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Abstract. The linear inverse source and scattering problems are studied from the perspective of compressed sensing.
By introducing the sensor as well as target ensembles, the maximum number of recoverable targets is proved to be at least
proportional to the number of measurement data modulo a log-square factor with overwhelming probability.

Important contributions include the discoveries of the threshold aperture, consistent with the classical Rayleigh criterion,
and the incoherence effect induced by random antenna locations.

The prediction of theorems are confirmed by numerical simulations.

1. Introduction. We consider the imaging problem in the form of inverse source or scattering problem
which has wide-range applications such as radar, sonar and computed tomography. The imaging problem
is typically plagued by nonuniqueness and instability and hence mathematically challenging. Traditional
methods such as matched field processing [35] are limited in the number of targets that can be reliably
recovered at high resolution. They often fail to detect a substantial number of targets, while at the same
time they tend to produce artifacts obscuring the real target images. These limitations are due to the
presence of noise and the fact that the imaging problem is in practice underdetermined. The standard
regularization methods can handle to some extent the problem with noise but are inadequate to remedy the
issue of nonuniqueness of the solution.

In this paper we utilize the fact that in many imaging applications the targets are sparse in the sense
that they typically occupy a small fraction of the overall region of interest (the target domain). This sparsity
assumption suggests to approach the imaging problem by using the framework of compressed sensing.

At the core of compressed sensing lies the following problem (here we focus, as is common in the
compressed sensing community, on the discrete setting). Assume X ∈ Cm is a signal that is sparse, i.e.,
the number of its non-zero components (measured by the `0-quasinorm ‖X‖0 which is simply the number of
non-zero entries of X) satisfies s := ‖X‖0 � m. Let Y ∈ Cn be the measurement data vector. We explore
in this paper the linear inverse problem which can be formulated as Y = ΦX where Φ is an n×m matrix
with n � m. The goal is to recover X, given the data vector Y and the sensing matrix Φ of full rank. As
n� m, ΦX = Y is severely underdetermined and unique reconstruction of X is in general impossible. The
number ‖X‖0 of nonzero elements in X is called the sparsity of X.

However, due to the sparsity of X one can compute X by solving the optimization problem

min ‖X‖0 s.t. ΦX = Y. (L0)

Since (L0) is NP-hard and thus computationally infeasible, we consider instead its convex relaxation, also
known as Basis Pursuit (BP),

min ‖X‖1 s.t. ΦX = Y (L1)

which can be solved by linear and quadratic programming techniques. The amazing discovery due to David
Donoho was that under certain conditions on the matrix Φ and the sparsity of X, both (L1) and (L0) have
the same unique solution [17]. One such condition is the Restricted Isometry Property (see 2.10 below) due
to Candès and Tao [9], which requires essentially that any n× s submatrix of Φ is an approximate isometry.
This property is satisfied by a number of matrices such as Gaussian random matrices or random partial
Fourier matrices [9, 7, 34]. In that case, as long as s ≤ O(n/ log(m)), with high probability the solution
of (L1) will indeed coincide with the solution of (L0). Another condition for which equivalence between (L0)
and (L1) can be proven is based on the incoherence of the columns of Φ, which refers to the property that
the inner product of any two columns of Φ is small [15, 24, 36, 38]. Moreover, the performance of BP is
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stable w.r.t. the presence of noise and error [8, 16, 37]. Finally the computational complexity of BP can be
significantly reduced by using the various greedy algorithms in place of the linear programming technique
[12, 30, 31, 36, 37]. The most basic greedy algorithm relevant here is Orthogonal Matching Pursuit (OMP)
which has been thoroughly analyzed in [36].

For the imaging problem, the sensing matrix Φ represents a physical process (typically wave propagation)
and thus its entries cannot be arbitrarily chosen at our convenience. Therefore we cannot simply assume
that Φ satisfies any of the conditions that make compressed sensing work. The few physical parameters that
we have control over are the wavelength λ of the probe wave, the locations and number n of sensors and the
aperture A of the probe array. This is one of the reasons that make the practical realization of compressed
sensing a challenging task.

The paper is organized as follows. In Section 2 we describe the physical setup, formulate the imaging
problem in the framework of compressed sensing and state our main results. In Section 3 we prove the results
for the source and monostatic synthetic aperture imaging. In Section 4 and Appendix A, we prove the main
result for the multistatic response imaging. In Section 5 and Appendix B, we discuss the numerical methods
and present simulations that confirm the predictions of our theorems.

2. Problem formulations and main results. In this paper, we study the inverse source and scat-
tering problems in the linear regime. For simplicity and definiteness we consider the three dimensional space
and assume that all targets are in the transverse plane {z = z0} and all sensors are in another transverse
plane {z = 0}. The exact Green function for the Helmholtz equation which governs the monochromatic
wave propagation is

G(r,a) =
eiω|r−a|

4π|r− a|
, r = (x, y, z0), a = (ξ, η, 0). (2.1)

We assume that the phase speed c = 1 so that the frequency ω equals the wavenumber.
We consider the Fresnel diffraction for which the Green function (2.1) can be approximated by the

paraxial Green function

eiωz0

4πz0
eiω|x−ξ|

2/(2z0)eiω|y−η|
2/(2z0). (2.2)

The paraxial approximation (2.2) is valid under, for instance the condition

(A+ L)4

λz3
0

� 1 (2.3)

where L is the linear dimension of the target domain (see [4] for a more general condition).
The formula (2.2) follows from truncating the Taylor expansion of the function ω|r− a|

ω|r− a| ≈ ω
(
z0 +

|x− ξ|2

2z0
+
|y − η|2

2z0

)
and neglecting the higher order terms which are of the same order of magnitude as the left hand side of
(2.3).

