1.2108
1.2 6 1.4637 1.1625 1.4728 1.1632 1.4637 1.1626
1.3 6 1.3316 1.1331 1.3346 1.1335 1.3316 1.1331
1.4 6 1.2544 1.1123 1.2556 1.1125 1.2544 1.1123
1.5 4 1.2036 1.0966 1.2066 1.0969 1.2035 1.0967
2.0 4 1.0913 1.0539 1.0916 1.0540 1.0913 1.0539
3.0 4 1.0345 1.0246 1.0346 1.0246 1.0345 1.0246
4.0 4 1.0182 1.0141 1.0182 1.0141 1.0182 1.0141
5.0 4 1.0112 1.0092 1.0112 1.0092 1.0112 1.0092
10.0 4 1.0026 1.0024 1.0026 1.0024 1.0026 1.0024
20.0 4 1.0006 1.0006 1.0006 1.0006 1.0006 1.0006

N + 1 terms are used in approximating the primary variable.

Ki(c) = lim \/2n(c — x)0,,(x,0) (x <c)

xX—c™

[ 26 . D(x)
B (1—1-16)):13?* 2n(x —¢) (x>c) (93)

2G d—c
- R(~1
(1+K> 27 (=1,

Ki(d) = lim /2n(x — d)o,,(x,0) (x >d)

x—d+t
2G ) D(x)
<1+K>xll>r§l 2n(d — x) (x <d) (94)
2G d—c
N <1+K) 2n R(+1),
which are obtained from Eq. (91) by observing that its left-hand-side gives the stress component
0,y(x,0) outside the crack interval (c,d).

Table 2 presents the SIFs at both tips of an internal crack in a half-plane (2 — oo) under
uniform load (p(x) = pp) obtained with both U, and T, representations. First, it is worth noting
that the present SIF results for the U, representation compare well with those reported in Table 1
(page 114) of the paper by Kaya and Erdogan [3] for the entire range of values describing the
relative position of the crack, i.e. 1.01 < (d + ¢)/(d — ¢) < 20. Next, comparing the SIFs obtained
with the U, and T, representations in Table 2, we note that the results compare quite well, except
when (d + ¢)/(d — ¢) = 1.0, and the discrepancy is bigger at the left-hand-side (LHS) than at the

right-hand-side (RHS) crack tip. This occurs because of the “edge effect” [52]. If 42 terms (i.e.
N + 1 =42) and T, representation are considered for the case (d + ¢)/(d — ¢) = 1.01, then the
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2.0 T
U, ()

-)

1.6

12 E
e
x
= 08 4
0.4 ]
0 d=20.1
0 5 10 15 20 25

Fig. 3. Displacement profiles for a mode I crack in an infinite strip obtained by means of U, and 7, representations
(N +1=15). Here ¢c = 0.1, d = 20.1, 2a = 20, and (¢ + d)/(d — ¢) = 1.01. The crack is tilted to the left because of the

“edge effect”.

12} Uplori) 1

v(x,0%)

1.0 1.6 2.0 2.4 3.0
X

Fig. 4. Displacement profiles for a mode I crack in an infinite strip obtained by means of U, and 7, representations
(N+1=8).Herec=1,d=3,2a=2,and (c+d)/(d —c) =2.

normalized SIFs at the LHS and RHS crack tips are 3.6437 and 1.3302, respectively. Thus, when
there is an “‘edge effect”, the results are sensitive to the discretization adopted. Moreover, for the
same number of collocation points, the level of accuracy attained with the U, representation is
slightly different from that with the 7, representation.

Figs. 3 and 4 compare the crack profiles for U, and 7, representations. One may observe that
the displacement profiles obtained from both representations practically agree within plotting
accuracy, especially in Fig. 4. Note that the displacement profile in Fig. 3 is tilted to the left
because of the “edge effect”. Such effect is negligible in Fig. 4.

