
0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.2974174, IEEE
Transactions on Information Theory

1

Super-resolution limit of the ESPRIT algorithm
Weilin Li, Wenjing Liao, Albert Fannjiang

Abstract—The problem of imaging point objects can be formu-
lated as estimation of an unknown atomic measure from its M+1
consecutive noisy Fourier coefficients. The standard resolution of
this inverse problem is 1/M and super-resolution refers to the
capability of resolving atoms at a higher resolution. When any
two atoms are less than 1/M apart, this recovery problem is
highly challenging and many existing algorithms either cannot
deal with this situation or require restrictive assumptions on the
sign of the measure. ESPRIT is an efficient method which does
not depend on the sign of the measure. This paper provides
an explicit error bound on the support matching distance of
ESPRIT in terms of the minimum singular value of Vandermonde
matrices. When the support consists of multiple well-separated
clumps and noise is sufficiently small, the support error by
ESPRIT scales like SRF2λ−2×Noise, where the Super-Resolution
Factor (SRF) governs the difficulty of the problem and λ is
the cardinality of the largest clump. Our error bound matches
the min-max rate of a special model with one clump of closely
spaced atoms up to a factor of M in the small noise regime, and
therefore establishes the near-optimality of ESPRIT. Our theory
is validated by numerical experiments.

Keywords: Super-resolution, subspace methods, ESPRIT, stabil-
ity, uncertainty principle

I. INTRODUCTION

A. Background and motivation

Many imaging problems involve detection of point objects
from Fourier measurements. Such inverse problems arise in
many interesting applications in imaging and signal pro-
cessing, including Direction-Of-Arrival (DOA) estimation [1],
[2], inverse source and inverse scattering [3], [4], [5], and
time series analysis [6]. The problem can be formulated as
spectral estimation - estimating an unknown discrete measure
µ consisting of a collection of Dirac delta functions, from its
noisy low-frequency Fourier coefficients.

The first solution to spectral estimation can be traced back
to Prony [7]. Unfortunately, the Prony’s method is numerically
unstable and numerous modifications have been attempted to
improve its numerical behavior. In the signal processing com-
munity, a class of subspace methods achieved major break-
throughs for the DOA estimation. Important representative
subspace methods are MUSIC (MUltiple SIgnal Classification)
[2], ESPRIT (Estimation of Signal Parameters via Rotation
Invariance Techniques) [8], and the matrix pencil method [9].
MUSIC was one of the first robust methods that gives a
high-resolution recovery but its computational cost is high.
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This drawback motivated the development of more efficient
algorithms such as ESPRIT and the matrix pencil method.
These methods have been widely used in applications due to
their high-resolution recovery – they are capable of resolving
fine details in µ [1].

A central interest on the mathematical theory of super-
resolution is to understand how to stably estimate µ when
there are closely spaced atoms in µ. Let ∆ be the minimum
separation of µ, which is defined as the distance between
the two closest atoms in the support of µ. Suppose M + 1
consecutive noisy Fourier coefficients of µ are collected. The
standard resolution of this inverse problem is 1/M , which is
the threshold predicted by the Heisenberg uncertainty princi-
ple. Super-resolution estimation refers to the case where ∆ is
significantly smaller than 1/M . In this situation the recovery
is very sensitive to noise.

In recent years, the mathematical theory of super-resolution
has gained considerable attention partly due to the invention
of a new family of convex minimization methods for this
problem, see [10], [11], [12], [13], [14], [15]. While they
are successful when ∆ ≥ C/M for a reasonably small
C > 1, they can potentially fail when ∆ ≤ 1/M , even in
the noiseless regime. For these convex methods to succeed
when ∆ ≤ 1/M , one requires that µ is non-negative [16],
[17], or more generally, the sign of its atoms satisfies certain
algebraic criteria [18]. Hence, it appears that an entirely
different approach is required to deal with the case of closely
spaced atoms with arbitrary complex phases that are pertinent
to many applications.

Subspace methods like MUSIC and ESPRIT are consid-
erably different from the aforementioned convex approaches.
First, they do not involve convex optimization. Second, they
provide exact recovery when there is no noise, regardless
of the location of the atoms, as long as the number of
measurements is at least twice the number of atoms. Third,
numerical evidence has demonstrated that they can accurately
estimate µ with arbitrarily complex phases, even when ∆ is
significantly smaller than 1/M , provided that the noise level is
sufficiently small. In other words, MUSIC and ESPRIT have
super-resolution capabilities, regardless of the sign of µ.

