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The Fourier-domain Douglas–Rachford (FDR) algorithm is analyzed for phase 
retrieval with a single random mask. Since the uniqueness of phase retrieval 
solution requires more than a single oversampled coded diffraction pattern, the extra 
information is imposed in either of the following forms: 1) the sector condition on 
the object; 2) another oversampled diffraction pattern, coded or uncoded.
For both settings, the uniqueness of projected fixed point is proved and for setting 
2) the local, geometric convergence is derived with a rate given by a spectral gap 
condition. Numerical experiments demonstrate global, power-law convergence of 
FDR from arbitrary initialization for both settings as well as for 3 or more coded 
diffraction patterns without oversampling. In practice, the geometric convergence 
can be recovered from the power-law regime by a simple projection trick, resulting 
in highly accurate reconstruction from generic initialization.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

X-ray crystallography has been the preferred technology for determining the structure of a biological 
molecule over the past hundred years. The method, however, is limited by crystal quality, radiation damage 
and phase determination [44,48]. The first two problems call for large crystals that yield sufficient diffraction 
intensities while reducing the dose to individual molecules in the crystal. The difficulty of growing large, 
well-diffracting crystals is thus the major bottleneck of X-ray crystallography – a necessary experimental 
step that can range from merely challenging to pretty much impossible, particularly for large macromolecular 
assemblies and membrane proteins.

By boosting the brightness of available X-rays by 10 orders of magnitude and producing pulses well below 
100 fs duration, X-ray free electron lasers (XFEL) offer the possibility of extending structural studies to 
single, non-crystalline particles or molecules by using short intense pulses that out-run radiation damage, 
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thus circumventing the first two aforementioned problems [50]. In the so-called diffract-before-destruct ap-
proach [20,21,56], a stream of particles is flowed across the XFEL beam and randomly hit by a single X-ray 
pulse, forming a single diffraction pattern before being vaporized as a nano-plasma burst. Each diffraction 
pattern contains certain information about the planar projection of the scatterer along the direction of the 
beam which is to be recovered by phase retrieval techniques [11].

The modern approach to phase retrieval for non-periodic objects roughly starts with the Gerchberg–
Saxton algorithm [34], followed by its variant, Error Reduction (ER), and the more powerful Hybrid-Input–
Output (HIO) algorithm [32,33]. These form the cornerstones of the standard iterative transform algorithms
(ITA) [8,43].

However, the standard ITA tend to stagnate and do not perform well without additional prior information, 
such as tight support and positivity. The reason is that the plain diffraction pattern alone does not guarantee 
uniqueness of solution (see [54], however, for uniqueness under additional prior information). On the contrary, 
many phase retrieval solutions exist for a given diffraction pattern, resulting in what is called the phase
problem [37].

To this end, a promising approach is to measure the diffraction pattern with a single random mask and 
use the coded diffraction pattern as the data. As shown in [28], the uniqueness of solution is restored with a 
high probability given any scatterer whose value is restricted to a known sector (say, the upper half plane) 
of the complex plane (see Proposition 2.1).

Indeed, the sector constraint is a practical, realistic condition to impose on almost all materials as the 
imaginary part of the scatterer is proportional to the (positive) extinction coefficient with the upper half 
plane as the sector constraint [11]. For X-ray, the scatterers usually have positive real (except for resonance 
frequencies) and imaginary parts, making the first quadrant the sector constraint [18].

What happens if the sector condition is not met and consequently one coded diffraction pattern is not 
enough to ensure uniqueness? This question is particularly pertinent to the diffract-before-destruct approach 
as the particle can not withstand the radiation damage from more than one XFEL pulses.

A plausible measurement scheme is to guide the transmitted field (the transmission function [11]) from 
a planar illumination through a beam splitter [52], generating two copies of the transmitted field which are 
then measured separately as a coded diffraction pattern and a plain diffraction pattern. In this set-up, the 
object function is the transmitted field behind the particle and the phase retrieval problem becomes the 
wave-front reconstruction problem [11,36]. In practice beam splitters and the masks (or any measurement 
devices) should be used as sparingly as possible to avoid introducing excessive noises in the data.

As shown in [28], phase retrieval with two coded diffraction patterns has a unique solution, up to a 
constant phase factor, almost surely without the sector constraint (see Proposition 2.1).

With the uniqueness-ensuring sampling schemes (Section 1.1), ad hoc combinations of members of ITA 
(such as HIO and ER) can be devised to recover the true solution [30,31]. There is, however, no convergence 
proof for these algorithms, except for alternating projections, including ER (see [22] and references therein).

The main goal of the paper is to prove the local, geometric convergence of the Douglas–Rachford (DR) 
algorithm to a unique fixed point in the case of one or two oversampled diffraction patterns (Theorems 5.1, 
6.3 and 4.2) and demonstrate global convergence numerically (Section 7).

DR has the following general form: Let P1 and P2 be the projections onto the two constraint sets, 
respectively. For phase retrieval, P1 describes the projection onto the set of diffracted fields and P2 the data 
fitting projector constrained by the measured diffraction patterns. Let R1 = 2P1−I and R2 = 2P2−I be the 
respective reflection operators. The Douglas–Rachford (DR) algorithm is defined by the average alternating 
reflection scheme [24,25,41]

y(k+1) := 1
2(I + R1R2)y(k) (1)

= y(k) + P1(2P2 − I)y(k) − P2y
(k), k = 1, 2, 3 · · ·



JID:YACHA AID:1154 /FLA [m3L; v1.184; Prn:4/08/2016; 15:04] P.3 (1-35)
P. Chen, A. Fannjiang / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 3
Fig. 1. Conceptual layout of coherent lensless imaging with a random mask (left) before (for random illumination) or (right) behind
(for wavefront sensing) the object (middle). The diffraction pattern measured without a mask has a larger dynamic range and thus 
a higher chance of damaging the sensors. The color bar is on a logarithmic scale.

Closely related to HIO, DR also belongs to the ITA family (Section 3). ITA are computationally efficient 
thanks to the fast Fourier transform (FFT) and explicit nature of P1, P2 (see (14) below).

The focus of our analysis and implementation is on the Fourier-domain Douglas–Rachford algorithm 
(FDR) for which y(k) are the Fourier vectors (with phase). The FDR defined in (15) is a member of a 
general class of Fourier-domain fixed point algorithms formulated in [29].

1.1. Oversampled diffraction patterns

Next we describe our sampling schemes before we can properly introduce P1, P2 and the Douglas–Rachford 
algorithm for phase retrieval (Section 3).

Let f(n) be a discrete object function with n = (n1, n2, · · · , nd) ∈ Zd. Consider the object space consisting 
of all functions supported in M = {0 ≤ m1 ≤ M1, 0 ≤ m2 ≤ M2, · · · , 0 ≤ md ≤ Md}. We assume d ≥ 2.

Let

F (w) =
∑

m∈M
e−i2πm·wf(m), w = (w1, · · · , wd)

be the Fourier transform of f . Let (ν1, · · · , νd) be the coordinates of the sensor plane and L the distance 
between the object plane and the sensor plane, cf. Fig. 1. Under the Fraunhofer approximation, the diffraction 
pattern is proportional to

I(w) = |F (w)|2 , w = (wj) (2)

where λ is the wavelength and

wj = νj
λL

, j = 1, · · · , d,

the spatial frequencies [11]. We can rewrite (2) as
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I(w) =
M∑

n=−M

∑
m∈M

f(m + n)f(m)e−i2πn·w, w = (w1, · · · , wd) ∈ [0, 1]d, M = (M1, · · · ,Md)

which is the Fourier transform of the autocorrelation

Rf (n) =
∑

m∈M
f(m + n)f(m).

Here and below the over-line notation means complex conjugacy.
Note that Rf is defined on the enlarged grid

M̃ = {(m1, · · · ,md) ∈ Zd : −M1 ≤ m1 ≤ M1, · · · ,−Md ≤ md ≤ Md}

whose cardinality is roughly 2d times that of M. Hence by sampling the diffraction pattern on the grid

L =
{

(w1, · · · , wd) | wj = 0, 1
2Mj + 1 ,

2
2Mj + 1 , · · · ,

2Mj

2Mj + 1

}
(3)

we can recover the autocorrelation function by the inverse Fourier transform. This is the standard oversam-
pling with which the diffraction pattern and the autocorrelation function become equivalent via the Fourier 
transform [45,46]. The oversampled diffraction pattern is measured by a denser array of sensors on the grid 
λLL.

We denote by Φ the oversampled discrete Fourier transform (DFT). Specifically Φ ∈ C|M̃|,|M| is the 
sub-column matrix of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

A coded diffraction pattern is measured with a mask whose effect is multiplicative and results in a masked 
object of the form g(n) = f(n)μ(n) where {μ(n)} is a finite set of random variables representing the mask. 
In other words, a coded diffraction pattern is just the plain diffraction pattern of a masked object.