7.2. Mode III crack problem in nonhomogeneous materials [18]

Consider the antiplane shear problem for the nonhomogeneous material shown in Fig. 5 with
shear modulus variation given by

G(x) = Goe™, (95)
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y

G(x):GOeBX
C d X
— 2a —

Fig. 5. The half plane of the antiplane shear problem for nonhomogeneous material with shear modulus G(x) = Gpe®.

where Gy and [ are material constants. Erdogan [18] has studied this problem in order to in-
vestigate the singular nature of the crack-tip stress field in bonded nonhomogeneous materials
under antiplane shear loading. He uses a slope formulation, ’ while here we use a displacement
formulation. To understand what can be gained through the displacement formulation, we first
state the governing PDE and the boundary conditions for the crack problem:

( )+ P awg;’y)zo, —o<x<oo, y=0,
( 0) =0, x ¢ [e,d], .
0,.(x,0%) = p(x), x € (¢,d),

where p(x) is the traction function along the crack surfaces (¢, d); and because of symmetry, only
the upper half plane y > 0 is considered. By the Fourier transform we write w(x, y) as

wlx, ) = v%L/ e de, (97)

where A(¢) is to be determined by the boundary conditions, and

(&) =& +ipe. (98)

Because of the far field boundary condition, lim, . w(x,y) =0, A(¢) is found to have a non-
positive real part which can be expressed as

1 i
\72\/\/é4+ﬂ252+62 —\ﬁsgn(ﬁé)\/\/éuﬁzéz - &, (99)

7 The governing integral equations are described by relationships (20)-(22) in [18].
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where the sign function sgn(-) is defined as

1, n >0,
Sgn(’?) = 07 n= 07 (100)
-1, n<O0.

By applying the inverse Fourier transform to Eq. (97), one finds

1 d .
A(E) = — w(t,0)e" dt, 101
© = [ weo) (101)
which leads to the following integral equation: ®
G(x) [
0:(x,0) = plx) === [ klx,)w(t,0)dr, (102)
where
k(x,t) = lim [A(E)eHPelt=0eqe. (103)

’\/4>0+

The trade-off between a displacement-based and a slope-based formulation can be seen here if
one recalls the issue regarding decomposition of the K(¢) described in (3). In summary,

K(¢) = 1ir(? %ei@v = &f), if slope formulation is used (104)
y=0t — -
and
K (&) = lim (&) = J(¢), if displacement formulation is adopted. (105)

y~>0Jr

The decomposition of K (&) in (104) is not straightforward because of the term (—i¢) in the de-
nominator, which would cause the logarithmic singularity. On the other hand, the decomposition
of K(¢) in (105) can be achieved through a simple and straightforward asymptotic analysis:

Real part of (&) = \_/—%\/\/ E e+ A £l (106)

& Note that Eqgs. (102) and (103) correspond to equations (20) and (21) in [18], respectively. However, the present
notation is different from the one used by Erdogan [18], in which the dummy variable used for the Fourier transform is
o, (a,b) stands for the crack surfaces, and m(«) corresponds to our A(&).
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1 x Imaginary part of A(¢) = %sgn(ﬁé)\/\/ &+ pE - ézmzx — % % (107)

Thus the governing hypersingular integral equation is found to be

G [ 2 [
o 7{ [( 5+ + N(x,t)

t—x)" t—x

D(t)dt = p(x), c<x<d, (108)

where we have let
D(t) = w(t,0) (109)

and the nonsingular kernel is
. —p*V/Ecos|(t — x)¢]
N(x,t)z/O (\/@% /éz+ﬁ2+€> <é+ /éz+ﬁz>
—B*sin[(t — x)¢]

_l’_
(ﬂ + ﬂsgn(m\/ VE+BE - 52) (252 + B +2yE + /32£2>

Recall that the function sgn(-) is defined by Eq. (100). As a consistency check, note that if f =0,
then both the Cauchy singular kernel #/(x — ¢) and the nonsingular kernel N(x, #) will be dropped
from Eq. (108) so that equation (25) is recovered.