An interesting question is to quantify the resolution limit of
MUSIC and ESPRIT – conditions on µ and the noise level for
which they can recover µ up to a prescribed error. The answer
is not straightforward, as simple numerical experiments show
that the stability of MUSIC and ESPRIT heavily depends on
how the support of µ is arranged. In our earlier works [19],
[20], we introduced a separated clumps model to allow for
atoms clustered in far apart sets, and proved accurate estimates
on the minimum singular values of the Vandermonde matrices
with nodes satisfying this separated clumps model. The super-
resolution limit of MUSIC was studied in [20].
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This paper focuses on the robustness of ESPRIT. Although
this method was invented over a quarter century ago, an
accurate analysis of its super-resolution limit has been elusive.
One main complication is that, one must estimate the mini-
mum singular value of two structured matrices that appear
in ESPRIT. One is a rectangular Vandermonde matrix with
nodes on the unit circle (which we will denote by ΦM ) and
the other one is constructed as part of the algorithm (which
we will denote by U0). The minimum singular value of ΦM
was carefully studied in [19], [21], [22]. The conditioning of
U0 was not previously analyzed. In the process of studying
these matrices, we discover that ESPRIT implicitly leverages
an uncertainty principle for non-harmonic Fourier series. This
connection has not been previously discovered, and is the key
piece that allows us to provide an accurate analysis for the
super-resolution limit of ESPRIT.

B. Contributions and outline

In Section II, we review the ESPRIT algorithm and intro-
duce the necessary notation. ESPRIT has been empirically
observed to be robust to noise and is capable of super-resolving
atoms with arbitrary spacing and phases, provided that the
noise is sufficiently small. This paper rigorously derives the
error bound of ESPRIT, and proves the resolution limit of
ESPRIT under a geometric model for the unknown support.

In Section III, we derive the main stability bounds for
ESPRIT. We first bound the matching distance between the
true and estimated supports, in terms of the noise level and the
minimum singular value of some Vandermonde matrices. Our
bound in Theorem 1 significantly improves upon the existing
ones in [23], [24], [25], especially when ∆ ≤ 1/M . Theorem
1 is deterministic, non-asymptotic and holds for any support,
including when ∆ is arbitrarily small. Numerical evidence
demonstrates that it provides an accurate dependence on the
minimum singular value.

In Section IV, we combine Theorem 1 with bounds on
the minimum singular value of Vandermonde matrices under
a separated clumps model [19], [20] to obtain Theorem 3.
This is the first known rigorous guarantee for ESPRIT in
the ∆ ≤ 1/M regime. The theorem shows that ESPRIT
can accurately recover the support of µ, regardless of how
small ∆ is, provided that the noise is smaller than a quantity
specified by our theorem. Define the super-resolution factor
SRF := 1/(∆M), which can be interpreted as the maximum
number of atoms located within an interval of length 1/M . We
show that if the noise ε is sufficiently small, the support error
by ESPRIT is O(SRF−(2λ−2) ε), where λ is the cardinality
of the largest clump of the measure. When continuous Fourier
measurements are collected, and the support contains only
one clump of closely spaced atoms, the min-max rate is
O(SRF−(2λ−2) ε/M) [26]. In the small noise regime, our
support estimate for ESPRIT matches the min-max rate up to a
factor of M , which establishes the near-optimality of ESPRIT.

In Section VI, we derive several new uncertainty principles
for discrete non-harmonic Fourier series. A crucial step in our
analysis of ESPRIT is to derive a lower bound, uniformly over
all µ, on the minimum singular value of U0. We show that

the minimum singular value of U0 is related to an uncertain
principle in discrete non-harmonic Fourier series. We establish
this uncertainty principle in Theorem 5 which might be of
independent mathematical interest. Section VI can be read
independently of the rest of the paper.

Appendix A contains the proof of the results stated in
Sections III and IV.

C. Related work

MUSIC and ESPRIT were originally invented for DOA
estimation where the amplitudes of µ are assumed to be
random and multiple snapshots of measurements are taken. In
this “multiple snapshot” setting, more information about the
support of µ is collected, and statistics about the amplitudes
of µ can be utilized. Sensitivity of MUSIC and ESPRIT for
the DOA estimation was studied in [27], [28], [29], [30].
This paper focuses on the “single snapshot” setting where
the amplitudes of µ are deterministic and little statistical
information can be utilized.

