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Change of Constitutive Relations
due to Interaction
Between Strain-Gradient Effect
and Material Gradation
For classical elasticity, the constitutive equations (Hooke’s law) have the same functional
form for both homogeneous and nonhomogeneous materials. However, for strain-
gradient elasticity, such is not the case. This paper shows that for strain-gradient elas-
ticity with volumetric and surface energy (Casal’s continuum), extra terms appear in the
constitutive equations which are associated with the interaction between the material
gradation and the nonlocal effect of strain gradient. The corresponding governing partial
differential equations are derived and their solutions are discussed.
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1 Introduction
In this paper we investigate the constitutive relations for strain-

gradient elasticity in both homogeneous and functionally graded
materials �FGMs� modeled as nonhomogeneous materials. For
classical linear elasticity, the constitutive relations between the
Cauchy stresses �ij and strains �ij have the same form for both
homogeneous and nonhomogeneous materials. That is,

�ij = ��kk�ij + 2G�ij , �1�

in which �ij is the Kronecker delta; the Lamé moduli � and G can
either be constant,

� = �0 and G = G0,

or they can be some functions of the material point x= �x ,y ,z�,

� � ��x� and G � G�x� .

While the form of the constitutive relations is the same for homo-
geneous or graded materials in classical elasticity, such is not the
case for strain-gradient elasticity where extra terms are generated
due to the interaction of strain-gradient effect and material grada-
tion. More specifically, for homogeneous materials, the constitu-
tive relations in strain-gradient elasticity are �1,2�

�ij = ��kk�ij + 2G�ij + 2G���k�k�ij , �2�

where �� is a material characteristic length associated with surface
energy gradient, �k=� /�xk is a differential operator, and �k, �k�k
=1, �k�k=0, is a director field. For nonhomogeneous materials,
one can NOT simply replace the Lamé moduli � and G in Eq. �2�
by the respective functions ��x� and G�x� anymore. The corre-
sponding constitutive equation for nonhomogeneous materials are

�ij = ��x��kk�ij + 2G�x��ij + ���k��ll�k��x� + ��x��k�ll��ij

+ 2���k��ij�kG�x� + G�x��k�ij� . �3�

Comparing Eqs. �2� and �3�, one can observe that there are some
extra terms in �3�, and those extra terms are essentially the sum of
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two types of product: the product of the material gradation func-
tion ���x� or G�x�� and the gradient of the strains, or the product
of the strains and the gradient of the gradation function. It is in
this sense that the extra terms are generated by the interaction of
strain-gradient effect and material gradation.

Material behavior is often described by differential equations,
which are formulated according to the constitutive relations. Thus,
the next concern shall be how the change of constitutive equations
influences the governing partial differential equations �PDEs�. For
instance, in classical elasticity �the constitutive relations have the
same functional form for both homogeneous and nonhomoge-
neous materials�, the governing PDEs for nonhomogeneous mate-
rials are

G�x��2u + ���x� + G�x�� � � · u + ��u + �uT� � G�x�

+ �� · u� � ��x� = 0, �4�

where u is the displacement vector, and �, �·, and �2 are the
gradient, divergence, and Laplacian operators, respectively. Equa-
tion �4� can be considered as a perturbation of the familiar Navier-
Cauchy equations for homogeneous materials

G0�
2u + ��0 + G0� � � · u = 0, �5�

where G0 and �0 are the Lamé constants. Comparing Eqs. �4� and
�5�, one can observe that the perturbation brings in only the lower
�first� order of differential operators, while the highest �second�
order of differential operators has been preserved. As one of the
properties of second-order elliptic PDEs, the behavior of the so-
lution mainly depends on the highest order of the differential op-
erators �see �3�, Chap. 6�. Thus, the solution to PDEs �4� should
have similar behavior as the solution to PDEs �5�. What is the
situation for strain-gradient elasticity? It turns out that for the case
of strain-gradient theory applied to FGMs, the change of PDEs is
also only pertinent to the lower order differential operators, and
the solution to the governing PDEs are still dominated by the
highest order differential operators. In order to tell a complete
story, we need to derive the governing PDEs from the equilibrium
equations, in which the Cauchy stresses �ij, the couple stresses
�kij, and the total stresses �ij are all involved. Thus, we need to
know all the constitutive relations between strains and each of the
stress fields. In this work the derivation of constitutive relations in
strain-gradient elasticity relies on the strain-energy density func-
tion W.