Fig. 6 shows numerical results for displacement profiles considering a crack with uniformly
applied shear tractions o,.(x,0) = —py(|x| < @), and various values of the material parameter f.
Note that the cracks are tilted to the right because of material nonhomogeneity. Further nu-
merical results, including SIFs at both tips of the crack and corresponding displacement profiles,
are given by Chan et al. [48]. From a numerical point of view, they have shown that essentially the
same results are obtained either by U, or T, representations for this specific problem [48].

(110)

7.3. Gradient elasticity applied to mode III cracks [53]

One of the most relevant aspects of the formulas derived in Sections 4 and 5 is the evaluation of
hypersingular integrals 1,(7,,, m, r) with weight function W (s) = (1 — sz)m_l/ ?_in which m > 2. This
example illustrates this point for the case m = 2.

Fannjiang et al. [53] have presented a hypersingular integral equation formulation for a mode
IIT crack in a material described by constitutive equations of gradient elasticity with both volu-
metric and surface energy gradient dependent terms. A similar study, using a different approach,
has been conducted by Vardoulakis et al. [54] and Exadaktylos et al. [55]. Zhang et al. [56] and Shi
et al. [57] have used the Wiener—Hopf technique of analytic continuation to get full-field solution
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Fig. 6. The half plane of the antiplane shear problem for nonhomogeneous material with shear modulus G(x) = Gpe?*.
The cracks are tilted to the right because of material nonhomogeneity.

for a semi-infinite crack in an infinite solid characterized by the higher-order elastic continuum
theory proposed by Fleck and Hutchinson [58]. For this problem, the governing PDE is

— VW + Viw = 0, (111)

where £ is the characteristic length of the material associated to volumetric strain-gradient terms,
and w is the antiplane shear displacement. The boundary conditions are

0,2(x,0) = p(x), |x] <a,

U, (x,0) =0, —00 < x < 00,
W}&O) =0, |x| > a, (112)
where

1. = 2G({*0e,. /Oy — le,z),
0,. = 2G(e,. — I*V7,,).

¢ is the characteristic length of the material associated to surface strain-gradient terms, o;; is the
stress tensor and g, is the couple stress tensor. The notation of Exadaktylos et al. [S5] and
Paulino et al. [50] is adopted here. A brief discussion about the physical meaning of characteristic
lengths in the context of Fleck and Hutchinson’s [58] strain-gradient theory, which is a general-
ization of the higher-order linear elastic continuum theory [59,60], can be found in [57]. It is worth
mentioning that experimental techniques in the field include micro-torsion [61], micro-bending
[62], and micro-indentation [63]. Moreover, the characterization of actual materials, with respect
to strain-gradient length-scale(s), is an active area of research and much remains to be done.



714 Y.-S. Chan et al. | International Journal of Engineering Science 41 (2003) 683-720

Enforcing the governing Eq. (111), imposing the boundary conditions (112), taking account of
symmetry along the x-axis, and using Fourier transform method, Fannjiang et al. [53] have ob-
tained the following governing hypersingular integral equation

G7[ { (—2(2 + 1 __(2_;) —I—k1(x,t)}¢(t) dt—G;/dJ/(x) =px), x| <a, (113)

Y t—x)3 t

which is a particular case of the integral equation presented by Paulino et al. [50] for nonho-
mogeneous materials with microstructure. In the above equation, the singularity order is o = 3,
and the slope function ¢(x) is defined as

ow(x,0)

Plx) = o, (114)

which satisfies the single-valuedness condition

/ ¢(t)dr =0 (115)
and the “smooth closure condition”

¢(a) = p(=a) =0 (116)

for the solution of the fracture mechanics problem. Here & (x, 7) is the nonsingular kernel given by
ki(x,t) = / Ki(& 0,0 sin[é(f — x)]d¢, (117)
0

where

(02/2) (VT t2) — [0/QOP (VT T t2) + (/0 /4
o0 - (VEEFT+1¢)

and (—a,a) stands for the crack surfaces; ¢' is the characteristic length responsible for surface
strain-gradient terms; G is the shear modulus of the material; p(x) is the known loading function;
t is the integration variable, and x is the collocation variable.