Regarding the stability analysis of subspace methods, there
have been works on bounding the error in terms of the
minimum singular value of Vandermonde matrices. Such in-
equalities can be found in [31], [19] for MUSIC and in [25]
for ESPRIT, as well as in [32] for the matrix pencil method.
One major roadblock is that, to provide a comprehensive error
estimate, one still needs to accurately bound the smallest
singular value of ΦM in the ∆ ≤ 1/M . This difficulty was
addressed in [19], which provided the first accurate analysis
of MUSIC in the ∆ ≤ 1/M regime. As for ESPRIT, the
bounds in [25], [23] do not capture the exact dependence of
the error on the minimum singular value, and consequently,
are inaccurate when ∆ ≤ 1/M (see (III.9) and (III.10) and
the discussion there).

The minimum singular value of the Vandermonde matrix
crucially depends on the configuration of its nodes. One
available bound in the case ∆ ≥ C/M was proved in
[32], which relied on the Beurling-Selberg machinery, see
[33]. Recently there are several independent works which
provide estimates for ∆ ≤ 1/M by incorporating additional
geometric information about the support set, see [21], [19],
[22]. Accurate lower bounds under a separated clumps model
can be found in [19].

Super-resolution has also been addressed from a statistical
or information theoretic point of view. The authors of [34],
[35] address measures supported on a grid on R with spacing
1/N and the measurements consist of noisy continuous Fourier
measurements on [−M,M ]. It was proved in [35] that if the
measure has at most S atoms, then the best possible recovery
accuracy of the amplitudes in the `2 norm is O(SRF2S−1ε)
where SRF = N/M and ε is the noise level1. The earlier
paper [34] considered a more complicated model of measures
where the support of the measure cannot be too dense.

More relevant to our work is [26], where the authors
considered a geometric prior with one clump of closely spaced
atoms. Let λ be the cardinality of the largest clump or cluster.

1Upon closer inspection of their proofs, it is implicit that `0 minimization
is optimal, but this is not a computationally feasible method.
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They proved that the optimal algorithm can estimate the
support with accuracy of O(SRF2λ−2ε/M). These results are
information theoretic, and they do not provide a tractable
algorithm that achieves these rates. In comparison, ESPRIT is
a polynomial-time algorithm and the results in this paper show
that ESPRIT is near optimal for the geometric clumps model,
since it achieves the support recovery rate of O(SRF2λ−2ε).

II. REVIEW OF ESPRIT
We first describe the spectral estimation problem. Let MS

be the collection of non-zero and complex-valued discrete
measures supported on the torus T := R/Z with at most S
atoms. We identify T with the unit interval [0, 1), and we let
δω denote the Dirac measure supported in ω. Any µ ∈MS is
of the form,

µ(ω) =
S∑
j=1

xjδωj (ω)

where x := {xj}Sj=1 ∈ CS and Ω := {ωj}Sj=1 ⊆ T. The
minimum separation of µ is defined as

∆ := min
j 6=k
|ωj − ωk|T := min

j 6=k
min
n∈Z
|ωj − ωk − n|.

Let y0 = {y0
k}Mk=0 ∈ CM+1 denote the first M+1 consecutive

Fourier coefficients of µ: for k = 0, 1, . . . ,M ,

y0
k := µ̂(k) :=

∫
T
e−2πikω dµ(ω) =

S∑
j=1

xje
−2πikωj .

Suppose we are given information about µ ∈MS in the form
of M + 1 consecutive noisy Fourier coefficients,

y := y0 + η,

where η ∈ CM+1 represents some unknown small noise
vector. We let ‖ · ‖2 denote either the Euclidean norm or the
spectral norm, and we use ‖ · ‖F for the Frobenius norm.

The (M + 1) × S Fourier or Vandermonde matrix whose
nodes are specified by Ω is denoted ΦM := ΦM (Ω), where

ΦM :=


1 1 · · · 1

e−2πiω1 e−2πiω2 · · · e−2πiωS

...
...