This paper presents a detailed derivation of the constitutive re-

lations in strain-gradient elasticity and the corresponding govern-
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ing PDEs. The paper is organized as follows. First, the strain-
energy density function W is introduced, the constitutive relations
are derived from first principles, and some remarks about admis-
sibility of W are made. Then, the governing PDEs of strain-
gradient elasticity for anti-plane shear problems and plane state
problems are derived. The behavior of the solutions to the corre-
sponding PDEs are discussed. Finally, some concluding remarks
are given at the end of the paper.

2 Strain-Energy Density Function

2.1 Elasticity. In classical elasticity, the strain-energy density
function has the well-known form

W = 1
2��x��ii� j j + G�x��ij� ji, �6�

where ��x� and G�x� are the material parameters which are func-
tions of position x, and � is the small deformation tensor

�ij = 1
2 �ui,j + uj,i� �7�

with u denoting the displacement vector. The Cauchy stresses are
given by Eq. �1�, i.e.,

�ij =
�W

��ij
= ��x��kk�ij + 2G�x��ij . �8�

In the case of homogeneous materials, � and G are constants
�Lamé constants� and the Cauchy stresses, derived from �6�, is

�ij =
�W

��ij
= ��kk�ij + 2G�ij . �9�

Notice that Eqs. �8� and �9� have the same functional form.

2.2 Gradient Elasticity. Casal’s anisotropic grade-2 elasticity
theory is used in this paper; as an analogue to the concept of the
surface tension of liquid, two material constants, the volume
strain-gradient term � and the surface energy strain-gradient term
��, were introduced by Casal to characterize the internal and sur-
face capillarity of the solid. The surface energy strain-gradient
term �� cannot exist alone �i.e., �=0 and ���0 is not an admis-
sible configuration� because the strain-energy density function
needs to be non-negative. The effect of the volume strain-gradient
term � is to shield the applied loads leading to crack stiffening,
and the effect of the surface energy strain-gradient term �� is to
amplify the applied loads leading to crack compliance by increas-
ing the energy release rate of the crack �4�. The ratio �=�� /� has
been investigated in detail by Fannjiang et al. �5�.

The three-dimensional generalization of Casal’s gradient-
dependent anisotropic elasticity with volumetric and surface en-
ergy for nonhomogeneous materials leads to the following expres-
sion for the strain-energy density function:

W = 1
2��x��ii� j j + G�x��ij� ji + 1

2��x��2��k�ii���k� j j�

+ 1
2���k�k���x��ii� j j� + G�x��2��k�ij���k� ji�

+ ���k�k�G�x��ij� ji�, � 	 0, �10�

where � and �� are two material characteristic lengths associated
with volumetric and surface energy gradient terms, respectively.
The terms associated with �� have the meaning of surface energy.
It is easy to see that, after integrating W over the material domain

 and applying the divergence theorem with �k�k=0, the terms
associated with �� become surface integrals,1 i.e.,

1To get Eq. �11�, one needs to specify the director field in the interior as well,
namely, it has to be divergence free. If one allows non-divergence-free director field,
then it is possible to have � and G standing out of the partial derivative in the ��

terms of �10� and still representing surface energy.
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�1

2
���k�k���x��ii� j j� + ���k�k�G�x��ij� ji��dV

= ���
�


�1

2
��x���ii� j j���knk� + G�x���ij�ij���knk��dS ,

�11�

where nk is the outward unit normal to the boundary �
. By
considering the particular case �k�nk, the director field has the
same direction as the outward unit normal to the boundary, the
surface integral simply becomes

���
�


�1

2
��x���ii� j j� + G�x���ij�ij��dS . �12�

By definition, the Cauchy stresses �ij, the couple stresses �kij,
and the total stresses �ij are

�ij = �W/��ij

�kij = �W/��ij,k �13�

�ij = �ij − �k�kij .