We will focus on the effect of random phase φ in the mask function μ(n) = |μ|(n)eiφ(n) where φ(n) are in-
dependent, continuous real-valued random variables. In other words, each φ(n) is independently distributed 
with a probability density function on (−π, π] that may depend on n. Continuous phase modulation can be 
experimentally realized with various techniques such as spread spectrum phase modulation [59].

We also require that |μ|(n) �= 0, ∀n ∈ M (i.e. the mask is transparent). This is necessary for unique 
reconstruction of the object as any opaque pixel of the mask where μ(n) = 0 would block the transmission 
of the information f(n). By absorbing |μ(n)| into the object function we can assume, without loss of 
generality, that |μ(n)| = 1, ∀n, i.e. a phase mask.

With a proper choice of the normalizing constant c, a phase mask then gives rise to an isometric propa-
gation matrix

(1-mask ) A∗ = cΦ diag{μ}, (4)

i.e. AA∗ = I.
When two phase masks μ1, μ2 are deployed and independent of each other, the propagation matrix A∗

is the stacked coded DFTs, i.e.

(2-mask case) A∗ = c

[
Φ diag{μ1}
Φ diag{μ2}

]
. (5)

With proper normalization, A∗ is again isometric.
In line with the spirit of simplifying measurement complexity discussed above, we remove the second 

mask (i.e. μ2 ≡ 1) and consider the propagation matrix [28,30,31]
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(11
2 -mask case) A∗ = c

[
Φ diag{μ}

Φ

]
(6)

normalized to be isometric. In other words, one oversampled coded pattern and one oversampled plain 
pattern are used for reconstruction.

For convenience, we shall refer to this set-up as the 11
2 -mask case to distinguish it from the one- and 

two-mask cases. Eq. (6) is the set-up for two-pattern experiments in Section 7.
The main objective of the paper is to prove local, geometric convergence of FDR (1) where y(k) are the 

Fourier vectors (with phase) with two diffraction patterns. To this end, we first give a concrete charac-
terization of the fixed point set and a spectral decomposition of the gradient map of FDR. We show that 
the geometric rate is determined by the spectral gap which is positive as long as the measurement scheme 
contains at least one oversampled coded diffraction pattern. The characterization of the fixed point set and 
the spectral decomposition of the gradient map are the main ingredients of the proof of local, geometric 
convergence of FDR.

1.2. Comparison with other literature

For the optical spectrum [55], experiments with coded diffraction patterns are not new and can be 
implemented by computer generated holograms [12], random phase plates [1] and liquid crystal phase-only 
panels [27]. Recently, a phase mask with randomly distributed pinholes has been implemented for soft X-ray 
[42].

Coded-aperture phase retrieval was formulated as a convex trace-norm minimization problem in [13,
15,16,19] and the uniqueness of the global minimizer was proved in [15] under the assumption that the 
number of independently coded diffraction patterns is sufficiently large (polylogarithmic in |M|). Moreover, 
the convex reformulation of phase retrieval increases the dimension from O(|M|) to O(|M|2) and thus is 
prohibitively expensive for large problems (see also [7,35]).

Alternative non-convex minimization formulations were proposed and solved by various gradient methods 
[14,47]. In practice, these algorithms are locally convergent with a comparatively large number (≥ 6) of coded 
diffraction patterns.

An important difference between the measurement schemes in these papers and the present work (as 
well as [28,30,31]) is that their coded diffraction patterns are not oversampled. Another distinctive feature 
of the present setting is that the dimension d ≥ 2 is required for the spectral gap (Theorem 6.3) and the 
uniqueness of fixed point (Theorem 4.2).

In this connection, we emphasize that reducing the number of coded diffraction patterns is crucial for 
the diffract-before-destruct approach and in comparison oversampling is a small price to pay with current 
sensor technologies.

Arguably a bigger price may be the loss of the robust injectivity property pursued in these works (also 
see [5,6]). Indeed, with at most two random masks, the phase retrieval map |A∗f | with A∗ given by (6) or 
(5) is injective only after certain finite set is excluded from the space of objects C|M| [28].

On the other hand, for any given f , the solution to the phase retrieval problem with A∗ given by (6) or 
(5) is unique, up to a constant phase factor, with probability one [28]. In contrast, the injectivity theorems 
proved in [15] hold true with probability approaching 1 polynomially in |M|−1, instead of probability one, 
and require a large number of coded diffraction patterns.

In other words, both approaches exclude some small sets, ours from the space of objects and theirs from 
the space of random masks to achieve injectivity. On balance, neither approach carries over to the other 
setting.

Our numerical results show that the uniqueness framework of [28] suffices for most practical purposes 
and the numerical scheme proposed here, the Fourier domain DR (FDR), exhibits globally convergence 
behaviors from random initialization.
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To our knowledge, local geometric convergence is not known for any fixed point algorithms for Fourier 
phase retrieval except for alternating projections (see [22] and references therein). The present paper aims 
to fill this gap. It is noteworthy that the geometric rate of convergence was characterized as the cosine of 
the Friedrichs angle between the two constraint subspaces in [9,10] for the convex setting, it is characterized 
here for a nonconvex setting as the spectral gap condition. While we can not prove global convergence of 
FDR, we will present strong numerical evidence for it.

There is much more literature on phase retrieval with generic frames and independent random matrices 
[2–6,16,17,23,26,49,57,58] which is quite different from Fourier phase retrieval. There also is a growing body 
of work on phase retrieval under sparsity assumptions, see [39,40,51,53] and the references therein.

The rest of the paper is organized as follows. In Section 2, we simplify the notation for presenting the 
main results. In Section 3, we describe the DR algorithm widely used in convex optimization problems and 
formulate its two versions (FDR and ODR) for phase retrieval. In Section 4, we prove the uniqueness of the 
projected fixed point for the one- and two-pattern cases (Theorem 4.2) and give a complete characterization 
of the fixed point set in the Fourier domain (Corollary 4.5). In Section 5, we prove local convergence of FDR 
under the spectral gap assumption (Theorem 5.1). In Section 6, we prove the spectral gap condition with 
at least one oversampled coded diffraction pattern in the data (Theorem 6.3). In Section 7 we demonstrate 
global convergence of FDR by numerical experiments.

2. Set-up and notation

We simplify the notation as follows. The more elaborate notation of Section 1.1 will be needed only in 
the appendix.

First, we convert the d-dimensional grid into an ordered set of indices. The unknown object will now be 
denoted by x0 ∈ Cn with n = |M|. In other words, x0 is the vectorized version of the object function f
supported in M ⊂ Zd, d ≥ 2 (Section 1.1).

Rank ≥ 2 property: x0 is rank ≥ 2 if the convex hull of supp{f} ⊂ Cn is a two or higher dimensional set.
Sector constraint: x0 satisfies the sector constraint if the principal value (denoted by �x0(j)) of 

arg{x0(j)}, ∀j is restricted to a sector [−απ, βπ] � (−π, π], ∀n. As mentioned above almost all scatter-
ers f have a nonnegative imaginary part and hence satisfy the sector constraint with α = 0, β = 1. The 
sector constraint serves as transition between the standard positivity constraint (α = β = 0) and the null 
constraint (α = β = 1).

The sector projection is explicitly given as follows: For j ≤ n

[x]X (j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(j) if �x(j) ∈ [−απ, βπ]
	[x(j)e−iβπ]eiβπ if �x(j) ∈ [βπ, (β + 1/2)π]
	[x(j)eiαπ]e−iαπ if �x(j) ∈ [−(α + 1/2)π,−απ]
0 else

(7)

and [x]X (j) = 0, j > n + 1.
Let X be a nonempty closed convex set in Cn and the space of objects. Denote the projection onto X by

[x]X = arg min
x′∈X

‖x′ − x‖. (8)

Phase retrieval problem. For a given unknown object x0 of rank ≥ 2, let A∗ = [a∗j ] ∈ CN×n be the 
propagation matrix given by (4), (5) or (6) where A∗ is normalized to be isometric and b = |A∗x0| ∈ RN

be the data vector. Phase retrieval is to find a solution x to the equation

b = |A∗x|, x ∈ X . (9)
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We focus on two cases.
(i) One-pattern case: A∗ is given by (4), [x]X is given by (7).
(ii) Two-pattern case: A∗ is given by (5) or (6), X = Cn.

Now we recall the following uniqueness theorem for Fourier phase retrieval.

Proposition 2.1 ([28]). Let x0 be a rank ≥ 2 object and x a solution of the phase retrieval problem (9). 
Suppose that each φ(n) of the phase mask(s) is independently distributed with a probability density function 
on (−π, π].
(i) One-pattern case. Suppose, in addition, that �x0(j) ∈ [−απ, βπ], ∀j with α + β ∈ (0, 2) and that the 
density function for φ(n) is a constant (i.e. (2π)−1) for every n.