...
e−2πiMω1 e−2πiMω2 · · · e−2πiMωS

 . (II.1)

If µ ∈MS has amplitudes x and support Ω, then we have the
relationship

y = ΦMx+ η. (II.2)

The goal of spectral estimation is to stably recover µ,
including the support Ω and the amplitudes x, from y. A
typical two-step strategy is to estimate the support set and
then the amplitudes. ESPRIT exploits the Vandermonde de-
composition of a Hankel matrix in order to reformulate the
support estimation step as an eigenvalue problem. Throughout
the exposition, L is an integer parameter for ESPRIT that
satisfies

S ≤ L ≤M + 1− S. (II.3)

Note that it is always possible to find a L that satisfies
the above inequalities whenever the number of measurements

exceeds the amount of unknowns: M + 1 ≥ 2S. The Hankel
matrix of y (with parameter L and size (L+1)×(M−L+1))
is defined to be

H(y) :=


y0 y1 . . . yM−L
y1 y2 . . . yM−L+1

...
...

. . .
...

yL yL+1 . . . yM

 . (II.4)

We first describe ESPRIT in the noiseless setting and then
outline how it deals with noise. In the case where η = 0, we
have access to the Hankel matrix H(y0), and a direct calcula-
tion shows that H(y0) processes the following Vandermonde
decomposition:

H(y0) = ΦLDXΦTM−L, (II.5)

where DX = diag(x1, . . . , xS) ∈ CS×S . The conditions in
(II.3) imply that both ΦL and ΦM−L have full column rank,
which in turn implies that H(y0) has rank S. More impor-
tantly, we have Range(H(y0)) = Range(ΦL), which means
Range(H(y0)) contains full information about the column
span of ΦL. ESPRIT amounts to finding an orthonormal basis
of Range(H(y0)) and using this basis to recover Ω. The
procedure of finding an orthonormal basis of Range(H(y0))
can be realized by Singular Value Decomposition (SVD) or
QR decomposition of H(y0).

Let the SVD of H(y0) be

H(y0) = [U U⊥] Σ [V V⊥]∗, (II.6)

where both U and V have S columns, and Σ =
diag(σ1, . . . , σS , 0, . . . , 0) contains the singular values of
H(y0). In general, we let σj(·) denote the j-th largest singular
value of a matrix. Comparing the identities (II.5) and (II.6),
we see that the column space of U and ΦL are identical to
Range(H(y0)). There exists an invertible matrix P ∈ CS×S
such that

U = ΦLP ∈ C(L+1)×S . (II.7)

Let U0 and U1 be two submatrices of U containing the first
and the last L rows respectively. Then we have

U0 = ΦL−1P,

U1 = ΦL−1DΩP,

where DΩ = diag(e−2πiω1 , . . . e−2πiωS ). Setting L ≥ S as
(II.3) guarantees that U0 and U1 have full column rank.

It follows from these definitions that if we define the matrix
Ψ := U†0U1, then

Ψ = P−1DΩP ∈ CS×S . (II.8)

Hence, the eigenvalues of Ψ are exactly {e−2πiωj}Sj=1. The
ESPRIT technique amounts to finding the support set Ω
through the eigenvalues of Ψ.

In the presence of noise, the ESPRIT algorithm forms the
noisy Hankel matrix

H(y) = H(y0) +H(η).

If the noise is sufficiently small, then the rank of H(y) is at
least S. ESPRIT computes a matrix Ĥ(y), defined to be the
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Algorithm 1 ESPRIT
Input: y ∈ CM+1, sparsity S, L

1) Form Hankel matrix H(y) ∈ C(L+1)×(M−L+1)

2) Compute the SVD of H(y):

H(y) = [Û Û⊥] Σ̂ [V̂ V̂⊥]∗, (II.9)

where both Û and V̂ have S columns and Σ̂ =
diag(σ̂1, . . . , σ̂S , σ̂S+1, . . .) are the singular values of
H(y) listed in decreasing order.

3. Let Û0 and Û1 be two submatrices of Û containing
the first and the last L rows respectively. Compute

Ψ̂ = Û†0 Û1

and its S eigenvalues λ̂1, . . . , λ̂S .
Output: Ω̂ = {ω̂j}Sj=1 where ω̂j = − arg(λ̂j)/(2π).

best rank S approximation of H(y) in the spectral norm; this
amounts to computing the SVD of H(y) and truncating the
singular spaces. We write the SVD of H(y) in (II.9).