Using Eqs. �13� and �10�, the constitutive equations for function-
ally graded materials are

�ij = ��x��kk�ij + 2G�x��ij + ���k��ll�k��x� + ��x��k�ll��ij

+ 2���k��ij�kG�x� + G�x��k�ij� �14�

�kij = ���k��x��ll�ij + �2��x��k�ll�ij + 2���kG�x��ij + 2�2G�x��k�ij

�15�

�ij = ��x���kk − �2�2�kk��ij + 2G�x���ij − �2�2�ij�

− �2��k��x����k�ll��ij − 2�2��kG�x����k�ij� �16�

2.3 Remarks. If the material is homogeneous, then the Lamé
constants � and G in Eq. �10� can be placed either before or after
the differential operator �k=� /�xk. However, if the material is
nonhomogeneous, then different positions of � and G in Eq. �10�
would lead to different strain-energy density functions. Thus, if
one expresses the strain-energy density as

WA � 1
2��x��ii� j j + G�x��ij� ji + 1

2�2�k���x��ii���k� j j�

+ 1
2���k�k���x��ii� j j� + �2�k�G�x��ij���k� ji�

+ ���k�k�G�x��ij� ji� , �17�

then it is clear that by the product rule of derivative, WA and W are
different. Two other strain-energy density expressions can be ob-
tained by placing ��x� and G�x�, the Lamé moduli associated with
the surface characteristic length ��, in front of the differential
operator �k in Eqs. �10� and �17� �6�. We choose to work with W
because it gives rise to an energy functional that is always
positive-definite regardless of the material inhomogeneities
���x� ,G�x�� and the strain-gradient parameters � ,���0. When
the material inhomogeneities are present and rough �i.e., the de-
rivatives of ��x�, G�x� are sufficiently large� the other �three�
energy functionals lose positive-definiteness, resulting in negative
total energy of possibly arbitrary magnitudes. Thus, in this paper
we restricted our consideration to the energy density W and derive
the constitutive relations and the corresponding PDEs from it.

3 Plane State Problems
In this section we derive the governing �system of� PDEs of
gradient elasticity for a plane problem in functionally graded ma-
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terials from the strain-energy density function. The process is
similar to the one for anti-plane shear case, however the algebra is
more involved.

3.1 Constitutive Equations. From the definition of �ij, �kij,
and �ij in Eq. �13�, we have already obtained the �general plane�
constitutive equations of gradient elasticity for FGMs in Eqs.
�14�–�16�. For homogeneous materials, the constitutive equations
are �1,7�

�ij = ��kk�ij + 2G�ij + ���k�k���ll�ij + 2G�ij� �18�

�kij = ��2�k�ll�ij + 2G���k�ij + ����k�ll�ij + 2G�2�k�ij �19�

�ij = ��kk�ij + 2G�ij − �2�2���kk�ij + 2G�ij� . �20�

Comparing Eqs. �14�–�16� with �18�–�20�, one notices that the
couple stresses �kij in �15� and �19� take the same form. However,
for the total stresses �ij, there are more terms in �16� than in �20�,
and those extra terms will confound the form of the governing
�system of� PDEs.

For two-dimensional plane problems, the components of the
strain tensor are given by

�xx =
�u

�x
, �yy =

�v
�y

, �xy =
1

2
� �u

�y
+

�v
�y
�, �xz = �yz = �zz = 0.