At ¢' = 0, the behavior of the solution in terms of the density function ¢(z), can be expressed as

Ki(&4,0) = (118)

o(t) = R(t)\Va® — 2, (119)

where R(¢) is an expansion of Chebyshev polynomials, either 7,(¢) or U,(¢) (see [48]). Thus one can
either use (7, 1,7) or I;(U,, 1,r) to evaluate the corresponding hypersingular integrals that arise
in solving the governing integral Eq. (113).
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Note that the unknown density function is taken to be the first derivative of the displacement
function, as described by Eq. (114). For this particular example, the decomposition of the original
kernel into singular and nonsingular parts, stated by Eq. (3), can be accomplished by means of
partial fractions [48]. In general, this step of decomposition is not an easy task, as discussed in
Example 2. An alternative approach consists of considering the displacement function w(x,0) as
the unknown density function, and thus the decomposition of the original kernel becomes a
routine asymptotic analysis. In this case, the following hypersingular integral equation with o = 4
is obtained:

G ‘ _6£2 1— [é//(2€)]2 N G_ng// ¥ G_el y 2 wix
5/ {(z—x)“Jr (t —x)? +k2(x’t)}w(t)dt 3 W) g L+ (E/0 W)
=px), [ <a, (120)

a

in which the regular kernel k,(x,¢) is given by
o (x, ) = / Ka(E:0, ) cos[E(t — x)]dé, (121)
0

where

v [2%’36(\/6252 T+ ee:) B 02)E— 0P ) PE L O 417
86 (e 0/BETT—0) (064 VEEY 1)2 '

K (&40 =

(122)

With order of singularity o = 4 and at the value ¢ = 0, the behavior of the density function w(¢) in
Eq. (120) can be expressed by

w(t) = R(0)(a* — ). (123)

This example motivates the whole work of this paper because the analytical evaluation of the
hypersingular integral I4(7,,2,r) or I4(U,,2,r) is needed for successfully solving the governing
integral equation (120). The expression for I4(7,,2,r) and I4(U,,2,r) are given by Egs. (64) and
(68), respectively.

The numerical results are presented in terms of generalized SIFs (Table 3) and displacement
profiles (Fig. 7) by considering the slope function ¢(x) as unknown in Eq. (113) and the U, ex-
pansion to R(¢) in Eq. (119). Table 3 shows the convergence of the SIFs by choosing different
values of volumetric gradient dependent term, ¢, and letting surface energy gradient dependent
term ¢’ = 0. The displacement profile in Fig. 7 shows the cusping of the crack tips which is more
physical than the parabolic shape of the crack tips in the classical linear elasticity without the
cohesive-zone correction. Further numerical results and discussions are provided in Paulino et al.
[50].
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Table 3
Normalized generalized SIFs Kyy(a)/(cov/ma) = (¢£/a) Sn_(n + 1)a,, where a, are the coefficients of the U, expantion
to R(¢) in Eq. (119)

N l/a=0.8 l/a=0.5 l/a=0.2 l/a=0.1 ¢/a =0.05 £/a =0.01 ¢/a = 0.005

11 0.52799576  0.69777466 ~ 0.89338314  0.94859611 0.97292423  0.61441745  0.34481071
21 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051  0.97914609  0.83455315
31 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051 0.99491034  0.98554527
41 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051  0.99498732  0.99719326
51 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051  0.99498737  0.99749398
61 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051 0.99498737  0.99749685
71 0.52799576  0.69777466  0.89338314  0.94859983  0.97467051  0.99498737  0.99749685

Here ¢’ =0, and 0,.(x,0) = 0y, a uniform crack surface antiplane loading.

w(x,O)/w0

x/a

Fig. 7. Full crack displacement profile at {/a = 0.2 and ¢'/a = 0.0 under uniform crack surface antiplane loading
0,-(x,0) = —ao; wo = aao/Gy.