When the size of the noise is sufficiently small, we expect
the column space of Û to be a small perturbation of that of
U . The ESPRIT algorithm proposes to find the eigenvalues
λ̂1, . . . , λ̂S of the matrix

Ψ̂ = Û†0 Û1,

where Û0 and Û1 are the first and last rows of Û respectively
and A† denotes the Moore-Penrose pseudo-inverse of a rectan-
gular matrix A. Projecting the eigenvalues to the complex unit
circle yields an estimator Ω̂ for Ω. We use arg(z) to denote
the argument of a complex number z. Further details can be
found in Algorithm 1.

III. ROBUSTNESS OF ESPRIT

A central interest about ESPRIT is on it stability analysis.
The main goal of this section is to bound the error between Ω
and Ω̂ in terms of the matrices that appear in the ESPRIT
algorithm. We state the main theorems and the necessary
lemmas in this section and leave their proofs in Appendix
A.

A. Perturbation of the matrix Ψ in spectral norm

Before we proceed to the stability analysis, we need to point
out a subtle and important feature of ESPRIT. The singular
values and singular subspaces of a matrix are unique, but the
SVD only provides us with one of infinitely many equivalent
orthonormal bases. Importantly, ESPRIT is invariant to the
specific choice of orthonormal basis for the column span of
Û . In other words, the eigenvalues of Ψ̂ remain the same if
one uses another orthonormal basis for the column span of Û .
To see why, let Ũ be another orthonormal basis for the column
span of Û . Then there exists an invertible matrix R ∈ CS×S ,
such that Ũ = ÛR. Let Ũ0 and Ũ1 be two submatrices of Ũ
containing the first and the last L rows respectively. Then Ũ0 =
Û0R and Ũ1 = Û1R. It follows that Ũ†0 Ũ1 = R−1Û†0 Û1R, so
the eigenvalues of Ũ†0 Ũ1 are identical to those of Û†0 Û1.

It follows from the above observation that we can make the
following reduction. The output of ESPRIT is independent of
the particular choice of basis for the singular spaces, so for the
mathematical analysis, we can without loss of generality, select
particular matrices U and Û that are most suitable for our
analysis. It turns out that the most convenient choice is when
the columns of U and Û consist of the canonical vectors2. Our
first perturbation bound is on ‖Ψ̂−Ψ‖2 (see Appendix A for
the proof).

Lemma 1. Fix positive integers L,M,S such that (II.3) holds.
For any µ ∈MS and η ∈ CM+1, if

‖H(η)‖2 ≤
xminσS(ΦL)σS(ΦM−L)σS(U0)

4
√

2S
,

then

‖Ψ̂−Ψ‖2 ≤
14
√

2S‖H(η)‖2
xminσS(ΦL)σS(ΦM−L)σ2

S(U0)
.

The estimate in Lemma 1 above indicates that the smallest
singular values of ΦL and U0 play an important role in our
analysis. An accurate lower bound of σS(ΦL) has been proved
in [19] under a separated clumps model of nodes. We will
derive a lower bound of σS(U0) in Subsection III-C.

B. ESPRIT error in the support matching distance

We next relate ‖Ψ̂−Ψ‖ to the matching distance between
the eigenvalues of Ψ̂ and Ψ. The matrix Ψ is diagonalizable
and has eigenvalues {e−2πiωj}Sj=1. We let {λ̂j}Sj=1 be the
eigenvalues of Ψ̂ listed according to multiplicity. It will follow
from the results below that the eigenvalues of Ψ̂ are distinct
provided that the noise is sufficiently small. The matching
distance between the eigenvalues of Ψ and Ψ̂ is defined to
be

md(Ψ, Ψ̂) := min
ψ

max
j
|λ̂ψ(j) − e−2πiωj |,

where ψ is taken over all permutations of {1, . . . , S}.
ESPRIT projects each eigenvalue λ̂j of Ψ̂ to the complex

unit circle to obtain ω̂j = −∠λ̂j/(2π) ∈ T. Let Ω̂ = {ω̂j}Sj=1,
which is the output of ESPRIT. Notice that Ω̂ may contain
repeated entries since Ψ̂ may have eigenvalues with multiplic-
ity greater than one. If the noise is sufficiently small, then
Ω̂ necessarily consists of S distinct values. The matching
distance between Ω and Ω̂ is,

md(Ω, Ω̂) := min
ψ

max
j
|ω̂ψ(j) − ωj |T.