Then x = eiθx0 for some constant θ ∈ (−π, π] with a high probability which has a simple, lower bound

1 − n

∣∣∣∣β + α

2

∣∣∣∣�S/2�

(10)

where S is the number of nonzero components in x0 and �S/2� the greatest integer less than or equal to 
S/2.
(ii) Two-pattern case. Then x = eiθx0 for some constant θ ∈ (−π, π] with probability one.

The proof of Proposition 2.1 is given in [28] where more general uniqueness theorems can be found, 
including the 11

2 -mask case.
Phase retrieval solution is unique only up to a constant of modulus one no matter how many coded 

diffraction patterns are measured. Thus the proper error metric for an estimate x̂ of the true solution x0 is 
given by

min
θ∈R

‖e−iθx0 − x̂‖ = min
θ∈R

‖eiθx̂− x0‖ (11)

where the optimal phase adjustment θ̂ is given by

θ̂ = �(x̂∗x0).

Throughout the paper, we assume the canonical embedding

Cn ⊆ Cñ ⊆ CN , n ≤ ñ ≤ N.

For example, if x ∈ Cn, then the embedded vector in Cñ or CN , still denoted by x, has zero components 
x(j) = 0 for j ≥ n +1. This is referred to as zero padding and ñ/n is the padding ratio. Conversely, if x ∈ Cñ

or CN , then [x]n ∈ Cn denotes the projected vector onto Cn. Clearly, [x]Cn = [x]n.
The vector space CN = RN ⊕R iRN is isomorphic to R2N via the map

G(v) :=
[
	(v)

(v)

]
, ∀v ∈ CN (12)

and endowed with the real inner product

〈u, v〉 := 	(u∗v) = G(u)�G(v), u, v ∈ CN .

We say u and v are orthogonal to each other (denoted by u ⊥ v) iff 〈u, v〉 = 0.
With a slight abuse of notation, we will use G(u) to denote the conversion of a complex-valued vector u

in Cn, Cñ or CN to its real-valued version.
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Phase vector: Let y � y′ and y/y′ be the component-wise multiplication and division between two vectors 
y, y′, respectively. For any y ∈ CN define the phase vector ω ∈ CN with

ω(j) = exp(i�y(j))

which, if y(j) = 0, is not uniquely defined and can be assigned an arbitrary value. Alternatively, we write 
ω(j) = y(j)/|y(j)| which, if y(j) = 0, is not uniquely defined and can be assigned an arbitrary value. Unless 
otherwise specified we set ω(j) = 1 if y(j) = 0.

For the one-mask (4) and two-mask (5) cases, the mask function by assumption is a finite set of continuous 
random variables and so is y0 = A∗x0. Therefore y0 vanishes nowhere almost surely, i.e.

bmin = min
j

bj > 0

On the other hand, a plain diffraction pattern may have zero components depending on the object.

3. Douglas–Rachford algorithms

Phase retrieval can be formulated as the following feasibility problem in the Fourier domain

Find ŷ ∈ A∗X ∩ Y, Y := {y ∈ CN : |y| = b}. (13)

Let P1 be the projection onto A∗X and P2 the projection onto Y:

P1y = A∗[Ay]X , P2y = b� y

|y| (14)

where the phase vector y/|y| follows the convention discussed above.
Then DR (1) becomes y(k+1) = Sf(y(k)) with

Sf(y) = y + A∗
[
A

(
2b� y

|y| − y

)]
X
− b� y

|y| (15)

which we call the Fourier-domain DR (FDR) to contrast with the following object domain version. FDR is 
an example of Fourier-domain fixed point algorithms for phase retrieval [29]. Note that Sf(y) is differentiable 
at y if and only if supp(b) ⊆ supp(y).

Let Ã∗ = [A∗, A∗
⊥] ∈ CN,ñ be a complex isometric extension of A∗, implying that A⊥A

∗
⊥ = I, AA∗

⊥ =
0, A⊥A

∗ = 0. Then the phase retrieval problem can be more generally formulated as |Ã∗x| = b, x ∈ X . 
Consider the feasibility problem

Find x̂ ∈ X ∩ X̃ , X̃ :=
{
x ∈ Cñ : |Ã∗x| = b

}
. (16)

Let P1 be the projection onto X , i.e. P1x = [x]X , and P2 the projection onto X̃ . When ñ = N (hence Ã is 
unitary),

P2x = Ã

(
b� Ã∗x

|Ã∗x|

)
(17)

and (15) is equivalent to

S(x) = x +
[
Ã

(
2b� Ã∗x

˜∗

)
− x

]
− Ã

(
b� Ã∗x

˜∗

)
. (18)
|A x| X |A x|
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In this case, we have

Ã∗SÃ = Sf , for ñ = N. (19)

In the 1-pattern case with the standard oversampling N = ñ ≈ 2dn, Ã = A is unitary and (18) is also 
known as the Hybrid-Input–Output (HIO) algorithm (with the HIO parameter set to one) [8,32].

For ñ < N (as with two oversampled diffraction patterns N ≈ 2d+1n), the precise form of P2 is not known 
explicitly. For the purpose of contrasting with (15) and for lack of a better term we shall call (18) (with 
ñ ≤ N) the generalized Object-domain Douglas–Rachford algorithm (ODR for short). The ODR family is 
an interpolation between the HIO and FDR.

While ODR depends explicitly on ñ, FDR is independent of ñ in the sense that

Sf(y) = y + Ã∗
[
Ã

(
2b� y

|y| − y

)]
X
− b� y

|y| (20)

since [Ãy]X = [Ay]X ∈ Cn and Ã∗[Ãy]X = A∗[Ay]X .
The FDR map (15) is the main object of the subsequent analysis. What contributes to the superior 

numerical performance as well as the convergence guarantee is the existence of a large fixed point set F in 
the Fourier space. Moreover, under the proper projection depending on the measurement scheme, the entire 
fixed point set is mapped back to the true object, up to a constant phase factor.

4. Uniqueness of projected fixed point

To accommodate the arbitrariness of the phase of zero components as in [30], we call y∗ a FDR fixed 
point if there exists

u ∈ U = {u = (u(i)) ∈ CN : |u(i)| = 1, ∀i}

satisfying

u ∈ U, u(j) = 1, whenever y∗(j) �= 0 (21)

such that the fixed point equation holds:

A∗
[
A

(
2b� y∗

|y∗|
� u− y∗

)]
X

= b� y∗
|y∗|

� u. (22)

Note that if the sequence y(k) = Sk−1
f (y(1)) converges a limit y∞ that has no zero component, then the limit 

y∞ is a FDR fixed point with u ≡ 1.
Let x∗ = Ay∗ and ω∗ = y∗/|y∗|. Define

x̂ = [A (2b� ω∗ � u− y∗)]X = [2A(b� ω∗ � u) − x∗]X , (23)

for some u satisfying (21) where X represents the sector condition in the 1-pattern case and X = Cn in the 
2-pattern case.

We have from (22)

A∗x̂ = b� ω∗ � u (24)

which implies the following result.
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Proposition 4.1.

|A∗x̂| = |A∗x0| (25)

�A∗x̂ = �(ω∗ � u) on supp(b). (26)

Eq. (25) is related to phase retrieval while eq. (26) magnitude retrieval problem, both with coded diffrac-
tion patterns. The uniqueness theorem for the former is given in Proposition 2.1 while the uniqueness 
theorem for the latter is given in Proposition 6.1.

Theorem 4.2. Under the assumptions of Proposition 2.1, the following statements hold.
(i) One-pattern case. With probability at least given in (10), x̂ = eiθx0 for some θ ∈ R.
(ii) Two-pattern case. Almost surely x̂ = x∗ = eiθx0 for some constant θ ∈ R.

Remark 4.3. See [29] for an extension of this result to a more general class of fixed point algorithms.

Proof. As mentioned in Sec. 2, |supp(b)| = N almost surely with the measurement schemes (4) and (5).
By Proposition 2.1 (25) implies that x̂ = eiθx0 for some constant θ ∈ R, with the only difference between 

case (i) and case (ii) being the probability with which this statement holds. To complete the proof, we only 
need to show x̂ = x∗ for (ii).

By (26) and the identity x̂ = eiθx0, we have

eiθω0 = ω∗ � u (27)

since b > 0 almost surely. Substituting (27) into (23) we obtain

eiθx0 = 2eiθx0 − x∗

implying eiθx0 = x∗. In conclusion,

x∗ = x̂ = eiθx0

as claimed. �
Next, we look into the FDR fixed point set (in the Fourier domain) more closely.
Define

F = ∪θFθ (28)

where

Fθ =
{
eiθ(b + η) � ω0 : Bη = 0, η ∈ RN

}
∩
{
eiθ(b + η) � ω0 : b + η ≥ 0

}
(29)

is convex for each θ since it is intersection of a real-affine set and a convex set. It is straightforward to check 
the following.