For notational simplicity later on, let us define

Gp(r,a) = eiω|x−ξ|
2/(2z0)eiω|y−η|

2/(2z0) (2.4)

without the factor eiωz0/(4πz0).
In the case of the inverse source problem, the corresponding sensing matrix Φ is essentially made of

the paraxial Green function for various points in the sensor array and the target domain. In this set-up,
the entries (2.2) of the paraxial sensing matrix have the same magnitude so without loss of generality the
column vectors of Φ are assumed to have unit `2-norm.
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Fig. 2.1. The imaging geometry

A key idea in our construction of a suitable sensing matrix is to randomize the locations aj = (0, ξj , ηj), j =
1, ..., n of the n sensors within a fixed aperture which is the linear size of the area (possibly) occupied by
sensors (a square of size A for example). Indeed, we assume ξj , ηj are independent uniformly distributed
in [0, A]. We assume that the antenna elements are independently uniformly distributed in a square array
[0, A]× [0, A] in the plane {z = 0}, see Figure 2.1. Define the sensor ensemble to be the sample space of n
i.i.d. uniformly distributed points in [0, A]2.

We consider the idealized situation where the locations of the targets are a subset of a finite square
lattice M of spacing `

M = {rl : l = 1, ...,m} =
{

(i`, j`, z0) : i, j = 1, ...,
√
m
}
, l = (i− 1)

√
m+ j

in the transverse plane {z = z0}. Hence the total number of grid points m is a perfect square. We defer the
discussion on extended targets to the concluding section.

Let S = {rjl : l = 1, ..., s} be the set of target locations and τjl , l = 1, ..., s be the (source or scattering)
amplitudes of the targets. Set τi = 0, i 6∈ {j1, ..., js}.

For source inversion each source point emits a signal described by (2.1) times the target amplitude which
is recorded by the sensors. After proper normalization, the data vector Y can be written as

Y = ΦX + E (2.5)

with the sensing matrix Φ = n−1/2ΦSI where

ΦSI
ij = Gp(ai, rj), ∀i = 1, ..., n, j = 1, ...,m (2.6)

and the error term E includes the mismatch between the exact Green function (2.1) and the paraxial Green
function (2.2). We can write

E = Φ′X + E′ (2.7)

where the matrix Φ′ has the elements

Φ′ij = n−1/2 (G(ai, rj)−Gp(ai, rj)) , ∀i = 1, ..., n, j = 1, ...,m (2.8)

and E′ stands for the external noise as well as the off-grid error when the targets do not exactly sit on the
grid points (see Figure 5.5 and the related discussion in Section 5). When the target is sufficiently sparse
and (2.3) is sufficiently enforced, E ≈ E′.
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For the noisy measurement model (2.5) instead of (L1) we consider the constrained minimization principle
called the basis pursuit denoising (BPDN) [5]

min
Z∈Cm

‖Z‖1, s.t. ‖Y −ΦZ‖2 ≤ ε (2.9)

where ε is the size of error, i.e. ‖E‖2 ≤ ε. Denote the BPDN solution by X̂.
The main reason that we consider the paraxial regime and the paraxial sensing matrix (2.6) is that the

paraxial sensing matrix satisfies the restricted isometry property (RIP) which plays a crucial role in the
current formulation of compressed sensing.

Precisely, let the sparsity s of a vector be the number of nonzero components and define the restricted
isometry constant (RIC) δs < 1 to be the smallest positive number such that the inequality

(1− δs)‖Z‖22 ≤ ‖ΦZ‖22 ≤ (1 + δs)‖Z‖22

holds for all Z ∈ Cm of sparsity at most s. A sensing matrix is said to satisfy the 2s-RIP if

δ2s <
√

2− 1 (2.10)

[6]. Hence if the paraxial sensing matrix satisfies (2.10) and the paraxial condition (2.3) is sufficiently
enforced such that

‖Φ′‖22 <
√

2− 1− δ2s

where ‖Φ′‖2 is the spectral norm of Φ′ then the exact sensing matrix also satisfies the 2s-RIP. In this case,
we can use the exact sensing matrix for inversion (see [27] for a different approach to handling multiplicative
noise).

However, we do not know if the 2s-RIP holds for the exact sensing matrix for a discrete grid in a non-
paraxial regime. In the Littlewood-Paley basis the exact sensing matrix with a novel sampling scheme can
be shown to satisfy the 2s-RIP in any regime [19, 21]. But the Littlewood-Paley basis is not suitable to
represent localized targets.

We consider also non-sparse, but compressible, targets. For the target vector X let X(s) denote the best
s-sparse approximation of X in the sense of L1-norm, i.e.

X(s) = argmin ‖Z −X‖1, s.t. ‖Z‖0 ≤ s

where ‖Z‖0 denotes the number of nonzero components, called the sparsity, of Z. Clearly, X(s) consists of
the s largest components of X.

The first main result proved in this paper is this.
Theorem 2.1. Let Φ = n−1/2ΦSI. If

`A

λz0
≡ 1
ρ
∈ N (2.11)

and

n

lnn
≥ Cs ln2 s lnm ln

1
γ

(2.12)

for γ ∈ (0, 1) and some absolute constant C, then

‖X̂ −X‖2 ≤ C1s
−1/2‖X −X(s)‖1 + C2ε (2.13)

for some constants C1 and C2 with probability at least 1 − γ of the sensor ensemble. The relation
(2.11) indicates the existence of the threshold, optimal aperture given by λz0/` corresponding to ρ = 1 (see
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Remark 2 for more discussion on this point). Since the meshsize ` has the meaning of resolution, ρ = 1 is
consistent with the classical Rayleigh criterion [4]

` ≥ λz0
A

(2.14)

whose right hand side has the meaning of the spot size determined by the sensor array. The difference
between the current framework and the classical resolution theory is that our sensor array is sparse and
contains only O(s) sensors (up to a logarithmic factor).

Next we consider imaging methods for targets that are scatterers instead of sources. For point scatterers
of amplitudes τjl located at rjl , l = 1, 2, 3, ...s, the resulting Green function G̃(r,a) between the sensor
plane a ∈ {z = 0} and the target plane r ∈ {z = z0}, including the multiple scattering effect, obeys the
Lippmann-Schwinger equation

G̃(r,ai) = G(r,ai) +
s∑
l=1

τjlG(r, rjl)G̃(rjl ,ai), i = 1, ..., n,

for any r 6= rjl , l = 1, ..., s. The exciting field G̃(rjl ,a) is part of the unknown and can be obtained from the
so called Foldy-Lax equation (see e.g. [29, 22] for details). In the paraxial approximation, G above is to be
replaced by its paraxial counterpart.