The two matching distances md(Ω, Ω̂) and md(Ψ, Ψ̂) satisfy
the following relation (proved in Appendix B):

md(Ω, Ω̂) ≤ 1

2
md(Ψ, Ψ̂). (III.1)

We provide two bounds on the matching distance. The
first bound in Lemma 2 (a) below is based on the Bauer-
Fike theorem. It holds for various noise levels, but leads to a
weaker conclusion. The second bound in Lemma 2 (b) below
is derived from the Gershgorin circle theorem. In comparison

2https://en.wikipedia.org/wiki/Angles between flats
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to the first bound, the second one requires the noise level to
be smaller but the conclusion is stronger. Their proofs are in
Appendix C.

Lemma 2. Fix positive integers L,M,S such that (II.3) holds.
For any µ ∈MS and η ∈ CM+1, the following hold.

(a) (Moderate noise regime) We have

md(Ω, Ω̂) ≤ S3/2
√
L+ 1

σS(ΦL)
‖Ψ̂−Ψ‖2. (III.2)

(b) (Small noise regime) If additionally,

‖Ψ̂−Ψ‖2 ≤
σ2
S(ΦL)∆

S2(L+ 1)
, (III.3)

then we obtain

md(Ω, Ω̂) ≤ ‖Ψ− Ψ̂‖2. (III.4)

Part (a) holds without any assumptions on ‖Ψ̂−Ψ‖2, while
Part (b) requires ‖Ψ̂ − Ψ‖2 which is in turn a constraint on
the size of the noise. However, the conclusion given by (III.4)
is stronger than (III.2) in the super-resolution regime, because
when ∆ is small, σS(ΦL) is an extremely small quantity that
depends exponentially on SRF−1.

C. Smallest singular value of U0

Lemma 1 indicates that σS(U0) plays an important role in
our stability analysis for ESPRIT. The matrix U0 is obtained
from U with the last row removed, where U ∈ C(L+1)×S

contains orthonormal columns. One can easily show that
σ1(U0) = . . . = σS−1(U0), but it is not clear what the
value of σS(U0) is. In general, deleting a row from a matrix
with orthonormal columns may result in linearly dependent
columns. For instance, the matrix [0 0; 1 0; 0 1] has orthonor-
mal columns, but if we delete its last row, the resulting matrix
does not have full column rank any more.

However, U is not an arbitrary unitary matrix because the
columns of U form an orthonormal basis for the column space
of ΦL. While U can be explicitly realized by the Gram-
Schmidt orthogonalization process applied to ΦL, it is hard
to leverage this relationship in a theoretical form. Instead we
establish an uncertainty principle to relate U and ΦL in order
to prove the following lower bound of σS(U0).

Lemma 3. Fix positive integers L,M,S such that (II.3) holds.
For any µ ∈MS , we have

min
(
σ2
S(U0), σ2

S(U1)
)
≥ max

(
1− S

σ2
S(ΦL)

, 4−S
)
.

Lemma 3 is proved in Appendix D, which shows that
controlling σS(U0) is equivalent to establishing an uncertainty
principle. Notice that Lemma 3 gives a deterministic (hence
worst case) bound. In principle it is possible to improve it by
incorporating further assumptions about Ω.

D. Stability of ESPRIT in terms of Vandermonde matrices

Combining Lemma 1, Lemma 2 and Lemma 3 gives rise
to the following deterministic bounds for the support error of

ESPRIT (proved in Appendix A), one for moderate noise and
one for small noise.

Theorem 1. Fix positive integers L,M,S such that (II.3)
holds, and fix µ ∈MS and η ∈ CM+1.

(a) (Moderate noise regime) If the noise level is moderately
small such that

‖H(η)‖2 ≤
xminσS(U0)σS(ΦL)σS(ΦM−L)

4
√

2S
, (III.5)

then the output of ESPRIT satisfies

md(Ω, Ω̂) ≤ 20S2
√
L+ 1 ‖H(η)‖2

xminσ2
S(U0)σ2

S(ΦL)σS(ΦM−L)
. (III.6)

(b) (Small noise regime) If the noise level is sufficiently small
such that

‖H(η)‖2 ≤
xmin∆σ2

S(U0)σ3
S(ΦL)σS(ΦM−L)