�21�

The components of the stress fields for homogeneous materials
are �7�

�xz = �yz = 0

�xx = �� + 2G��xx + ��yy − �� + 2G��2�2�xx − ��2�2�yy

�yy = �� + 2G��yy + ��xx − �� + 2G��2�2�yy − ��2�2�xx �22�

�xy = �yx = 2G�xy − 2G�2�2�xy

�zz = ���xx + �yy� − ��2�2��xx + �yy� ,

and

�xxx = �� + 2G��2�x�xx + ��2�x�yy

�yxx = − �� + 2G����xx − ����yy + �� + 2G��2�y�xx + ��2�y�yy

�xyy = �� + 2G��2�x�yy + ��2�x�xx

�23�
�yyy = − �� + 2G����yy − ����xx + �� + 2G��2�y�yy + ��2�y�xx

�xxy = �xyx = 2G�2�x�xy

�yyx = �yxy = − 2G���xy + 2G�2�y�xy .

For nonhomogeneous materials, the couple stresses �kij have the
same form as in �23�, except that the Lamé constants functional �
and G are not constants, they are functions of �x ,y� according to
the gradation of the material. The total stresses �ij have more
terms than in �22� and they are

�xz = �yz = 0

�xx = ���x,y� + 2G�x,y���1 − �2�2��xx + ��x,y��1 − �2�2��yy

− �2	��x��x,y���x��xx + �yy� + ��y��x,y���y��xx + �yy�


− 2�2	��xG�x,y���x�xx + ��yG�x,y���y�xx


�yy = ���x,y� + 2G�x,y���1 − �2�2��yy + ��x,y��1 − �2�2��xx

− �2	��x��x,y���x��xx + �yy� + ��y��x,y���y��xx + �yy�

2
− 2� 	��xG�x,y���x�yy + ��yG�x,y���y�yy
 �24�

Journal of Applied Mechanics
�xy = �yx = 2G�x,y���xy − �2�2�xy� − 2�2	��xG�x,y���x�xy

+ ��yG�x,y���y�xy


�zz = ��x,y����xx + �yy� − �2�2��xx + �yy�� − �2	��x��x,y���x��xx

+ �yy� + ��y��x,y���y��xx + �yy�


3.2 Governing System of PDEs. By imposing the equilib-
rium equations

��xx

�x
+

��xy

�y
= 0 and

��xy

�x
+

��yy

�y
= 0, �25�

and using Eqs. �21� and �24�, one obtains the following system of
PDEs:

G�x,y��2�1 − �2�2�u + ���x,y� + G�x,y�� � �1 − �2�2� � · u + ��1

− �2�2���u + �uT�� � G�x,y� + ��1 − �2�2� � · u� � ��x,y�

− �2���
�

�x
u� �

�G�x,y�
�x

+ ��
�

�y
u� �

�G�x,y�
�y

− �����x,y� · �� · u�� − �2� �

�x
����u� � G�x,y��

+
�

�y
����v� � G�x,y�� + ���2u� � G�x,y�� = 0, �26�

where the boldface u denotes the displacement vector �u ,v�.
Equation �26� is the most general form. In particular, if the moduli
vary as a function of �x ,y� and assume the exponential form

G � G�x,y� = G0e�x+
y, � � ��x,y� =
3 − �

� − 1
G�x,y� , �27�

then the system of PDEs is

�1 − ��2 �

�x
− 
�2 �

�y
− �2�2���� + 1�

�2u

�x2 + �� − 1�
�2u

�y2 + 2
�2v
�x�y

+ ��� + 1�
�u

�x
+ 
�� − 1�

�u

�y
+ 
�� − 1�

�v
�x

+ ��3 − ��
�v
�y
� = 0,

�28�

�1 − ��2 �

�x
− 
�2 �

�y
− �2�2���� − 1�

�2v
�x2 + �� + 1�

�2v
�y2 + 2

�2u

�x�y

+ 
�3 − ��
�u

�x
+ ��� − 1�

�u

�y
+ ��� − 1�

�v
�x

+ 
�� + 1�
�v
�y
� = 0,

�29�

where �=3−4� if plane strain is considered, �= �3−�� / �1+�� if it
is a plane stress problem, and � is the Poisson’s ratio.