Hence, the inverse scattering problem is intrinsically nonlinear. However, often a linear scattering model
is a good approximation and widely used in, e.g. radar imaging in the regimes of physical optics and
geometric optics [3, 11] (see [39] for a precise formulation of the condition).

One such model is the Born approximation (also known as Rayleigh-Gans scattering in optics) in which
the unknown exciting field is replaced by the incident field resulting in

G̃(r,ai)−G(r,ai) =
s∑
l=1

τjlG(r, rjl)G(rjl ,ai), i = 1, ..., n. (2.15)

The left hand side of (2.15) is the scattered field in the Born approximation when the incident field is emitted
from a point source at ai. The Born approximation linearizes the relation between the scatterers and the
scattered field. The goal of inverse scattering is to reconstruct the targets given the measurements of the
scattered field.

In the simplest setting, called the (monostatic) synthetic aperture (SA) imaging, the real, physical array
consists of only one receive/transmit antenna. The imaging aperture is synthesized by the antenna taking
different transmit-receive positions ai, i = 1, ..., n [23].

The SA imaging considered here is motivated by synthetic aperture radar (SAR) imaging. Monostatic
SAR is a technique where a substantial aperture can be synthesized by moving a transmit-receive antenna
along a trajectory and repeatedly interrogating a search area by firing repeated pulses from the antenna and
measuring the responses. This can greatly leverage a limited probe resource and has many applications in
remote sensing. The image formation is typically obtained via the matched filter processing (MFP) [11]. In
Appendix B, we outline the rudiments of the linear processor of MFP.

First we consider a simplified set-up, neglecting the Doppler effect associated with the relative motion
between the antenna and targets. Define the target vector X to be X = (τj) ∈ Cm. In this case, the sensing
matrix Φ = n−1/2ΦSA with

ΦSA
ij = G2

p(ai, rj), i = 1, ..., n, j = 1, ...,m (2.16)

after normalization. In other words, ΦSA
ij = ΦMR

lj with l = n(i − 1) + i. A crucial observation about SA
imaging is that

G2
p(ai, rj ;ω) = Gp(ai, rj ; 2ω), (2.17)
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cf. (2.4). In other words, this version of monostatic SA imaging is mathematically equivalent to the source
inversion with twice the frequency. Therefore, the following theorem is an immediate consequence of Theorem
2.1.

Theorem 2.2. Let Φ = n−1/2ΦSA. Under the conditions

2
ρ
∈ N (2.18)

and (2.12), the estimate (2.13) holds with probability at least 1− γ of the sensor ensemble. As a result of
the SA aperture condition (2.18), the corresponding optimal aperture is half of that for the inverse source
and MR imaging. In other words, SA can produce the qualitatively optimal performance with half of the
aperture. This two-fold enhancement of resolving power in SA imaging has been previously established for
the matched-field technique [23].

Next, we consider a multistatic imaging set-up in which we use the real array aperture as in the inverse
source problem discussed above and moreover the array is also the source of n probe waves. One by one,
each antenna of the array emits an impulse and the entire array receives the echo. Each transmitter-receiver
pair gives rise to a datum and there are altogether n2 data forming a datum matrix called the multistatic
response matrix. This is called the multistatic response (MR) imaging [22, 23].

Since the full response matrix is symmetric, we use only n(n + 1)/2 of its elements (say, the upper
triangular part including the diagonals) to form the data vector. Then the j-th column of the sensing matrix
corresponds to the responses due to the presence of a scatterer at the j-th grid point of the computation
lattice. By (2.15) in the paraxial approximation the corresponding sensing matrix is Φ =

√
2

n(n+1)Φ
MR with

ΦMR
lj = Gp(ai, rj)Gp(rj ,ak), l = 1, .., n(n+ 1)/2, j = 1, ...,m (2.19)

after proper normalization where l is related to i, k as

l =
(2n+ 2− i)(i− 1)

2
+ k − i+ 1, k ≥ i

provided that the data vector is given by the upper triangular part (including the diagonals) of the multistatic
response matrix.

Now that we do not know if the sensing matrix (2.19) satisfies the 2s-RIP or not we will use the
alternative approach to compressed sensing based on the notion of mutual coherence. For any matrix Φ the
mutual coherence of the matrix is defined by

µ(Φ) = max
i 6=j

|
∑
k Φ∗ikΦkj |√∑

k |Φki|2
√∑

k |Φkj |2
.

Our main result for the MR imaging is this.
Theorem 2.3. Let Φ =

√
2

n(n+1)Φ
MR. Assume the aperture condition (2.11) and

m ≤ δ

2
eK

2/2 (2.20)

for some positive constants δ and K.
(i). Consider only the sensor ensemble. Then for any real-valued target vector X ∈ Rm of sparsity up

to

s <
1
4

(1 +
n

2K2
)

the minimizer X̂ of (2.9) obeys the error bound

‖X̂ −X‖2 ≤
2ε√
1− θ

, θ =
2K2(4s− 1)

n
< 1
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with probability at least 1− 2δ.
(ii). In addition to the sensor ensemble, consider also the target ensemble consisting of target vectors

with at most s non-zero entries whose phases are independently, uniformly distributed in [0, 2π] and whose
support indices are independently and randomly selected from the index set {1, 2, ...,m}.

Suppose E = 0 in (2.5). Then the target vector of sparsity

s ≤ n2

32K4 ln m
γ

, (2.21)

where γ > 0 such that

K4 ln
m

γ
≥ e1/4, (2.22)

can be recovered exactly by BP with probability at least[
1− 2δ − ρn5/2(n+ 1)5/2

π25/2m1/2

]
×
[
1− 2γ − 2ps−p

]
, p =

lnm− ln γ
144
√
e ln s

. (2.23)

The proof is given in Section 4. Note that the probability bound (2.23) is not nearly as good as that
in Theorems 2.1 and 2.2. In particular, for (2.23) to be close to unity, it is required that m � n10. In
other words, only extremely sparse random target vectors are proved to be exactly recoverable with high
probability and a nearly optimal number O(

√
s) of sensors. In practice, however, the lower bound (2.23)

appears to grossly underestimate the actual success probability. The other drawback of Theorem 2.3(ii) is the
error-free assumption. Strictly speaking this assumption is only valid for imaging with exact sensing matrix
in the case of Born scattering. Since the main purpose of Theorem 2.3(ii) is to illustrate the numerically
observed O(n2) behavior of the recoverable sparsity (2.21) (cf. Figure 5.3), we will briefly comment on how
to extend Theorem 2.3(ii) to the case of exact sensing matrix in the paraxial regime (2.3) (see Remark 3).