Proposition 4.4. The elements of F are FDR fixed points if X = Cn.

Proof. For any y = eiθ(b + η) � ω0 with b + η ≥ 0, we have

y = eiθω0 � u
|y|
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where u satisfies

u ∈ U, u(j) =
{

1, b(j) + η(j) > 0
e−iθω0(j), b(j) + η(j) = 0

∀j.

Thus

A∗A

(
b� y

|y| � ū

)
= eiθA∗A(b� ω0 � u� ū) = eiθA∗Ay0 = eiθy0. (30)

On the other hand, in checking (22) we have the calculation

A∗Ay = eiθA∗ [A(b� ω0) + A(η � ω0)] = eiθA∗A(b� ω0) = eiθA∗Ay0 = eiθy0 (31)

and

b� y

|y| � ū = eiθb� ω0 � u� ū = eiθb� ω0 = eiθy0. (32)

Now (22) is satisfied in view of (30)–(32) and the fact that

ū ∈ U, ū(j) = 1, whenever b + η > 0. �
Corollary 4.5. Under the assumptions of Proposition 2.1, any FDR fixed point y∗ shares the same phase as 
y0 up to a global constant, i.e.

�(ω∗ � u) = θ + �y0 (33)

for some constant θ ∈ R where u satisfies (21).
In the two-pattern case, the fixed point set is identical to the set F defined in (28).

Proof. Eq. (33) follows immediately from (26) and Theorem 4.2. Hence for some p ∈ RN with all nonnegative 
components, y∗ � u = eiθp � y0 which is equivalent to

y∗ = eiθp� y0 = eiθ(y0 + η � ω0) (34)

with

η = (p− 1) � b ∈ RN

since the value of u does not matter where y∗ vanishes.
In the two-pattern case, we have by (23), (33) and Theorem 4.2 (ii)

A
(
2eiθy0 − y∗

)
= eiθAy0

implying

eiθAy0 = Ay∗. (35)

From (35) it follows that

y∗ = eiθ(y0 + y′), Ay′ = 0,

which together with (34) yields y′ = (p − 1) � y0. �
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Note that F is contained in the much larger set H = ∪θHθ where

Hθ :=
{
eiθ(b + η) � ω0 : Bη = 0, η ∈ CN

}
(36)

is the affine space of (real) dimension 2(N − n) and has the desirable property

Ay = eiθAy0 + Bη = eiθx0, ∀y ∈ Hθ. (37)

The high dimensionality of H and eq. (37) can be used to speed up the numerical convergence of FDR from 
a generic initialization (Section 7).

5. Local convergence

To prove local convergence of FDR, it is crucial to analyze the gradient map of (15) and understand its 
spectral properties.

We focus on FDR (15) with X = Cn:

Sf(y) := y + A∗A

(
2b� y

|y| − y

)
− b� y

|y| . (38)

ODR (18) becomes

S(x) = x +
[
Ã

(
2b� Ã∗x

|Ã∗x|

)
− x

]
n

− Ã

(
b� Ã∗x

|Ã∗x|

)
. (39)

Let y(k) = Sk−1
f A∗x(1) and x(k) := Ay(k), k ∈ N. Define the optimal global phase adjustment at each 

iteration

α(k) := arg min
α

{‖αx(k) − x0‖ : |α| = 1, α ∈ C}. (40)

Indeed, we have

α(k) = x(k)∗x0/|x(k)∗x0| (41)

= y(k)∗y0/|y(k)∗y0|

and hence



(
y∗0α

(k)y(k)
)

= 0. (42)

Let P0 denote the projection onto the convex set F0 defined in (29)

P0y = arg min
z∈F0

‖y − z‖ (43)

and define

y
(k)
∗ = P0α

(k)y(k) = P0α
(k)Sk−1

f A∗x(1), k = 1, 2, · · · (44)

Since y(k)
∗ ∈ F0,



(
y∗0y

(k)
∗
)

= 0. (45)
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Define

v(k) = α(k)y(k) − y
(k)
∗ .

Combining (42) and (45) we have

〈iy0, v
(k)〉 = 	(−iy∗0v

(k)) = 
(y∗0v(k)) = 0.

In other words,

v(k) ⊥ iy0

or equivalently

Ω∗
0v

(k) ⊥ i|y0|. (46)

Our main result is that the fixed point set F is geometrically attractive in the vicinity of eiθy0 for any 
θ ∈ R.

Theorem 5.1. Let x0 ∈ Cn and A∗ any N × n isometric matrix with N ≥ 2n. Let y0 = A∗x0, b = |y0| and 
suppose

bmin = min
j

bj > 0.

Let

B := A diag
{

y0

|y0|

}
and suppose

λ2 = max{‖u‖−1‖
(B∗u)‖ : u ∈ Cn, iu ⊥ x0} < 1. (47)

Let v(k) = α(k)y(k) − y
(k)
∗ where α(k) and y(k)

∗ are given by (41) and (44), respectively.
For any given 0 < ε < 1 − λ2, if α(1)x(1) is sufficient close to x0, then

‖v(k)‖ ≤ (λ2 + ε)k−1‖α(1)x(1) − x0‖, k = 1, 2, · · · (48)

implying that

‖α(k)x(k) − x0‖ ≤ (λ2 + ε)k−1‖α(1)x(1) − x0‖, k = 1, 2, · · · . (49)

Remark 5.2. As mentioned+ in Section 2, y0 under the measurement scheme (5) vanishes nowhere and 
hence bmin > 0 almost surely.

Remark 5.3. In view of (19), the same error bound (49) holds for the ODR iterates x(k) = [Ãy(k)]n with 
ñ = N .

For ñ < N , however, we are unable to prove local convergence for ODR.

Remark 5.4. If A∗ is not isometric, we can apply QR-decomposition to obtain A∗ = QR, where Q is 
isometric, and treat Q as the new measurement matrix and Rx0 as the new unknown.
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5.1. The gradient

First we derive a convenient expression for the gradient map.

Proposition 5.5. Let y ∈ CN and suppose that |y| vanishes nowhere. Let ω = y/|y| and Ω = diag(ω). Define

B = A Ω, η = Ω∗v. (50)

For a sufficiently small ε > 0, we have

Sf(y + εv) − Sf(y) = εΩJfη + o(ε) (51)

where

Jfη = (I −B∗B)η + i(2B∗B − I) diag
[
b

|y|

]

(η) (52)

is the gradient map.
In particular, if |y| = b, then (52) becomes

Jfη = (I −B∗B)	(η) + iB∗B
(η) (53)

Proof. Let

ωε = y + εv

|y + εv| , Ωε = diag(ωε).

Reorganizing (38), we have

Sf(y) = y −A∗Ay + (2A∗A− I)Ωb, (54)

and hence

Sf(y + εv) − Sf(y) = ε(I −A∗A)v + (2A∗A− I)(Ωε − Ω)b

= ε(I − ΩB∗BΩ∗)v + (2ΩB∗BΩ∗ − I)(Ωε − Ω)b (55)

We next give a first order approximation to (Ωε − Ω)b in terms of v.
Using the first order Taylor expansion we have

ωε − ω = iΩ

[
Ω∗(ωε − ω)

]
+ o(ε) = iεΩ


[
Ω∗ v

|y|

]
+ o(ε),

and hence

(Ωε − Ω)b = iεΩ diag
[
b

|y|

]

(Ω∗v) + o(ε). (56)

Finally, substituting (56) into (55) we obtain

Sf(y + εv) − Sf(y) = ε(I − ΩB∗BΩ∗)v + iε(2ΩB∗B − Ω) diag(b/|y|)
(Ω∗v) + o(ε).

Multiplying Ω∗ on both sides and using the definition of v we complete the proof. �
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Note that Jf is a real, but not complex, linear map since Jf(cη) �= cJf(η), c ∈ C in general.
Define the real form of the matrix B:

B :=
[
	[B]

[B]

]
∈ R2n,N . (57)

Note that [
	[B�] 
[B�]
−
[B�] 	[B�]

]
(58)

is real isometric because B∗ is complex isometric.
From (12) we have

G(B∗ξ) =
[
	[B�]	[ξ] + 
[B�]
[ξ]
	[B�]
[ξ] −
[B�]	[ξ]

]
=
[

B�G(ξ)
B�G(−iξ)

]
, ξ ∈ Cn. (59)

For the rest of the paper, B denotes the matrix (50) with Ω = Ω0, i.e.

B = AΩ0, Ω0 = diag[ω0], ω0 = y0

|y0|
(60)

unless otherwise specified.
Next we give a spectral analysis of Jf . As we will see below, Jf can be decomposed according to a se-

quence of 2-dimensional subspaces of descending eigenvalues. The leading eigenvalue is 1 and its eigenspace 
contributes only the ambiguity of constant phase factor. With at least one oversampled coded diffraction 
pattern in the data we can prove the spectral gap property that the second eigenvalue is strictly less 
than 1. The spectral gap property and the fixed point set F are the key to the proof of local conver-
gence.