20S5/2(L+ 1)
, (III.7)

then the output of ESPRIT satisfies

md(Ω, Ω̂) ≤ 20
√
S ‖H(η)‖2

xminσ2
S(U0)σS(ΦL)σS(ΦM−L)

. (III.8)

In practice one should choose L = bM/2c to balance
σS(ΦL) and σS(ΦM−L). If M is even, we set L = M/2 so
that σS(ΦL) = σS(ΦM−L) = σS(ΦM/2). Thanks to Lemma
3, σS(U0) ≥ 2−S which is independent of Ω. The key to
understand the super-resolution of ESPRIT is to obtain a sharp
dependence on σS(ΦM/2). Suppressing all terms that depend
on S and the amplitudes of µ, but independent of M and Ω,
the above Theorem 1 is summarized as:
(a) (Moderate noise regime) If ‖H(η)‖2 . σ2

S(ΦM/2), then

md(Ω, Ω̂) .

√
M ‖H(η)‖2
σ3
S(ΦM/2)

.

(b) (Small noise regime) If ‖H(η)‖2 . ∆σ4
S(ΦM/2)/M , then

md(Ω, Ω̂) .
‖H(η)‖2
σ2
S(ΦM/2)

.

In terms of the dependence on σS(ΦM/2), Theorem 1
greatly improves upon earlier stability bounds3 of ESPRIT:

md(Ω, Ω̂) .
‖η‖2

σ5
S(ΦM/2)

[23,Theorem 1], proof in [24]

(III.9)

‖Ψ̂−Ψ‖2 .
‖H(η)‖2
σ4
S(ΦM/2)

[25,Theorem 4]. (III.10)

We will later see that the exponent of σS(ΦM/2) is crucial
since it determines the exponent of SRF in the super-resolution
analysis for ESPRIT.

IV. SUPER-RESOLUTION LIMIT OF ESPRIT

This section is devoted to the analysis of the resolution limit
of ESPRIT under a separated clumps assumption on Ω, where
this model was proposed in [19], [20].

3The paper [25] analyzed a variation of the classical ESPRIT algorithm.
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A. The minimum singular value of ΦM

We first define the separated clumps model (see [19], [20]
for more details).

Assumption 1 (Separated clumps model). Let M and A be a
positive integers and Ω ⊆ T have cardinality S. We say that Ω
consists of A separated clumps with parameters (M,S, α, β)
if the following hold.

1) Ω can be written as the union of A disjoint sets {Λa}Aa=1,
where each clump Λa is contained in an interval of length
1/M .

2) ∆ ≥ α/M with max1≤a≤A(λa − 1) < 1/α where λa is
the cardinality of Λa.

3) If A > 1, then the distance between any two clumps is
at least β/M .

α/M

Λ1

α/M

Λ2

α/M

ΛA−1

α/M

ΛAβ/M

Fig. IV.1. Ω =
⋃
a Λa where each Λa contains 3 equally spaced atoms with

spacing α/M . The clumps are separated at least by β/M .

An example of separated clumps is shown in Figure IV.1. In
applications there are many types of discrete sets that consist
of separated clumps. One extreme example is when Ω is a
single clump containing all S points. This is considered to
be the worst case configuration for Ω in the sense that super-
resolution will be highly sensitive to noise. Another extreme
instance is when all S points in Ω are separated by 1/M , so
we can think of Ω as having S clumps each containing single
point. This is widely considered to be the best case scenario,
in which super-resolution is least sensitive to noise. While
our assumption applies to both extremes, the in-between case
where Ω consists of several clumps each of modest size is the
most interesting, and developing a theory of super-resolution
for this case is most challenging.

We proved in [19], [20] that, under this separated clumps
model, σmin(ΦM ) is an `2 aggregate of A terms, where each
term only depends on the “geometry” of each clump.

Theorem 2. Fix positive integers M and S such that M ≥ S2.
Assume Ω satisfies Assumption 1 with parameters (M,S, α, β)
for some α > 0 and

β ≥ max
1≤a≤A

20S1/2λ
5/2
a

α1/2
. (IV.1)

Then there exist explicit constants Ca := Ca(λa,M) > 0 such
that

σmin(ΦM ) ≥
√
M
( A∑
a=1

(
Caα

−λa+1
)2)− 1

2

. (IV.2)

The main feature of this theorem are the exponents on
SRF = 1/α, which depend on the cardinality of each clumps
as opposed to the total number of points. Let λ be the
cardinality of the largest clump: λ = max1≤a≤A λa.