We end this section by relating our works to previous results in the literature. In [2, 25] radar imaging
is formulated in the space-time domain and the compressed sensing methodology is applied to processing of
wide-band radar images where the incoherent sensing matrix arises from random samplings and projections
of received signals. Detailed numerical and experimental studies of several sampling schemes are given in [25].
The first rigorous compressed sensing analysis of radar imaging is carried out in [26] for one spatial dimension
where the incoherent sensing matrix arises from an incoherent probe signal. In contrast, in our formulation
the signals are monochromatic and the incoherent sensing matrix arises from the random locations of sensors.
In other words, the compression takes place in the sensor array and there is no processing of the measurement
data besides the L1-based inversion. The main advantage of our approach is, of course, reduction of array
complexity (i.e. our sensor array is sparse). The single-frequency feature of our set-up is analogous to
the one-pixel feature of Rice’s single-pixel camera [10, 18]. Needless to say, the imaging performance can
be enhanced by using multiple frequencies properly. For example, it is shown in [21] that multiple lower
frequencies can be combined to achieve the same performance of a single higher frequency. From another
perspective, the present work can be viewed as complementary to [26] in the sense that while the latter deals
with the range information we address the directional aspect of imaging.

3. Source inversion and monostatic SA imaging: RIP. In this section, we show that the source
and monostatic SA imaging schemes satisfy the 2s-RIP.

First we state the main result of the RIP approach [6].
Proposition 3.1. [6] Suppose the restricted isometry constant of Φ satisfies the inequality

δ2s <
√

2− 1. (3.1)

Then the solution X̂ of BPDN satisfies

‖X̂ −X‖2 ≤ C1s
−1/2‖X −X(s)‖1 + C2ε (3.2)
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where

C1 =
2(1 + (

√
2− 1)δ2s)

1− (
√

2 + 1)δ2s
(3.3)

C2 =
4
√

1 + δ2s

1− (
√

2 + 1)δ2s
. (3.4)

Now we show that the sensing matrix for source inversion satisfies the 2s-RIP. This can be readily seen
by rewriting the paraxial Green function (2.2)

eiωz0

4πz0
eiω(x2+y2)/(2z0)e−iωxξ/z0e−iωyη/z0eiω(ξ2+η2)/(2z0),

for r = (x, y, z0),a = (ξ, η, 0).
Now the sensing matrix (2.6) can be written as the product of three matrices

Φ = D1ΨD2

where

D1 = diag(eiω(ξ2j +η2
j )/(2z0)), D2 = diag(eiω(x2

l +y2
l )/(2z0))

are unitary and

Ψ =
1√
n

[
e−iωξjxl/z0e−iωηjyl/z0

]
. (3.5)

Assume without loss of generality that (xl, yl), l = 1, ...,m are the grid points of the square lattice of
spacing ` and suppose that (ξj , ηj), j = 1, ..., n are independently and uniformly distributed in [0, A]× [0, A]
with

1
ρ
≡ A`

λz0
= 1 (3.6)

which has the obvious generalization (2.11).
The result essential for us is due to Rauhut [33].
Proposition 3.2. [33] If

n

lnn
≥ Cδ−2s ln2 s lnm ln

1
γ

(3.7)

for γ ∈ (0, 1) and some absolute constant C, then with probability at least 1 − γ the matrix Ψ defined by
(3.5)-(3.6) satisfies the RIC bound

δs ≤ δ. (3.8)

See [7, 34] for similar results for sensors located in a particular discrete subset of [0, A]× [0, A].
Since D1 and D2 are diagonal and unitary, Φ satisfies (3.1) if and only if Ψ satisfies the same condition.

To finish the proof of Theorem 2.1 we can choose any δ <
√

2− 1 and apply Propositions 3.2 and 3.1.
From the relationships (2.16), (2.17) it follows immediately that ΦSA also satisfies (3.1) if

ρ = 2, (3.9)

which can be generalized to (2.18).
The superiority of the RIP approach, when it works, is that the recovery performance is guaranteed for

all compressible targets under a nearly optimal sparsity constraint. And the target ensemble needs not be
introduced.

However, for the sensing matrix for the multistatic response imaging does not seem amenable to the
RIP approach. Below we resort to the incoherence approach to compressed sensing.

8



4. Proof of Theorem 2.3: MR imaging. For the coherence calculation, we have

n2∑
l=1

ΦMR∗
li ΦMR

lj =
n∑

p,q=1

Gp(ap, rj)Gp(rj ,aq)G∗p(ap, ri)G
∗
p(ri,aq) (4.1)

=

[
n∑
p=1

Gp(ap, rj)G∗p(ap, ri)

]2

and thus

µ
(
ΦMR

)
= µ2(ΦSI). (4.2)

Theorem 4.1. Under (2.11) and (2.20) the coherence of ΦSI satisfies

µ(ΦSI) ≤
√

2K/
√
n (4.3)

with probability greater than (1− δ)2. The proof of Theorem 4.1 is given in Section 4.3.
Remark 1.
The general lower bound [13, 40] √

m− n
n(m− 1)

≤ µ(Φ) ≤ 1

for the mutual coherence of any n ×m matrix Φ implies that the coherence bound (4.3) is optimal asymp-
totically (m� n) modulo a constant factor.

Remark 2. Since the coherence of the sensing matrix should decrease as the aperture increases and
since the coherence is of the same order of magnitude as n−1/2 whenever (2.11) holds, simple interpolation
leads to the conclusion that the coherence should be roughly constant for

A ≥ λz0
`

(4.4)

corresponding to ρ ≤ 1. The right hand side of (4.4), corresponding to ρ = 1, defines the optimal aperture.
See Figure 5.1 for numerical evidence.