8. Concluding remarks

Closed form analytical solutions are provided here for a broad class of improper integrals with
hypersingular kernels and density functions approximated by means of Chebyshev polynomials.
Whenever possible, the symbolical and numerical tools of the computer algebra software
MAPLE ° [64-66] have been used to verify the proposed solutions. A systematic approach for
evaluating integrals when higher order singularities is also given in the present paper.

The examples involve crack problems and aspects such as LEFM, nonhomogeneous materials,
and gradient elasticity theory (see Table 1). All these problems are solved by means of hypersin-
gular integral equation formulations. When classical elasticity is used, both 7, and U, represen-

® MAPLE can evaluate some relatively simple CPV integrals. However, in general, computer algebra systems are very
limited with respect to hypersingular integrals.
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tations lead to essentially the same numerical results. For a crack problem in nonhomogeneous
material, the difficulty that arises in splitting the singular and nonsingular parts from the original
kernels can be circumvented by means of displacement based, rather than slope based, formulation.

As a closing remark, we note that as material property variation in space and higher order
gradient continuum theories are considered, the formulation of the crack problem and the as-
sociated kernels can become quite involved. Thus, better analytical and numerical techniques are
needed to successfully solve the governing singular integral equations. This paper is a contribution
in this sense.
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Appendix A. Alternative approach

Instead of using the recursive property between the Chebyshev polynomials 7,,(s) and U, (s), i.e.
Egs. (30) and (32), another way of evaluating /,(7,,m,r) and I,(U,, m,r) is by using the recursive
property through 7,(s) only. By Egs. (30) and (32) one may obtain

T(s)(1 = *) = =1T,5(s) + AT, (s) = 3T00(s), n=2. (A1)

Thus both the integrals /,(7,,m+ 1,r) and I,(U,,m+ 1,r) can be deduced from knowing
1,(T,,m,r). For example, an alternative way of deriving Eq. (37) is

CLOVIZE g0 L[ Ta@) L T L Tl
][1 s—r ds = 4][1(5—”)\/1—s2_+2][1(s—r)~/1—s2 4][1(S_r)m
_[5I00) ~ T30, n=2
LUpoa(r) 4+ 2Uu1 (r) = Uyt (7)), 023
5

\Y

Tia(r) = T (r)], n=2.

This alternative derivation applies to all the other formulas derived in this paper, such as Egs.
(42), (43), (48), (52), (57), (61), (66) and (70).

References

[1] H.R. Kutt, The numerical evaluation of principal value integrals by finite-part integration, Numer. Math. 24 (1975)
205-210.
[2] J.C. Nedelec, Integral equations with non-integrable kernels, Integr. Equat. Oper. Theory 5 (4) (1982) 562-572.