5.2. Eigen structure

Let λ1 ≥ λ2 ≥ · · · ≥ λ2n ≥ λ2n+1 = · · · = λN = 0 be the singular values of B with the corresponding right 
singular vectors {ηk ∈ RN}Nk=1 and left singular vectors {ξk ∈ R2n}2n

k=1. By definition, for k = 1, · · · , 2n,

Bηk = λkG
−1(ξk), (61)

	[B∗G−1(ξk)] = λkηk. (62)

Proposition 5.6. We have ξ1 = G(x0), ξ2n = G(−ix0), λ1 = 1, λ2n = 0 as well as η1 = |y0|.

Proof. Since

B∗x0 = Ω∗
0A

∗x0 = |y0|

we have by (59)

	[B∗x0] = B�ξ1 = |y0|, 
[B∗x0] = B�ξ2n = 0 (63)

and hence the results. �
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Corollary 5.7.

λ2 = max{‖
(B∗u)‖ : u ∈ Cn, u ⊥ ix0, ‖u‖ = 1} (64)

= max{‖B�u‖ : u ∈ R2n, u ⊥ ξ1, ‖u‖ = 1}

Proof. By (59),


[B∗u] = B�G(−iu).

The orthogonality condition iu ⊥ x0 is equivalent to

G(x0) ⊥ G(−iu).

Hence, by Proposition 5.6 ξ2 is the maximizer of the right hand side of (64), yielding the desired value λ2. �
Proposition 5.8. For k = 1, · · · , 2n,

λ2
k + λ2

2n+1−k = 1 (65)

ξ2n+1−k = G(−iG−1(ξk)) (66)

ξk = G(iG−1(ξ2n+1−k)). (67)

Proof. Since B∗ is an isometry, we have ‖w‖ = ‖B∗w‖, ∀w ∈ Cn. On the other hand, we have

‖B∗w‖2 = ‖G(B∗w)‖2 = ‖B�G(w)‖2 + ‖B�G(−iw)‖2

and hence

‖G(w)‖2 = ‖B�G(w)‖2 + ‖B�G(−iw)‖2. (68)

Now we prove (65), (66) and (67) by induction.
Recall the variational characterization of the singular values/vectors

λj = max ‖B�u‖, ξj = arg max ‖B�u‖, s.t. u ⊥ ξ1, · · · , ξj−1, ‖u‖ = 1 (69)

λ2n+1−j = min ‖B�u‖, ξ2n+1−j = arg min ‖B�u‖, s.t. u ⊥ ξ2n, · · · , ξ2n+2−j , ‖u‖ = 1. (70)

By Proposition 5.6, (65), (66) and (67) hold for k = 1. Suppose (65), (66) and (67) hold for k = 1, · · · , j− 1
and we now show that they also hold for k = j.

Hence by (68)

λ2
j = max

‖u‖=1
‖B�u‖2 = 1 − min

‖v‖=1
‖B�v‖2, s.t. u ⊥ ξ1, · · · , ξj−1, v = G(−iG−1(u)).

The condition u ⊥ ξ1, · · · , ξj−1 implies v ⊥ ξ2n, · · · , ξ2n+2−j and vice versa. By (70), we have λ2
j = 1 −

λ2
2n+1−j and G(−iG−1(ξj)) is the minimizer, i.e. ξ2n+1−j = G(−iG−1(ξj)). �

Proposition 5.9. For each k = 1, · · · , 2n,

B∗Bηk = λk(λkηk + iλ2n+1−kη2n+1−k), (71)

B∗Bη2n+1−k = λ2n+1−k(λ2n+1−kη2n+1−k − iλkηk). (72)
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Proof. By definition, Bηk = λkξk. Hence

Bηk = (	[B] + i
[B])ηk = λk(ξR
k + iξI

k)

where

ξk =
[
ξR
k

ξI
k

]
, ξR

k , ξ
I
k ∈ Rn.

On the other hand, B�ξk = λkηk and hence

	[B�]ξR
k + 
[B�]ξI

k = λkηk. (73)

Now we compute B∗Bηk as follows.

B∗Bηk = λkB
∗(ξR

k + iξI
k) (74)

= λk(	[B�] − i
[B�])(ξR
k + iξI

k)

= λk(	[B�]ξR
k + 
[B�]ξI

k) + iλk(	[B�]ξI
k −
[B�]ξR

k )

= λ2
kηk + iλk(	[B�]ξI

k −
[B�]ξR
k )

by (73).
Notice that

	(B�)ξI
k −
(B�)ξR

k = B�
[
	(−iG−1(ξk))

(−iG−1(ξk))

]
= B�G(−iG−1(ξk))

= B�ξ2n+1−k

= λ2n+1−kη2n+1−k (75)

by Proposition 5.8.
Putting (74) and (75) together, we have (71). (72) follows from a similar calculation. �

Corollary 5.10. For k = 1, 2, · · · , 2n, Jf leaves invariant the subspace spanR{ηk, iη2n+1−k} and has the 2 ×2
matrix representation

Jf = λ2n+1−k

[
cos θk sin θk
− sin θk cos θk

]
, λ2n+1−k := cos θk, λk := sin θk (76)

in the basis of {ηk, iη2n+1−k}. In particular,

Jfη1 = 0, Jfiη1 = iη1 (77)

Jfη2n = η2n, Jfiη2n = 0 (78)

where η1 = |y0|.

Proof. By Proposition 5.9, the span of ηk and iη2n+1−k is invariant under B∗B and hence under Jf for 
k = 1, · · · , 2n. Moreover, (71) and (72) imply
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B∗B =
[

λ2
k λkλ2n+1−k

λkλ2n+1−k λ2
2n+1−k

]
in the basis of ηk, iη2n+1−k. Hence by the definition (53) and Proposition 5.8,

Jf = λ2n+1−k

[
λ2n+1−k λk

−λk λ2n+1−k

]
= λ2n+1−k

[
cos θk sin θk
− sin θk cos θk

]
, θk ∈ R.

Hence λ2n+1−k(λ2n+1−k ± iλk) are eigenvalues of Jf . �
The next two results completely characterize the eigenstructure of Jf .

Proposition 5.11. If v∗ηk = 0, k = 1, 2, · · · , 2n − 1, then

Bv = 0, Jfv = 	(v). (79)

Proof. The condition v∗ηk = 0 is equivalent to η�k 	(v) = η�k 
(v) = 0. So we have

G(B	(v)) =
[
	(B	(v))

(B	(v))

]
=
[
	(B)	(v)

(B)	(v)

]
= B	(v) = 0

implying B	(v) = 0. Likewise, B
(v) = 0. Hence Bv = 0.
By the definition of Jf and Bv = 0,

Jfv = (I −B∗B)	(v) + iB∗B
(v) = 	(v). �
Corollary 5.12. The fixed point set of Jf contains the subspace

E1 = nullR(B) ⊂ RN

and the null space of Jf contains the subspace

E0 = iE1.

Moreover, if λ2 < 1, then

E⊥
2 = E0 ⊕R E1

where

E2 = spanR{ηk, iηk : k = 1, · · · , 2n− 1}.

Proof. Note that η2n and iη2n are excluded from E2 because η2n ∈ E1, iη2n ∈ E0. On the other hand the 
null vector η1 does not belong in E0 and the fixed point iη1 does not belong in E1 for an obvious reason.

For any v ∈ CN , we can write v = 	(v) + i
(v). By Proposition 5.11, if 	(v), 
(v) ∈ E⊥
2 , then

B	(v) = 0, Jf(	(v)) = 	(v)

B
(v) = 0, Jf(
(v)) = 0.

In other words, 	(v) ∈ E1 and 
(v) ∈ E0.
On the other hand, if λ2 < 1, then λ2n−1 > 0 and E2 has no nontrivial intersection with either E0 or E1. 

Hence, E⊥
2 = E0 ⊕R E1. �
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5.3. Proof of Theorem 5.1

Let C be the real subspace

C =
{
η � y0

|y0|
: Bη = 0, η ∈ RN

}
, θ ∈ (−π, π].

Since every y ∈ C has the same phase vector y/|y| = ± � ω0 with an arbitrary ± sign at each pixel where η
does not vanish,

〈y, iy0〉 = 	(y∗iy0) = 0

and hence

spanR{iy0} ⊆ C⊥. (80)

Note that spanR{iy0} is invariant under both Sf and the gradient Ω0J0Ω∗
0 where

J0v := (I −B∗B)	(v) + iB∗B
(v),

cf. (53) and (60).
Let Dθ be the affine space

Dθ := eiθ(y0 + C).