Corollary 1. Under the assumptions (2.18) and (2.20) the coherence of ΦSA satisfies

µ(ΦSA) ≤
√

2K/
√
n

with probability greater than 1− 2δ. This follows immediately from (2.16)-(2.17).
Corollary 2. Under the assumptions (2.11) and (2.20) the coherence of ΦMR satisfies

µ(ΦMR) ≤ 2K2/n

with probability greater than 1− 2δ. This follows from (4.2).

4.1. Proof of Part (i). The following result is due to Donoho, Elad and Temlyakov (Theorem 3.1,
[16])

Proposition 4.2. Suppose Φ has all unit columns. Suppose the sparsity s of the target vector X
satisfies

s <
1
4

(
1 +

1
µ(Φ)

)
.

Then the minimizer X̂ of (2.9) obeys the error bound

‖X̂ −X‖2 ≤
2ε√

1− (4s− 1)µ(Φ)
.

Part (i) of Theorem 2.3 follows immediately from Proposition 4.2 and Corollary 2.
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4.2. Proof of Part (ii). The following theorem is a reformulation of results due to Tropp [38] and the
basis for our analysis of the MR imaging scheme. See [26, 32] for other applications.

Proposition 4.3. Let Φ ∈ CN,m have all unit columns. Let X be drawn from the target ensemble.
Assume that

s ≤
(

8µ2(Φ) ln
m

γ

)−1

, γ ∈ (0, 1) (4.5)

and that for p ≥ 1

3

(
p ln s
2 ln m

γ

)1/2

+
s

m
‖Φ‖22 ≤

1
4e1/4

. (4.6)

Then X is the unique solution of BP with probability 1− 2γ − 2ps−p. Here ‖Φ‖2 denotes the spectral norm
of Φ. We explain the connection of the above statement with [38] in Appendix A.

To apply it to the MR imaging we set Φ = N−1/2ΦMR with N = n(n+ 1)/2.
The proof of Theorem 2.3 hinges on Corollary 2 and the following theorem.
Theorem 4.4. The matrix ΦMR has full rank and obeys the spectral norm bound

‖ΦMR‖22 ≤ 2m (4.7)

with probability at least

1− ρn5/2(n+ 1)5/2

π25/2m1/2
, ρ =

λz0
`A

.

The proof of Theorem 4.4 is given in Section 4.4.
Conditions (2.21) and (2.20) allow the choice of K such that

2 ln
2m
δ

< K2 <
n√

32s ln m
γ

. (4.8)

As a consequence (4.5) with Φ =
√

2
n(n+1)Φ

MR is satisfied with probability greater than 1−2δ by Corollary
2.

Now the norm bound (4.7) implies (4.6) if

3

(
p ln s
2 ln m

γ

)1/2

+
4s

n(n+ 1)
≤ 1

4e1/4
, p > 1, (4.9)

which in turn follows from (2.21) and the condition

K4 ln
m

γ
≥ 1

8

 1
4e1/4

− 3

(
p ln s
2 ln m

γ

)1/2
−1

.

Hence under (2.22) we can choose p in (4.6) to be

p =
lnm− ln γ
144
√
e ln s

.

Since Theorems 4.1 and 4.4 hold with probability greater than

1− 2δ − ρn5/2(n+ 1)5/2

π25/2m1/2

10



and since the target ensemble is independent of the sensor ensemble we have the bound (2.23) for the
probability of exact recovery.

Remark 3. When the paraxial condition (2.3) is sufficiently enforced, Theorem 2.3 (ii) can be general-
ized to the case of exact sensing matrix with

ΦMR
lj = G(ai, rj)G(rj ,ak)

instead of the paraxial version (2.19). This is because the spectral norm of the difference matrix Φ′ can
be made arbitrarily small by enforcing (2.3). As a consequence, both the mutual coherence and the spectral
norm of the exact sensing matrix can be made arbitrarily close to those of the paraxial sensing matrix. The
same analysis as above then leads to the desired result (cf. Figure 5.3).

4.3. Proof of Theorem 4.1: coherence bound. Proof. Summing over al, l = 1, ..., n we obtain

n∑
l=1

Φ∗liΦlj = eiω(x2
j+y2

j−x
2
i−y

2
i )/(2z0)

1
n

n∑
l=1

eiξlω(xi−xj)/z0eiηlω(yi−yj)/z0 . (4.10)

Define the random variables Xl, Yl, l = 1, ..., n, as

Xl = cos [(ξl(xi − xj) + ηl(yi − yj))ω/z0] (4.11)
Yl = sin [(ξl(xi − xj) + ηl(yi − yj))ω/z0] (4.12)

and their respective sums

Sn =
n∑
l=1

Xl, Tn =
n∑
l=1

Yl.

Then the absolute value of the right hand side of (4.10) is bounded by

1
n
|Sn + iTn| ≤

1
n

(√
|Sn − ESn|2 + |Tn − ETn|2 + |E(Sn + iTn)|

)
. (4.13)

To estimate the right hand side of (4.13), we recall the Hoeffding inequality [28].
Proposition 4.5. Let X1, ..., Xn be independent random variables. Assume that Xl ∈ [al, bl], l = 1, ..., n

almost surely. Then we have

P [|Sn − ESn| ≥ nt] ≤ 2 exp
[
− 2n2t2∑n

l=1(bl − al)2

]
(4.14)

for all positive values of t. We apply the Hoeffding inequality to both Sn and Tn. To this end, we have
al = −1, bl = 1,∀l and set

t = K/
√
n, K > 0.

Then we obtain

P
[
n−1 |Sn − ESn| ≥ K/

√
n
]
≤ 2e−K

2/2 (4.15)

P
[
n−1 |Tn − ETn| ≥ K/

√
n
]
≤ 2e−K

2/2. (4.16)

Note that the quantities Sn, Tn depend on xi − xj , yi − yj , i.e.

Sn = Sn(xi − xj , yi − yj), Tn = Tn(xi − xj , yi − yj).

Note that the quantities Sn, Tn depend on (xi−xj , yi−yj) but note the symmetry: Sn(xi−xj , yi−yj) =
Sn(xj −xi, yj − yi), Tn(xi−xj , yi− yj) = −Tp(xj −xi, yj − yi). Furthermore, a moment of reflection reveals

11



that thanks to the square symmetry of the lattice there are at most m − 1 different values |Sn| and |Tn|
among the m(m− 1)/2 pairs of points.