718 Y.-S. Chan et al. | International Journal of Engineering Science 41 (2003) 683—720

[3] A.C. Kaya, F. Erdogan, On the solution of integral equations with strongly singular kernels, Quart. Appl. Math. 45
(1) (1987) 105-122.
[4] P.A. Martin, F.J. Rizzo, On boundary integral equations for crack problems, Proc. R. Soc. Lond. A 421 (1861)
(1989) 341-355.
[5] G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math. 50 (1994) 9-31.
[6] A. Sellier, Hadamard’s finite part concept in dimension, n > 2 distributional, definition regularization forms and
distributional derivatives, Proc. R. Soc. Lond. A 445 (1923) (1994) 69-98.
[7]1 A. Sellier, Asymptotic expansion of a general integral, Proc. R. Soc. Lond. A 452 (1955) (1996) 2655-2690.
[8] Z. Suo, Singularities, interfaces and cracks in dissimilar anisotropic media, Proc. R. Soc. Lond. A 427 (1990) 331-358.
[9] M. Ozturk, F. Erdogan, Antiplane shear crack problem in bonded materials with a graded interfacial zone, Int.
J. Eng. Sci. 31 (12) (1993) 1641-1657.
[10] N. Konda, F. Erdogan, The mixed mode crack problem in a nonhomogeneous elastic medium, Eng. Fract. Mech.
47 (4) (1994) 533-545.
[11] A.C. Kaya, Applications of integral equations with strong singularities in fracture mechanics. Ph.D. Thesis, Lehigh
University, 1984.
[12] P.A. Martin, End-point behaviour of solutions to hypersingular integral equations, Proc. R. Soc. Lond. A 432
(1885) (1991) 301-320.
[13] G.W. Schulze, F. Erdogan, Periodic cracking of elastic coatings, Int. J. Solids Struct. 35 (28-29) (1998) 3615-3634.
[14] F. Erdogan, G.D. Gupta, T.S. Cook, Numerical solution of singular integral equations, in: G.C. Sih (Ed.),
Mechanics of Fracture, vol. 1, Noordhoff International Publishing, Leyden, The Netherlands, 1973, pp. 368-425.
[15] J. Wang, B.L. Karihaloo, Mode II and mode III stress singularities and intensities at a crack tip terminating on a
transversely isotropic-orthotropic bimaterial interface, Proc. R. Soc. Lond. A 444 (1922) (1994) 447-460.
[16] L.-G. Zhao, Y.-H. Chen, On the contribution of subinterface microcracks near the tip of an interface macrocrack
to the J-integral in bimaterial solids, Int. J. Eng. Sci. 35 (4) (1997) 387-407.
[17] F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane, J. Appl. Mech. Trans. ASME 50 (3)
(1983) 609-614.
[18] F. Erdogan, The crack problem for bonded nonhomogeneous materials under antiplane shear loading, J. Appl.
Mech. Trans. ASME 52 (4) (1985) 823-828.
[19] Z.-H. Jin, N. Noda, Crack-tip singular fields in nonhomogeneous materials, J. Appl. Mech. Trans. ASME 61 (3)
(1994) 738-740.
[20] Z.-H. Jin, R.C. Batra, Interface cracking between functionally graded coatings and a substrate under antiplane
shear, Int. J. Eng. Sci. 34 (15) (1996) 1705-1716.
[21] D.L. Clements, J. Kusuma, W.T. Ang, A note on antiplane deformations of inhomogeneous elastic materials, Int.
J. Eng. Sci. 35 (6) (1997) 593-601.
[22] M. Ozturk, F. Erdogan, Mode I crack problem in an inhomogeneous orthotropic medium, Int. J. Eng. Sci. 35 (9)
(1997) 869-883.
[23] G.H. Paulino, Z.-H. Jin, Viscoelastic functionally graded materials subjected to antiplane shear fracture, J. Appl.
Mech. Trans. ASME 68 (2) (2001) 284-293.
[24] N. Noda, Thermal stresses in functionally gradient materials, J. Therm. Stress. 22 (1999) 477-512.
[25] N. Noda, Z.-H. Jin, Thermal stress intensity factors for a crack in a strip of a functionally gradient material, Int.
J. Solids Struct. 30 (8) (1993) 1039-1056.
[26] Z.-H. Jin, R.C. Batra, Stress intensity relaxation at the tip of an edge crack in a functionally graded material
subjected to a thermal shock, J. Therm. Stress. 19 (1996) 317-339.
[27] Z.-H. Jin, G.H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, Int.
J. Fract. 107 (1) (2001) 73-98.
[28] S. Krenk, On the use of interpolation polynomial for solutions of singular integral equations, Quart. Appl. Math.
32 (4) (1975) 479-484.
[29] P.S. Theocaris, N.I. Toakimidis, Numerical integration methods for the solution of singular integral equations,
Quart. Appl. Math. 35 (1977) 173-183.
[30] P.A. Martin, Mapping flat cracks onto penny-shaped cracks with application to somewhat circular tensile cracks,
Quart. Appl. Math. 54 (4) (1996) 663-675.