By (29),

Fθ ⊂ Dθ. (81)

Let V be the open ball in CN of radius bmin centered at y0. Clearly,

V ∩ F0 = V ∩ D0 (82)

and P0 defined in (43) becomes

P0y = arg min
z∈D0

‖z − y‖, ∀y ∈ V. (83)

Let

v(k) = α(k)y(k) − y
(k)
∗ .

Proposition 5.13. If α(k)y(k) ∈ V , then

Ω∗
0v

(k) ∈ (spanR{iη1})⊥ ∩ (E0 ⊕R E2) (84)

cf. Corollary 5.12.

Proof. By (83) and the definition of D0, we have

v(k) ⊥ η � ω0, ∀η ∈ nullR(B) ⊂ RN
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or equivalently

Ω∗
0v

(k) ⊥ η, ∀η ∈ nullR(B) ⊂ RN .

This and (46) imply (84) in light of Corollary 5.12. �
Next we prove a technical lemma.

Proposition 5.14. Let y(k)
∗ be given by (44). For any ε0 > 0, there exist two positive numbers δ1, δ2, such that

‖y(k)
∗ − y0‖ < δ1, ‖v(k)‖ < δ2 (85)

implies

|α(k+1) − α(k)| < ε0‖v(k)‖.

Proof. With

z = α(k)y∗0y
(k+1) = α(k)α(k+1)|y∗0y(k+1)| (86)

we can write

|α(k+1) − α(k)| =
∣∣∣∣ z|z| − 1

∣∣∣∣ ≤ |
(z)|
|	(z)| . (87)

Substituting y(k+1) = Sfy
(k) into (86) we have

z = α(k)y∗0

(
b� y(k)

|y(k)|

)
(88)

= y∗0

(
b� y0

|y0|

)
+ y∗0

[
b�

(
α(k) y(k)

|y(k)| −
y
(k)
∗

|y(k)
∗ |

)]

= ‖b‖2 + y∗0

[
b�

(
α(k) y(k)

|y(k)| −
y
(k)
∗

|y(k)
∗ |

)]
.

By the linear approximation, we have

y

|y| −
y
(k)
∗

|y(k)
∗ |

= iΩ0

(

Ω∗
0

(
y − y

(k)
∗

|y(k)
∗ |

))
+ O(|y − y

(k)
∗ |2),

and hence for any given ε2 there exists δ2 > 0 such that∣∣∣∣∣y∗0
{
b�

[
α(k) y(k)

|y(k)| −
y
(k)
∗

|y(k)
∗ |

− iΩ0

(

Ω∗
0
v(k)

|y(k)
∗ |

)]}∣∣∣∣∣ < ε2‖b‖2‖v(k)‖ (89)

whenever ‖v(k)‖ < δ2. On the other hand, for any ε1 > 0, there exists δ1 > 0 such that∣∣∣∣∣y∗0
[
b� iΩ0


(
Ω∗

0

(
v(k)

|y(k)
∗ |

− v(k)

|y0|

))]∣∣∣∣∣ < ε1‖b‖2‖v(k)‖ (90)

whenever ‖y(k)
∗ − y0‖ < δ1.
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Using (42), (45) and the identity y0 = Ω0b, we have

y∗0

[
b� iΩ0


(
Ω∗

0
v(k)

|y0|

)]
= i
(y∗0v(k)) = 0

and hence from (90) ∣∣∣∣∣y∗0
[
b� iΩ0


(
Ω∗

0
v(k)

|y(k)
∗ |

)]∣∣∣∣∣ < ε1‖b‖2‖v(k)‖. (91)

Combining (89) and (91) we have∣∣∣∣∣y∗0
[
b�

(
α(k) y(k)

|y(k)| −
y
(k)
∗

|y(k)
∗ |

)]∣∣∣∣∣ < (ε1 + ε2)‖b‖2‖v(k)‖ (92)

which implies that

|z − ‖b‖2| < (ε1 + ε2)‖b‖2‖v(k)‖

whenever (85) holds. Therefore

|α(k+1) − α(k)| ≤ (ε1 + ε2)‖v(k)‖
1 − (ε1 + ε2)‖v(k)‖ < ε0‖v(k)‖

for ε1, ε2 sufficiently small. �
We continue the proof with the induction argument. Suppose that (85) holds with δ1 < bmin. Then the 

fixed point equation (22) holds with u ≡ 1.
By the projection property, we have

‖v(k+1)‖ ≤ ‖α(k+1)y(k+1) − y
(k)
∗ ‖ (93)

≤ ‖y(k+1) − ᾱ(k)y
(k)
∗ ‖ + ‖(ᾱ(k+1) − ᾱ(k))y(k)

∗ ‖

≤ ‖α(k)Sf(y(k)) − Sf(y(k)
∗ )‖ + |α(k+1) − α(k)|‖y(k)

∗ ‖

since Sf(y(k)
∗ ) = y

(k)
∗ . By Proposition 5.14,

|α(k+1) − α(k)|‖y(k)
∗ ‖ ≤ ε0‖v(k)‖‖y(k)

∗ ‖. (94)

On the other hand, by the linear approximation,

‖α(k)Sf(y(k)) − Sf(y(k)
∗ )‖ ≤ ‖Ω0JkΩ∗

0v
(k)‖ + o(‖v(k)‖) (95)

where

Jkη = (I −B∗B)η + i(2B∗B − I) diag
[
b/|y(k)

∗ |
]

(η) (96)

as given in (52).
To bound the right hand side of (95), we infer from the continuity of the gradient (52) at y0 that for any 

ε1 > 0,
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‖Jk − J0‖ < ε1 (97)

if δ1 is sufficiently small. Moreover, as a result of Proposition 5.13 and Corollary 5.12,

Ω∗
0v

(k) ∈ spanR{η1} ⊕R spanR{ηk, iηk : k = 2, · · · 2n− 1} ⊕R E0,

and hence by Corollary 5.10,

‖Ω0J0Ω∗
0v

(k)‖ ≤ λ2‖v(k)‖. (98)

The estimates (95), (97) and (98) then imply

‖α(k)Sf(y(k)) − Sf(y(k)
∗ )‖ ≤ λ2‖v(k)‖ + ε1‖v(k)‖ + o(‖v(k)‖). (99)

It then follows from (93), (94) and (99)

‖v(k+1)‖ < λ2‖v(k)‖ + ε1‖v(k)‖ + o(‖v(k)‖) + ε0‖y(k)
∗ ‖‖v(k)‖. (100)

Therefore for any ε with ε1 + ε0‖y0‖ < ε < 1 − λ2 there exist δ1, δ2 such that

0 < δ2 <
√
b2min − δ2

1

and

‖v(k+1)‖ < (λ2 + ε)‖v(k)‖. (101)

To iterate (101), we claim that (85) holds with k replaced by k + 1.
Let us postpone the proof of claim at the end and continue the proof of Theorem 5.1.
By choosing λ2 + ε < 1 and

‖α(1)y(1) − y
(1)
∗ ‖ ≤ ‖α(1)y(1) − y0‖ < δ = min{δ1, δ2} < bmin

we have from (101)

‖v(k)‖ < (λ2 + ε)k−1δ, ∀k ∈ N. (102)

To prove the convergence of α(k)x(k) to x0, consider the identities

Av(k) = Aα(k)y(k) −Ay
(k)
∗

= α(k)Ay(k) − x0 + A(η � ω0), some η ∈ nullR(B)

= α(k)Ay(k) − x0

= α(k)x(k) − x0

and hence

‖α(k)x(k) − x0‖ ≤ ‖v(k)‖ < (λ2 + ε)k−1δ, ∀k ∈ N.
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Now we return to the proof of the claim that if (85) holds then

‖y(k+1)
∗ − y0‖ < δ1 (103)

‖v(k+1)‖ < δ2 (104)

for sufficiently small but fixed δ1 > 0 and δ2 > 0, respectively.
First note that if (103) holds then so does (104) by using (101) and setting

‖v(1)‖ < δ3 < δ2

where δ3 is specified below.
By the projection property and repeating the calculation (93)–(101), we have

‖y(k+1)
∗ − y

(k)
∗ ‖ ≤ ‖α(k+1)y(k+1) − y

(k)
∗ ‖ < (λ2 + ε)‖v(k)‖.

To extend (103) from {1, 2, · · · , k} to k + 1, we write

‖y(k+1)
∗ − y0‖ ≤ ‖y(k)

∗ − y0‖ + ‖y(k+1)
∗ − y

(k)
∗ ‖.

Iterating this inequality backward, we have

‖y(k+1)
∗ − y0‖ ≤ ‖y(1)

∗ − y0‖ +
k∑

j=1
‖y(j+1)

∗ − y
(j)
∗ ‖

< ‖y(1)
∗ − y0‖ + (λ2 + ε)

k∑
j=1

‖v(j)‖

< ‖y(1)
∗ − y0‖ + ‖v(1)‖

k∑
j=1

(λ2 + ε)j

by using (101). Hence

‖y(k+1)
∗ − y0‖ < ‖y(1)

∗ − y0‖ + ‖v(1)‖ × λ2 + ε

1 − λ2 − ε

< ‖y(1)
∗ − y0‖ + δ3(λ2 + ε)

1 − λ2 − ε
, ∀k.