If G and � are constants, then the homogeneous material case is
recovered, and the system of PDEs �26� is reduced to

�1 − �2�2��G�2u + �� + G� � � · u� = 0, �30�

which has been studied by Exadaktylos �7�. In the conventional
classical linear elasticity �i.e., �→0�, the system of PDEs �26�
becomes �4�. If G and � take the form in �27�, then �4� can be
expressed as

�� + 1�
�2u

�x2 + �� − 1�
�2u

�y2 + 2
�2v
�x�y

+ ��� + 1�
�u

�x
+ 
�� − 1�

�u

�y

+ 
�� − 1�
�v

+ ��3 − ��
�v

= 0 �31�

�x �y
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�� − 1�
�2v
�x2 + �� + 1�

�2v
�y2 + 2

�2u

�x�y
+ 
�3 − ��

�u

�x
+ ��� − 1�

�u

�y

+ ��� − 1�
�v
�x

+ 
�� + 1�
�v
�y

= 0. �32�

This system �31� and �32� has been studied by Konda and Er-
dogan �8�; for the homogeneous materials, they can be further
simplified to Navier-Cauchy equations �5� for the elastic medium.

4 Anti-Plane Shear
In this section we derive the governing PDE of gradient elas-

ticity for an anti-plane shear problem in functionally graded ma-
terials. It is worth mentioning that this type of problem has at-
tracted the attention of several researchers, such as Vardoulakis
et al. �2�, Fannjiang et al. �5�, Georgiadis �9�, and Zhang et al.
�10�.

4.1 Constitutive Equations. In three-dimensional space, the
displacement components are defined as

ux � u, uy � v, uz � w . �33�

As in Eq. �7�, strains are defined by

�ij =
1

2
� �ui

�xj
+

�uj

�xi
� , �34�

where both the indices i and j run through x, y, and z. The strain-
energy density function �for anti-plane shear� is

W = 1
2��ii� j j + G�ij� ji + �2G��k�ij���k� ji� + ���k�k�G�ij� ji� .

�35�

We define the Cauchy stresses �ij, the couple stresses �kij, and the
total stresses �ij according to equations in �13�. Thus, the consti-
tutive equations of gradient elasticity in anti-plane problems for
homogeneous materials can be directly derived as �1,2�

�ij = ��kk�ij + 2G�ij + 2G���k�k�ij �36�

�kij = 2G���k�ij + 2G�2�k�ij �37�

�ij = ��kk�ij + 2G��ij − �2�2�ij� . �38�

For functionally graded materials the corresponding constitutive
equations are

�ij = ��x��kk�ij + 2G�x��ij + 2���k��ij�kG�x� + G�x��k�ij�
�39�

�kij = 2���kG�x��ij + 2�2G�x��k�ij �40�

�ij = ��x��kk�ij + 2G�x���ij − �2�2�ij� − 2�2��kG�x����k�ij� .

�41�

It is worth pointing out that in each of �39� and �41�, there is an
extra term with respect to �36� and �38�, respectively. The extra
terms will disappear if there is no material gradation. Thus, for
homogeneous materials, Eqs. �39�–�41� will become the same as
�36�–�38�.

According to the relations in �36�–�38�, each component of the
stress fields for homogeneous materials can be written as �2�

�xx = �yy = �zz = 0, �xy = 0

�xz = 2G��xz − �2�2�xz� � 0, �yz = 2G��yz − �2�2�yz� � 0

2 2
�xxz = 2G� �x�xz, �xyz = 2G� �x�yz

874 / Vol. 73, SEPTEMBER 2006
�yxz = 2G��2�y�xz − ���xz�, �yyz = 2G��2�y�yz − ���yz� .