We use (4.15)-(4.16) and the union bound to obtain

P
[
max
i 6=j

n−1 |Sn(xi − xj , yi − yj)− ESn(xi − xj , yi − yj)| ≥ K/
√
n

]
≤ 2(m− 1)e−K

2/2

P
[
max
i 6=j

n−1 |Tn(xi − xj , yi − yj)− ETn(xi − xj , yi − yj)| ≥ K/
√
n

]
≤ 2(m− 1)e−K

2/2

and hence

P

[
max
i 6=j

n−1 |Sn + iTn − E(Sn + iTn)| ≥ K
√

2
n

]
≤ 4(m− 1)e−K

2/2 < 2δ. (4.17)

The third term on the right hand side of (4.13) can be calculated as follows. By the mutual independence
of ξl and ηl we have

1
n
|E(Sn + iTn)| = 1

n

∣∣∣∣∣
n∑
l=1

E(Xl + iYl)

∣∣∣∣∣
=

1
n

∣∣∣∣∣
n∑
l=1

E
(
eiξlω(xi−xj)/z0

)
E
(
eiηlω(yi−yj)/z0

)∣∣∣∣∣
=
∣∣∣E(eiξlω(xi−xj)/z0

)
E
(
eiηlω(yi−yj)/z0

)∣∣∣
since ξl, ηl, l = 1, ..., n are independently identically distributed.

Simple calculation with the uniform distribution on [0, A]× [0, A] yields∣∣∣E(eiξlω(xi−xj)/z0
)

E
(
eiηlω(yi−yj)/z0

)∣∣∣ =
∣∣∣∣eiφij − 1

φij

∣∣∣∣ ∣∣∣∣eiψij − 1
ψij

∣∣∣∣
= 4

∣∣∣∣∣ sin
φij

2

φij

∣∣∣∣∣
∣∣∣∣∣ sin

ψij

2

ψij

∣∣∣∣∣ (4.18)

with

φij = Aω(xi − xj)/z0, ψij = Aω(yi − yj)/z0.

The optimal condition is to choose A such that

φij = ψij ∈ 2πZ, (4.19)

under which (4.18) vanishes. Condition (4.19) can be fulfilled for an equally spaced grid as is assumed here.
Let

` = min
i 6=j
|xi − xj | = min

i 6=j
|yi − yj |.

The smallest ` satisfying condition (4.19) is given by

` =
z0λ

A
, λ = 2π/ω (4.20)

12



which can be interpreted as the resolution of the imaging system and is equivalent to the classical Rayleigh
criterion.

In this case, E(Sn + iTn) = 0 and hence

µ(ΦSI) ≤
√

2K/
√
n

with probability greater than 1− 2δ.

4.4. Proof of Theorem 4.4: spectral norm bound. For the proof, it suffices to show that the
matrix Φ satisfies

‖ 1
m

ΦMRΦMR∗ − In(n+1)/2‖2 < 1 (4.21)

where In(n+1)/2 is the n(n + 1)/2 × n(n + 1)/2 identity matrix with the corresponding probability bound.
By the Gershgorin circle theorem, (4.21) would in turn follow from

µ
(
ΦMR∗) < 1

n(n+ 1)/2− 1
(4.22)

since the diagonal elements of 1
mΦMRΦMR∗ are unity.

For the MR setting, the pairwise coherence has the form

1
m

m∑
j=1

ΦMR
lj ΦMR∗

l′j =
1
m
eiω(ξ2k+η2

k+ξ2i +η2
i−ξ

2
k′−η2

k′−ξ2i′−η
2
i′ )/(2z0)

×e
iω(ξi+ξk−ξi′−ξk′ )(x1+

√
m`)/z0 − eiω(ξi+ξk−ξi′−ξk′ )x1/z0

1− eiω(ξi+ξk−ξi′−ξk′ )`/z0

×e
iω(ηi+ηk−ηi′−ηk′ )(y1+

√
m`)/z0 − eiω(ηi+ηk−ηi′−ηk′ )y1/z0

1− eiω(ηi+ηk−ηi′−ηk′ )`/z0
(4.23)

where

l =
(2n+ 2− i)(i− 1)

2
+ k − i+ 1, k ≥ i (4.24)

l′ =
(2n+ 2− i′)(i′ − 1)

2
+ k′ − i′ + 1, k′ ≥ i′. (4.25)

Thus,

1
m

∣∣∣∣∣∣
m∑
j=1

ΦMR
lj ΦMR∗

l′j

∣∣∣∣∣∣ ≤ 1
m

∣∣∣∣∣ sin
ω`
√
m(ξi+ξk−ξi′−ξk′ )

2z0

sin ω`(ξi+ξk−ξi′−ξk′ )
2z0

∣∣∣∣∣ ·
∣∣∣∣∣ sin

ω`
√
m(ηi+ηk−ηi′−ηk′ )

2z0

sin ω`(ηi+ηk−ηi′−ηk′ )
2z0

∣∣∣∣∣ (4.26)

where we have used the identity ∣∣1− eiθ∣∣ = 2
∣∣∣∣sin θ2

∣∣∣∣. (4.27)

Let

κ = min
l 6=l′

min
j∈Z

{∣∣∣∣`(ξi + ξk − ξi′ − ξk′)
λz0

− j
∣∣∣∣ , ∣∣∣∣`(ηi + ηk − ηi′ − ηk′)

λz0
− j
∣∣∣∣} (4.28)

where l and l′ are related to (i, k) and (i′, k′), respectively, by (4.24) and (4.25). Clearly κ is nonzero with
probability one. For l 6= l′ the probability density functions (PDF) for the random variables

`(ξi + ξk − ξi′ − ξk′)
λz0

,
`(ηi + ηk − ηi′ − ηk′)

λz0
13



are either the symmetric triangular distribution or its self-convolution supported on [−2ρ−1, 2ρ−1]. In either
case, their PDFs are bounded by ρ. Hence the probability that {κ > α} for small α > 0 is larger than

(1− 2ρα)n(n+1)(n2+n−2)/8 > 1− αρn(n+ 1)(n2 + n− 2)/4

where the power counts the number of unordered different pairs (l, l′). Hence the desirable bound (4.22)
follows from

µ
(
ΦMR∗) < 1

π2α2m

with the choice

α =
1
π

√
n(n+ 1)/2− 1

m

which holds true with probability larger than

1− αρn(n+ 1)(n2 + n− 2)/4 > 1− ρn5/2(n+ 1)5/2

π25/2m1/2
.