The proof of the claim is completed upon choosing δ3 so small that

δ3(λ2 + ε)
1 − λ2 − ε

< δ1/2, δ3 < δ2

and α(1)x(1) so close to x0 that

‖y(1)
∗ − y0‖ ≤ ‖α(1)y(1) − y0‖ < δ1/2 < bmin/2.
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6. Spectral gap

In this section, we prove the spectral gap condition (47) with at least one oversampled coded diffraction 
pattern. This is the immediate consequence of the following two results.

Proposition 6.1. Let A∗ be isometric and B = AΩ0. Then ‖
(B∗x)‖ = 1 holds for some unit vector x if and 
only if x satisfies the equation

	(a∗jx)	(a∗jx0) + 
(a∗jx)
(a∗jx0) = 0, ∀j = 1, · · ·N, (105)

where aj are the columns of A, or equivalently

A∗x

|A∗x| = σ � ω0 (106)

where the components of σ are either 1 or −1, i.e.

σ(j) ∈ {1,−1}, ∀j = 1, · · ·N.

Proof. We have


(B∗x) = 

(

A∗x0

|A∗x0|
�A∗x

)

=
N∑
j=1

	(a∗jx0)
(a∗jx) −
(a∗jx0)	(a∗jx)
(	2(a∗jx0) + 
2(a∗jx0))1/2

(107)

and hence

‖
(B∗x)‖2 ≤
N∑
j=1

	2(a∗jx) + 
2(a∗jx) =
N∑
j=1

|a∗jx|2 = ‖A∗x‖2 = ‖x‖2

by the Cauchy–Schwartz inequality and the isometry of A∗.
In view of (107), the inequality becomes an equality if and only if (105) or (106) holds. �

Proposition 6.2 (Uniqueness of Fourier magnitude retrieval). Let x0 be a given rank ≥ 2 object and μ be 
continuously and independently distributed on the unit circle. Let A∗ be given by (4).

If the phase equation

�A∗x̂ = ±�A∗x0 (108)

holds where the ± sign is arbitrary pixel-by-pixel, then almost surely x̂ = cx0 for some constant c ∈ R.

The proof of Proposition 6.2 is given in Appendix A.
Now we can prove the spectral gap theorem needed for geometric convergence of FDR.

Theorem 6.3. Let Φ be the oversampled discrete Fourier transform. Let x0 be a rank ≥ 2 object and at least 
one of μj , j = 1, · · · , � ≥ 2, be independently and continuously distributed on the unit circle. Let

A∗ = c

[Φ diag{μ1}
· · ·

]
(109)
Φ diag{μ�}
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be isometric with a proper choice of c and

B := A diag
{

A∗x0

|A∗x0|

}
.

Then with probability one

‖
(B∗u)‖ = 1, ‖u‖ = 1 iff u = ±ix0/‖x0‖ (110)

and hence

λ2 = max{‖
(B∗u)‖ : u ∈ Cn, u ⊥ ix0, ‖u‖ = 1} < 1. (111)

Proof. Note that the proof of Proposition 6.1 depends only on the fact that A∗ is isometric and hence holds 
for at least one coded diffraction pattern, oversampled or not.

Also, the uniqueness theorem, Proposition 6.2, clearly holds as long as there is at least one oversampled 
coded diffraction pattern.

Now Proposition 6.1 says that (110) holds if (108) has a unique solution up to a real constant and 
Proposition 6.2 says that (108) indeed has a unique solution up to a real constant. The proof is complete. �

We have the following corollary from Theorems 5.1 and 6.3.

Corollary 6.4. Under the assumptions of Theorem 6.3, the geometric convergence (49) holds for phase 
retrieval with (109) as the propagation matrix.

7. Numerical experiments

The performance metric is given by the relative error (RE) of the estimate x̂ with the optimal phase 
adjustment α̂:

‖α̂x̂− x0‖
‖x0‖

, α̂ = x̂∗x0

|x̂∗x0|
. (112)

To identify the geometric convergence regime, we look for the straight-line portion of the semi-log plot 
of RE versus iteration. On the other hand, to identify the power-law convergence regime, we look for the 
straight-line portion of the log–log plot of RE versus iteration.

The stopping rule of the iteration is given by a thresholding rule based on the relative residual (RR)

‖|A∗x̂| − b‖
‖b‖ . (113)

7.1. Test images

For test images x0 we consider the Randomly Phased Phantom (RPP) Fig. 2 (left) and the deterministic 
image, hereby called the Truncated Cameraman–Barbara (TCB), whose real part is the truncated camera-
man, Fig. 2 (middle) and whose imaginary part is the truncated Barbara, Fig. 2 (right). The purpose of 
truncation is to create an (unknown) loose support (dark margins) which makes the image more difficult 
to recover. RPP has a loose support without additional truncation. Likewise, we randomize the original 
phantom in order to make its reconstruction more challenging. Based on our experience, a random object 
such as RPP is more difficult to recover than a deterministic object such as TCB (see, e.g. Fig. 8). The size 
n of both images is 256 × 256, including the margins.

The propagation matrix is primarily based on either (4) or (6) unless specified otherwise.
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Fig. 2. The original phantom without phase randomization (left), the truncated cameraman (middle) and the truncated Barbara 
(right).

Fig. 3. Semi-log plot of RE versus iteration for (a) TCB and (b) RPP.

7.2. Convergence rate

First we simulate the local convergence rate of the 11
2 -mask case and compare them with λ2.

The initial condition x(1) is chosen sufficiently close to the true object x0, which is a unit vector. Fig. 3
shows the error ‖α(k)[x(k)]n−x0‖ on the log scale versus the iteration counter in the case of two oversampled 
diffraction patterns. The solid straight line represents the geometric sequence {λk

2}100
k=1. The λ2 value is 

computed via the power method, λ2 = 0.9505 for TCB and λ2 = 0.9533 for RPP. Note that the FDR curve 
decays slightly faster than the λ2-curve, which decays still faster than the ODR curve (with ñ ≈ 4n).

7.3. Initialization

For global convergence behaviors, we test two different initializations: the Constant Initialization (CI), 
x(1) = c, where c is a positive constant, and the Random Initialization (RI), x(1) = ceiξ, where the compo-
nents of ξ ∈ Rn are i.i.d. uniform random variables over (−π, π]. Note that the value c does not affect the 
end result of the iteration as Sf(cy) = Sf(y) for any y = A∗x and c > 0.
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Fig. 4. Log–log plot of RE versus iteration in the 1-pattern case with two different sector constraints: [0, π/2] and [0, π].

Fig. 5. Log–log plot of RE versus iteration in the 1 1
2 -mask case.

7.4. One-pattern case

Fig. 4 is the log–log plot of RE with one coded diffraction pattern and two different sector conditions (in 
this case FDR and ODR are equivalent as N = ñ).

To test the effect of the sector constraint, the phase of RPP is uniformly distributed in two different 
intervals: [0, π/2] and [0, π]. While FDR/ODR converges globally regardless of the initialization, the rate of 
convergence decreases as the sector enlarges. When the sector constraint is absent, the iteration ceases to con-
verge in general. The nearly straight tail of the log–log plot suggests power-law decay between k−1.5 and k−2.

7.5. 11
2 -Mask case

With two (or more) diffraction patterns, we let the phase of RPP be uniformly distributed in (−π, π]
(i.e. no sector constraint).

Like Fig. 4, the nearly straight tail of the log–log plot in Fig. 5 indicates a power-law decay roughly like 
k−1.25.
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Fig. 6. Semi-log plot of RE versus iteration with one application of A∗A in the 1 1
2 -mask case.

The power-law behavior corresponds to the convergence of y(k) to Hθ given in (36). Because A∗AHθ =
eiθy0, we can enforce the geometric convergence regime, and thus speed up convergence, by applying the 
projection A∗A as in

y(k+1) = Sf(A∗Ay(k)) (114)

when, and only when, the relative residual of x(k) = Ay(k) is sufficiently small. Fig. 6 bears this out nicely, 
showing RE less than 10−10 in less than 400 iterations on the semi-log scale, a vast improvement over the 
power-law convergence in Fig. 5.

7.6. Noisy data

When noise ε is present in the data we would like to know how RE varies with the noise-to-signal ratio 
(NSR)

NSR = ‖ε‖
‖A∗x0‖

.

Since high-precision reconstruction is not possible with noisy data, we apply FDR without the extra pro-
jection A∗A.

Fig. 7 shows the linear scale plot of RE versus NSR with the maximum number of iterations set to 100 
and 200. For NSR≤ 20% the result is approximately a straight line with slope ≈ 2.2, independent of the 
number of iterations. Increasing the number of iterations reduces the error and extends the straight line 
regime to higher NSRs.