�42�
For FGMs, from the relations in �39�–�41�, each component of the
stress fields is found to be

�xx = �yy = �zz = 0, �xy = 0

�xz = 2G�x,y���xz − �2�2�xz� − 2�2	��xG�x,y����x�xz�

+ ��yG�x,y����y�xz�
 � 0
�43�

�yz = 2G�x,y���yz − �2�2�yz� − 2�2	��xG�x,y����x�yz�

+ ��yG�x,y����y�yz�
 � 0

�xxz = 2G�x,y��2�x�xz, �xyz = 2G�x,y��2�x�yz

�yxz = 2G�x,y���2�y�xz − ���xz�, �yyz = 2G�x,y���2�y�yz − ���yz� .

Again, comparing Eqs. �42� and �43�, one notices that there are
extra terms in the total stresses �ij of �43� due to the interaction of
material gradation and the nonlocal effect of strain gradient. As
the equilibrium equation only involves �ij �see Eq. �46��, the extra
terms will complicate the governing PDE�s� a bit more. The
couple stresses �kij in �42� and �43� assume the same form, except
that G in �43� is not a constant, but rather a function reflecting the
gradation of the material.

4.2 Governing PDE. For an anti-plane problem, the follow-
ing relations hold:

u = 0, v = 0, w = w�x,y� , �44�

where u, v, and w denote the displacement components along the
axes x, y, and z, respectively. The nontrivial strains are

�xz =
1

2

�w

�x
, �yz =

1

2

�w

�y
. �45�

By imposing the equilibrium equation

��xz

�x
+

��yz

�y
= 0 �46�

with the expressions �xz and �yz in �43�, one obtains the following
PDE:

�G�x,y� · �1 − �2�2� � w + G�x,y��1 − �2�2��2w

− �2��
�G�x,y�

�x
· �

�w

�x
+ �

�G�x,y�
�y

· �
�w

�y

+ �G�x,y� · ��2w� = 0. �47�

If G is an exponential function of both x and y,

G � G�x,y� = G0e�x+
y , �48�
then the governing PDE is

�1 − ��2 �

�x
− 
�2 �

�y
− �2�2���2 + �

�

�x
+ 


�

�y
�w = 0. �49�

In Table 1 we list the governing PDEs in anti-plane shear prob-
lems that correspond to different combinations of parameter � and
various material gradation of the shear modulus G.

5 Further Remarks
The conventional continuum mechanics theories have been

used adequately when the length scale of the deformation field is
much larger than the underlying micro-structure length scale of
the material. As the two length scales become comparable, the
material behavior at one point tends to be influenced more signifi-
cantly by the neighboring material points. The criterion for adopt-

ing the strain gradient theory should depend on the experimental
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data, and there are many experiments indicating conventional con-
tinuum mechanics cannot lead to a satisfactory prediction of the
material behavior as the two length scales mentioned above are
comparable to each other. Experimental techniques related to
strain gradient theory include micro-torsion �16�, micro-bending
�17�, and micro-indentation �18�, which can be associated to the
parameter �. However, the authors are not aware of experiments
associated directly to ��, which indicates an area for further re-
search.

The inhomogeneity of materials can be caused by many mecha-
nisms in different length scales, such as the size and distribution
of inclusions, the grain size of crystals, and the size of constituent
atoms and molecules. Thus a constant �� cannot describe these
different length scales. Ideally ������x�; however, here we con-
sider the gradient parameters �� and � as constants.

6 Conclusion
In the conventional classical linear elasticity, one may derive

the governing PDE�s� for nonhomogeneous materials by directly
replacing the Lamé constants with the material gradation func-
tions at the level of the constitutive equations. We have shown that
this is not the case for strain gradient elasticity because extra
terms may arise. These extra terms come from the interaction
between the material gradation and the nonlocal effect of the
strain gradient. Thus, the constitutive equations for nonhomoge-
neous materials are different from the ones for homogeneous ma-
terials under the consideration of strain gradient elasticity theory
�Casal’s continuum�. The governing PDEs for nonhomogeneous
materials are derived by means of the strain energy density func-
tion and the corresponding definitions of the stress fields �which
have been presented in this paper�.
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