5. Numerical simulations . In the simulations, we set z0 = 10000 and for the most part λ = 0.1 for
the search domain [−250, 250]2 with ` = 10. For the SA setting, we also use λ = 0.2. The targets are i.i.d.
uniform random variables of the grid with target amplitudes in the range [1, 2]. We randomly select antenna
locations from [−50, 50]2 with the aperture A = 100 which, according to Theorem 4.1, is the threshold,
optimal aperture.

With these parameters

(A+ L)4

λz3
0

≈ 1.3

the condition (2.3) is barely satisfied. On the other hand the Fresnel number is

(A+ L)2

λz0
= 360� 1

indicating that this is not the Fraunhofer diffraction regime [4] (see [20, 21] for compressed sensing analysis
of inverse scattering in the Fraunhofer regime).

We use the true Green function (2.1) in the computation of scattered waves and in the inversion step
the exact Green function and its paraxial approximation to construct the sensing matrix (for comparison).
In other words, we allow model mismatch between the propagation and inversion steps. The degradation in
performance can be seen in the figures but is still manageable.

In our simulations we have used the Matlab codes YALL1 (acronym for Your ALgorithms for L1, avail-
able at http://www.caam.rice.edu/ optimization/L1/YALL1/) and SP (acronym for Subspace Pursuit,
available at http://igorcarron.googlepages.com/cscodes). YALL1 is a L1-minimization solver based on
the Alternating Direction Method [41] while SP is a greedy algorithm which has a significantly lower com-
putational complexity and, under the condition δ3s < 0.06, is guaranteed to exactly recover X of sparsity at
most s via a finite number of iterations [12].

Our experiences indicate that YALL1 has a slightly better performance when the sensing matrix is based
on the exact Green function. For the paraxial sensing matrix, however, the error tolerance (i.e. ‖E‖2 in
(2.5)) needs to be pre-estimated in order to optimize the performance. In comparison, the SP code does not
require input of error tolerance and its performance with the paraxial sensing matrix is close to that with
the exact sensing matrix. Hence we will show the numerical results with SP only.

In Figure 5.1 (left), the coherence is calculated with aperture A ∈ [10, 200] and n = 100 for the sensing
matrices with the exact Green function (red-solid curve) as entries and its paraxial approximation (black-
asterisk curve). The coherence of the exact sensing matrix at the borderline of the paraxial regime with
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Fig. 5.1. (left) The red-solid and black-asterisk curves are, respectively, the coherence for the exact and paraxial sensing
matrices for z0 = 10000, λ = 0.1, n = 100 as a function of aperture. The blue-dashed curve is the coherence for the exact
sensing matrix for z0 = 1000, λ = 1, n = 100; (right) the empirical, maximum number of recoverable sources v.s. the number
n of antennas by using the paraxial (black-asterisk) and exact (red-solid) sensing matrices.

z0 = 1000, λ = 1 is also calculated (blue-dashed curve). All three curves track one another closely and flatten
near and beyond A = 100 in agreement with the theory (Theorem 4.1), indicating the validity of the optimal
aperture throughout the paraxial regime.

Figure 5.1 (right) displays the numerically found maximum number of recoverable source points as a
function of n by using the exact (red-solid curve) and paraxial (black-asterisk curve) sensing matrices. The
maximum number of recoverable targets (MNRT) is in principle a random variable as our theory is formulated
in terms of the target and sensor ensembles. To compute MNRT, we start with one target point and apply
the sensing scheme. If the recovery is (nearly) perfect a new target vector with one additional support is
randomly drawn and the sensing scheme is rerun. We iterate this process until the sensing scheme fails to
recover the targets and then we record the target support in the previous iterate as MNRT. The criterion
for recovery is up to 5% relative error unless otherwise specified. This is an one-trial test and no averaging
is applied. The linear profile in Figure 5.1 (right) is consistent with the prediction (3.7) of Theorem 2.1. Of
course, the performance for the Born scatterers is still expected to be better than that with the Foldy-Lax
scatterers and it is indeed the case.

For the purpose of demonstrating the degrading effect of multiple scattering on the sensing matrix
based on the Born approximation, we use both the Foldy-Lax scheme and the Born approximation in the
scattering simulation [22]. We shall refer the former targets as the Foldy-Lax scatterers and the latter as
the Born scatterers. Hence there may be up to two mismatches (the paraxial approximation and the Born
approximation) in the process depending on the simulations.

In Figure 5.2 (left) the compressed sensing image for source inversion is shown. For comparison, the
image obtained by the linear processor of MFP is shown in Figure 5.2 (right). While it is clear that the
compressed sensing image is much clearer, it also demands a higher computational complexity since a large
matrix needs to be generated and stored. See Appendix B for the definition of the linear processor.

In Figure 5.3, the numerically found maximum number of recoverable Born scatterers is depicted as a
function of the number of antennas for both SA and MR imaging by using the paraxial and exact sensing
matrices. The result for the MR imaging shows clearly the O(n2) behavior of the recoverable targets as
predicted by Theorem 2.3(ii). The SA results for the Foldy-Lax scatterers in two dynamic ranges are
depicted in Figure 5.4.