Y.-S. Chan et al. | International Journal of Engineering Science 41 (2003) 683—720 719

[31] A. Korsunsky, Gauss—Chebyshev quadrature formulae for strongly singular integrals, Quart. Appl. Math. 56 (3)
(1998) 461-472.

[32] C.-Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Meth. Eng.
44 (2) (1999) 205-214.

[33] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, Chichester, 1995.

[34] M. Tanaka, V. Sladek, J. Sladek, Regularization techniques applied to boundary element methods, Appl. Mech.
Rev. 47 (10) (1994) 457-499.

[35] V. Sladek, J. Sladek, Singular integrals and boundary elements, Comput. Meth. Appl. Mech. Eng. 157 (3-4) (1996)
251-266.

[36] Y.J. Liu, F.J. Rizzo, Hypersingular boundary integral equations for radiation and scattering of elastic waves in
three dimensions, Comput. Meth. Appl. Mech. Eng. 107 (1-2) (1993) 131-144.

[37] K.-C. Toh, S. Mukherjee, Hypersingular and finite part integrals in the boundary element method, Int. J. Solids
Struct. 31 (17) (1994) 2299-2312.

[38] G.H. Paulino, L.J. Gray, V. Zarikian, Hypersingular residuals—A new approach for error estimation in the
boundary element method, Int. J. Numer. Meth. Eng. 39 (12) (1996) 2005-2029.

[39] C.-Y. Hui, S. Mukherjee, Evaluation of hypersingular integrals in the boundary element method by complex
variable techniques, Int. J. Solids Struct. 34 (2) (1997) 203-221.

[40] U.W. Hochstrasser, Orthogonal polynomials, in: M. Abramowitz, [.A. Stegun (Eds.), Handbook of Mathematical
Functions, Dover Publications Inc., New York, 1972, pp. 771-802 (Chapter 22).

[41] S. Krenk, On quadrature formulas for singular integral equations of the first and second kind, Quart. Appl. Math.
33 (3) (1975) 225-232.

[42] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff International Publishing, Groningen, The Nether-
lands, 1953.

[43] N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff Ltd., Groningen,
The Netherlands, 1963.

[44] F. Erdogan, Mixed boundary value problems in mechanics, in: S. Nemat-Nasser (Ed.), Mechanics Today, vol. 4,
Pergamon Press Inc., New York, 1978, pp. 1-86.

[45] S.A. Meguid, X.D. Wang, On the dynamic interaction between a microdefect and a main crack, Proc. R. Soc.
Lond. A 448 (1934) (1995) 449-464.

[46] F. Erdogan, M. Ozturk, Diffusion problems in bonded nonhomogeneous materials with an interface cut, Int. J. Eng.
Sci. 30 (10) (1992) 1507-1523.

[47] E.E. Gdoutos, Fracture Mechanics Criteria and Applications, Kluwer Academic Publisher, Dordrecht, The
Netherlands, 1990.

[48] Y.-S. Chan, G.H. Paulino, A.C. Fannjiang, The crack problem for nonhomogeneous materials under antiplane
shear loading—A displacement based formulation, Int. J. Solids Struct. 38 (17) (2001) 2989-3005.

[49] Y.-S. Chan, Hypersingular integrodifferential equations and applications to fracture mechanics of homogeneous
and functionally graded materials with strain-gradient effects, Ph.D. Thesis, University of California, 2001.

[50] G.H. Paulino, A.C. Fannjiang, Y.-S. Chan, Gradient elasticity theory for a mode III crack in a functionally graded
material, Mater. Sci. Forum 308-311 (1999) 971-976.