7.7. Multi-mask case

To test how DR performs in the setting of multiple patterns without oversampling [15,16] we simulate 
the 3-pattern and 4-pattern cases with the propagation matrices given by

A∗ = c

⎡⎢⎣ Φ diag{μ1}
· · ·

Φ diag{μ�−1}

⎤⎥⎦ , � = 3, 4, (115)

Φ
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Fig. 7. Linear scale plot of RE versus NSR in the 1 1
2 -mask case with the maximum number of iterations set to 100 or 200.

where Φ is the standard (unoversampled) DFT.
Fig. 8 shows the semi-log plot of RE versus iteration with three patterns (a)–(b) and four patterns (c)–(d), 

both without oversampling. The projection A∗A is inserted into FDR once the RR falls below 1%, resulting 
in the geometric convergence regime. Clearly, ODR performs poorly with RPP while FDR performs well 
for both images, independent of the initialization. Going from three patterns (N = 3|M|) to four patterns 
(N = 4|M|) reduces the number of iterations by about half to achieve the same level of accuracy. Note that 
the number of data with four patterns (N = 4|M|) is half of that with 2 oversampled patterns (N ≈ 8|M|) 
and Theorem 5.1 applies when the number of unoversampled patterns is at least two (i.e. N ≥ 2|M|) and 
the spectral gap condition (47) holds.

7.8. Padding ratio

Finally we test the effect of the padding ratio ñ/n on the performance of ODR. For each ñ/n ∈ [4, 8], we 
conduct 50 trials with independent, random initializations and average the REs. Recall that ñ/n = 4 is the 
standard padding rate and at ñ/n = 8 ODR is equivalent to FDR.

Fig. 9 shows the averaged RE versus the ratio ñ/n, demonstrating the phase transition from large RE 
at ñ/n = 4 to small RE at ñ/n = 8 (FDR). The phase transition depends on the number of iterations 
employed. As the number of iterations increases, the threshold ratio decreases.

8. Conclusion and discussion

FDR is a natural formulation of DR for phase retrieval. We have proved for the first time the local 
geometric convergence for FDR in the case of two (or more) oversampled diffraction patterns with the rate 
closely related to a spectral gap condition.

While we are unable to prove global convergence, the numerical experiments have strongly suggested the 
power-law convergence for both constant and randomly phased initializations. On the other hand, if the 
projection operator A∗A is inserted into the FDR iteration once the relative residual falls below a certain 
threshold indicating proximity to the set H, the projected iterate enters the basin of attraction of eiθy0 and 
the geometric convergence regime is restored, giving rise to highly accurate reconstruction.

This scenario continues to hold for FDR with 3 and more coded diffraction patterns without oversampling, 
with each additional coded diffraction pattern resulting in a lower number of iteration for the same level of 
accuracy.
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Fig. 8. Semi-log plot of RE with one application of A∗A. The number of diffraction patterns without oversampling is 3 for (a)–(b) 
and 4 for (c)–(d).

Fig. 9. Linear scale plot of RE versus ñ/n for (a) RPP and (b) TCB with various numbers of iteration.
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Appendix A. Proof of Proposition 6.2

In order to prove the uniqueness theorem for Fourier magnitude retrieval, we need to take up the more 
elaborate notation in Section 1.1.

Let

F (z) =
∑
n

f(n)z−n

be the z-transform of f . According to the fundamental theorem of algebra, F (z) can be written uniquely as

F (z) = αz−n0

p∏
k=1

Fk(z), (116)

where n0 is a vector of nonnegative integers, α is a complex coefficient, and Fk(z) are nontrivial irreducible 
polynomials in z−1.

Define the shift

fm+(·) = f(m + ·), fm−(·) = f(m − ·).

Conjugate Symmetry. A polynomial X(z) in z−1 is said to be conjugate symmetric if, for some vector k of 
positive integers and some θ ∈ (−π, π),

X(z) = eiθz−kX(z̄−1).

In other words, the ratio between X(z) and its conjugate inversion is a monomial in z−1 times a complex 
number of unit modulus.

A conjugate symmetric polynomial may be reducible, irreducible, trivial, or nontrivial. Any monomial 
z−k is conjugate symmetric.

Proposition A.1. Suppose that the z-transform F of f has no conjugate symmetric factors. If the z-transform 
G of g satisfies �F (e2πiw) − �G(e2πiw) ∈ {0, π}, ∀w ∈ L (defined in (3)) then g = cf for some constant 
c ∈ R.

The real-valued version of the above proposition is given in [38]. For the reader’s convenience, we provide 
the proof for the complex setting (see also [30], Appendix B, Proposition 5).

Proof. Let � denote the convolution operator. Consider

h = f � g(−·)

whose z-transform is
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H(z) = F (z)G(z̄−1).

Note that h is defined on M̃, instead of M, so H(z) is completely determined by sampling H on L.
Since

�H(e2πiw) = �F (e2πiw) − �G(e2πiw)

it follows H(e2πiw) is real-valued. By analytic continuation, we have

H(z) = H(z̄−1)

and

F (z)G(z̄−1) = F (z̄−1)G(z). (117)

Multiplying both sides of (117) by z−M results in the following polynomial equation in z−1:

F (z)G(z̄−1)z−M = z−MF (z̄−1)G(z). (118)

We observe n0 = 0 in view of (116) and the assumption that F (z) has no conjugate symmetric factor. 
We also have

z−MF (z̄−1) = α̃z−n1
∏
k

F̃k(z), (119)

where F̃k(z) are the nontrivial irreducible non-conjugate symmetric polynomials in z−1 of the form F̃k(z) =
z−M+pkFk(z̄−1) for some vector pk of positive integers.

Writing

G(z) = βz−m0
∏
�

G�(z), (120)

where G�(z) are nontrivial irreducible polynomials in z−1, we have

z−MG(z̄−1) = β̃z−m1
∏
�

G̃�(z), (121)

where G̃�(z) are the nontrivial irreducible polynomials in z−1 of the form G̃�(z) = z−M+q�G�(z̄−1) for some 
vector q� of positive integers.

Plugging (116), (119), (120) and (121) in (118) yields

αβ̃z−m1
∏
k

Fk(z)
∏
�

G̃�(z) = α̃βz−n1−m0
∏
k

F̃k(z)
∏
�

G�(z). (122)

Each nontrivial irreducible factor Fk(z) must be equal to some F̃k′(z) or some G�′(z). However, if Fk(z) =
F̃k(z), then Fk(z) is a conjugate symmetric factor. If, on the other hand, Fk(z) = F̃k′(z) for some k′ �= k, 
then Fk(z)Fk′(z) = F̃k′(z)F̃k(z) is a conjugate symmetric factor. Both cases, however, are excluded by the 
assumption that the z-transform of f does not have conjugate symmetric factors.

Hence each Fk (rest. F̃k) must be equal to some G� (rest. G̃�) and we can write

G(z) = Q(z)F (z) (123)
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where Q(z) is a polynomial in z−1, i.e.

Q(z) =
∑
n≥0

cnz−n.

By the assumption that �F (e2πiw) − �G(e2πiw) ∈ {0, π} we have Q(e2πiw) ∈ R, ∀w ∈ L, and hence 
c̄n = c−n = 0 except for n = 0 in which case c0 ∈ R. Therefore, Q = c0 ∈ R and this is what we start out 
to prove. �
Proposition A.2 ([28]). Let x0 have rank ≥ 2. Let {μ(n)} be independent and continuous random variables 
on the unit circle of the complex plane. Then, the z-transform F (z) of f(n) := μ(n)x0(n) is irreducible up 
to a power of z−1 with probability one.

For the proof of Proposition A.2 see Theorem 2 of [28].
We next show that the z-transform of {μ(n)x0(n)} is almost surely irreducible up to a power z−1 and 

not conjugate symmetric.

Proposition A.3. Let {μ(n)} be independent and continuous random variables on the unit circle of the 
complex plane. Let f(n) := μ(n)x0(n). Then the z-transforms of both ft+ and ft− are almost surely not 
conjugate symmetric ∀ t.

Proof. The z-transform

Ft+(z) =
∑
n

f(t + n)z−n. (124)

is conjugate symmetric if

Ft+(z) = eiθz−kFt+(z̄−1) (125)

for some vector k of positive integers and some θ ∈ (−π, π). Plugging (124) in (125) yields∑
n

f(t + n)z−n = eiθz−k
∑
n′

f(t + n′)zn′
,

which implies

f(t + n) = eiθf(t + k − n), ∀n. (126)

However, x0 is deterministic, and {μ(n)} are independent and continuous random variables on S1, so (126)
fails with probability one for any k. There are finitely many choices of k, so the z-transform of ft+ is almost 
surely not conjugate symmetric.

Similarly, the z-transform of ft− is also almost surely not conjugate symmetric. �
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