Recoveries for the Foldy-Lax scatterers in the dynamic range τ ∈ [1, 2] mostly fail as the mismatch is
too great for the compressed sensing techniques to handle. Indeed, the performances with the Foldy-Lax
scatterers in the range [0.01, 0.02] are significantly degraded by the multiple scattering effects (Figure 5.4,
left, versus, Figure 5.3, left). However, if the dynamic range is decreased to, say [0.001, 0.002], then multiple
scattering is negligible and the recovery performance is essentially restored, Figure 5.4 (right). Note that in
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Fig. 5.2. (left) Source inversion with the paraxial sensing matrix 40 source points and 121 antennas. The resulting error
is 0.0164 while the error with exact Green function is 7× 10−16 (not shown). (right) MFP image produced on the same grid.
The red circles represent the true locations of the targets in both plots.
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Fig. 5.3. The empirical maximum number of recoverable Born scatterers (left for SA, right for MR) with τ ∈ [1, 2] v.s. the
number n of antennas (or antenna locations). The data for n ∈ [10, 30] in the MR plot is fitted with the parabola (blue-dashed
curve): −57.5400 + 0.2964n2 The wavelength is 0.1 for the MR case. The SA plot depicts the number of recoverable scatterers
in four settings: paraxial sensing matrix with λ = 0.1 (black-asterisk), paraxial sensing matrix with λ = 0.2 (blue-dashed),
exact sensing matrix with λ = 0.1 (red-solid) and exact sensing matrix with λ = 0.2 (green-circled)

the intermediate range τ ∈ [0.01, 0.02] the performance with λ = 0.1 is significantly worse than that with
λ = 0.2. This is because the multiple scattering effects are more pronounced for higher frequencies. Hence
when the multiple scattering effects are significant, one should choose the longest wavelength allowed by the
condition (2.18).

Finally, we consider the off-the-grid error by randomly perturbing the target locations by the uniform
random variables in [−f`/2, f`/2]2, f ∈ [0, 1]. We calculate the relative errors in source inversion as a function
of f over 500 realizations of source locations, amplitudes and perturbations and take average. The results
are shown in Figure 5.5. Note that the relative error decreases with the number of sensors and increases with
the sparsity. This effect is qualitatively captured in the bounds (3.7), which decreases roughly as n−1/2, and
(3.4), which decreases to the limiting value 4 as n increases. Likewise, the bounds (3.7) increases roughly as
s1/2, and hence (3.4) increases as s increases.

6. Conclusions. In this paper, we have studied the imaging problem from the perspective of com-
pressed sensing, in particular the idea that sufficient incoherence and sparsity guarantee uniqueness of the
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Fig. 5.4. The empirical maximum number of Foldy-Lax scatterers recoverable by SA versus the number of antenna
locations for the dynamic range τ ∈ [0.01, 0.02] (left) and the dynamic range τ ∈ [0.001, 0.002] (right).
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Fig. 5.5. The stability performance of source inversion in the presence of off-grid errors with n = 50, 200, s = 5, 10. The
vertical axis is for the relative error of recovery and the horizontal axis is for the range of the random perturbations in the unit
of the grid spacing `.

solution. Moreover, by adopting the target ensemble following [38] and the sensor ensemble, the maximum
number of recoverable targets is proved to be at least proportional to the number of measurement data
modulo a log-square factor with overwhelming probability.

We have analyzed three imaging settings: the source inversion, the inverse scattering with the monostatic
synthetic aperture and with the multistatic responses. Important contributions of our analysis include the
discoveries of the incoherence effect induced by random antenna locations and the threshold aperture defined
by ρ = 1 for source and MR imaging and ρ = 1/2 for SA imaging where ρ = λz0/(A`).

In this paper we have considered the localization of point targets and the determination of their am-
plitudes. A natural next step is to consider extended targets. However our approach does not extend in a
straightforward manner to imaging of extended targets, as can be easily seen. Assume that we model an
extended target approximately as an ensemble of point targets that are spaced very close together. Clearly,
this requires the grid spacing ` to be so small as to render ρ� 1. To apply our theorems would then require
that the aperture and the number of antennas increase without bound. Clearly this is not a feasible way to
image extended targets. Two different approaches to imaging extended targets by using a wavelet basis and
an interpolation scheme are presented in [21].

Appendix A. Proof of Proposition 4.3. Proposition 4.3 is an easy consequence from the following
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two theorems due to Tropp [38].
Proposition A.1. [38] Let Φ be a N × m matrix with full rank and all unit columns. Let ΦS be a

submatrix generated by randomly selecting columns of Φ indexed by the set S,#S = s. The condition

6
(
pµ2(Φ)s ln (1 + s/2)

)1/2
+

s

m
‖Φ‖22 ≤

α

2e1/4
, p ≥ 1 (A.1)

implies that

P (‖Φ∗SΦS − Is‖2 < α) ≥ 1−
(

2
s

)p
. (A.2)

Proposition A.2. [38] Let X be drawn from the target ensemble. If

µ2s ≤
(

8 ln
m

γ

)−1

, γ ∈ (0, 1) (A.3)

and if the least singular value

τmin(ΦS) ≥ 2−1/2, #S = s (A.4)

then X is the unique solution of BP (L1), except with probability 2γ.
First of all, (4.5) and (4.6) together imply (A.1) and (A.3) with α = 1/2. Moreover, by Proposition A.1

(A.4) holds with probability greater than or equal to the right hand side of (A.2). Hence we need only to
derive the claimed bound for the probability of the event E that X is the unique solution of BP. This follows
from the estimate

P(E) ≥ P(E
∣∣‖Φ∗SΦS − Is‖2 < 2−1)P(‖Φ∗SΦS − Is‖2 < 2−1)

≥ (1− 2γ)(1− (2/s)p)
≥ 1− 2γ − (2/s)p.

Appendix B. Matched field processing.
Matched field processing (MFP) has been used extensively for source localization in underwater acoustics

and is closely related to the matched filter in signal processing.
Let Y be the n-dimensional signals received by the array of n sensors. Let G(r,a) be the Green function

of the time-invariant medium and let G be the Green vector

G(r) = [G(r,a1), G(r,a2), ..., G(r,an)]t (B.1)

where t denotes transpose. The conventional MFP uses the Bartlett processor with the ambiguity surface

B(r) =
G∗(r)Y Y ∗G(r)
‖G(r)‖22

(B.2)

[35]. The Bartlett processor is motivated by the following optimization problem: Maximize the quantity

W ∗Y Y ∗W (B.3)

subject to the constraint:

W ∗W = 1.

The solution

W = Y/‖Y ‖2
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is the weight vector for the matched filter. In the case of one point source of amplitude τ1 located at x1,

Y = τ1G(r1)

hence

W =
τ1G(r1)

|τ1|‖G(r1)‖2
. (B.4)

Extending (B.4) to an arbitrary field point r by substituting r for r1 we obtain the Bartlett processor from
(B.3).
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