[51] H. Kabir, E. Madenci, A. Ortega, Numerical solution of integral equations with logarithmic-, Cauchy- and
Hadamard-type singularities, Int. J. Numer. Meth. Eng. 41 (4) (1998) 617-638.

[52] G.H. Paulino, M.T.A. Saif, S. Mukherjee, A finite elastic body with a curved crack loaded in anti-plane shear, Int.
J. Solids Struct. 30 (8) (1993) 1015-1037.

[53] A.C. Fannjiang, Y.-S. Chan, G.H. Paulino, Strain gradient elasticity for mode III cracks A hypersingular
integrodifferential equation approach, SIAM J. Appl. Math. 62 (3) (2002) 1066-1091.

[54] 1. Vardoulakis, G. Exadaktylos, E. Aifantis, Gradient elasticity with surface energy: Mode-III crack problem, Int.
J. Solids Struct. 33 (30) (1996) 4531-4559.

[55] G. Exadaktylos, I. Vardoulakis, E. Aifantis, Cracks in gradient elastic bodies with surface energy, Int. J. Fract. 79
(2) (1996) 107-119.

[56] L. Zhang, Y. Huang, J.Y. Chen, K.C. Hwang, The mode III full-field solution in elastic materials with strain
gradient effects, Int. J. Fract. 92 (4) (1998) 325-348.



720 Y.-S. Chan et al. | International Journal of Engineering Science 41 (2003) 683-720

[57] M.X. Shi, Y. Huang, K.C. Hwang, Fracture in a higher-order elastic continuum, J. Mech. Phys. Solids 48 (12)
(2000) 2513-2538.

[58] N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, in: J.W. Hutchinson, T.Y. Wu (Eds.), Advances in Applied
Mechanics, vol. 33, Academic Press, New York, NY, 1997, pp. 295-361.

[59] R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16 (1964) 51-78.

[60] R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct. 1 (1965) 417—
438.

[61] N.A. Fleck, G.M. Muller, M.F. Asby, J.W. Hutchinson, Strain gradient plasticity: theory and experiments, Acta
Metall. Mater. 42 (1994) 475-487.

[62] J.S. Stolken, A.G. Evans, A microbend test method for the plasticity length scale, Acta Mater. 46 (1998) 5109—
S115.

[63] W.D. Nix, Elastic and plastic properties of thin films on substrates: nanoindentation techniques, Mater. Sci. Engr.
A 234/236 (1997) 37-44.

[64] A. Heck, Introduction to Maple, Springer-Verlag, New York, 1996.

[65] Waterloo Maple Inc., The Maple Learning Guide, 1995.

[66] Waterloo Maple Inc., The Maple Programming Guide, 1995.



	Integral equations with hypersingular kernels--theory and applications to fracture mechanics
	Introduction
	Related work
	Theoretical aspects
	Integration and approximation
	Selection of the density function
	Properties of Chebyshev polynomials

	Cauchy singular integral formulas (alpha=1)
	I1(Tn,m,r), m=0,1,2,3
	I1(Un,m,r), m=1,2,3
	I1(Tn,m,r) and I1(Un,m,r)

	Hypersingular integral formulas (alpha&ges;2)
	I2(Tn,m,r)
	I2(Un,m,r)
	I3(Tn,m,r)
	I3(Un,m,r)
	I4(Tn,m,r)
	I4(Un,m,r):

	Evaluation of stress intensity factors
	S1(Tn,m,r) and S1(Un,m,r)
	S2(Tn,m,r) and S2(Un,m,r)
	S3(Tn,m,r) and S3(Un,m,r)

	Examples
	Internal mode I crack in an infinite strip
	Mode III crack problem in nonhomogeneous materials [18]
	Gradient elasticity applied to mode III cracks [53]

	Concluding remarks
	Acknowledgements
	Alternative approach
	References