Theorem 2 implies the following bound (which is looser,
but easier to digest)

σmin(ΦM ) ≥ C
√
M SRF−λ+1. (IV.3)

Previous results [34], [35] strongly suggest4 that

σmin(ΦM ) ≥ C
√
M SRF−S+1. (IV.4)

By comparing the inequalities (IV.3) and (IV.4), we see the
former is dramatically better when all of the point sources
are not located within a single clump. These results are also
consistent with our intuition that σmin(ΦM ) is smallest when
Ω consists of S closely spaced points; more details about this
can be found in [19].

B. Super-resolution limit of ESPRIT
Theorem 1 provides an error bound of ESPRIT in terms

of the singular values of Vandermonde matrices. Thanks to
Theorem 2, we can obtain the following explicit error bound
for ESPRIT under the separated clumps model (see Appendix
F for the proof).

Theorem 3. Fix positive integers M and S such that M ≥ S2.
Suppose M is even and L = M/2, and Ω satisfies As-
sumption 1 with parameters (M/2, S, α, β) for some α > 0
and β satisfying (IV.1). Then there exist explicit constants
ca := Ca(λa,M/2) such that the following hold:
(a) (Moderate noise regime) if the noise level is moderately

small such that

‖H(η)‖2 ≤
xminM

16
√
S2S

( A∑
a=1

(
caα
−λa+1

)2)−1

, (IV.5)

then the output of ESPRIT satisfies

md(Ω, Ω̂) ≤ 80S24S

xminM

( A∑
a=1

(
caα
−λa+1

)2) 3
2 ‖H(η)‖2;

(IV.6)
(b) (Small noise regime) If the noise level is sufficiently small

such that

‖H(η)‖2 ≤
αxmin

80S5/24S

( A∑
a=1

(
caα
−λa+1

)2)−2

, (IV.7)

then the output Ω̂ of ESPRIT satisfies

md(Ω, Ω̂) ≤ 40
√
S4S

xminM

( A∑
a=1

(
caα
−λa+1

)2)‖H(η)‖2. (IV.8)

To simplify the results, let λ be the cardinality of the largest
clump. According to [19, Theorem 2], the constant ca can
be expressed as ca = C(λa)( M

2λa
)λa−1b M2λa c

−(λa−1) which
weakly depends on M and is bounded above independently
of M when M ≥ 4S. Notice that SRF = 1/α. Under the
clumps model for appropriate parameters and suppressing all
constants that do not depend on M and Ω, Theorem 3 can
then be simplified to:

4We avoid using the word “imply” because those papers studied a similar
inverse problem but with continuous Fourier measurements and bounded
measures on R, rather than discrete ones and bounded measures on T, like
the ones considered here.
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(a) (Moderate noise regime) If ‖H(η)‖2 . M SRF−(2λ−2),
then

md(Ω, Ω̂) . SRF3λ−3‖H(η)‖2/M.

(b) (Small noise regime) If ‖H(η)‖2 . SRF−(4λ−3), then

md(Ω, Ω̂) . SRF2λ−2‖H(η)‖2/M.

C. In relation to min-max bounds
In order to compare our results with the min-max error

[26], we next express the noise level in terms of ‖η‖∞ using
the inequality ‖H(η)‖2 ≤ ‖H(η)‖F ≤ M‖η‖∞. Under the
clumps model for appropriate parameters and suppressing all
constants that do not depend on M and Ω, Theorem 3 can be
summarized by the following table:

Noise assumption ESPRIT Error
‖η‖∞ . SRF−(2λ−2) md(Ω, Ω̂) . SRF3λ−3‖η‖∞
‖η‖∞ . SRF−(4λ−3)/M md(Ω, Ω̂) . SRF2λ−2‖η‖∞
It was shown in [26] that, for a slightly different model

with continuous Fourier measurements, the min-max error for
estimating the support is in the order of SRF−(2λ−2)‖η‖∞/M .
There is evidence [34], [35], [19], [21], [26] showing that
the min-max rates with continuous or discrete Fourier mea-
surements are of the same order, so it is reasonable to assert
that SRF−(2λ−2)‖η‖∞/M is the min-max rate for our model.
Our main result shows that ESPRIT achieves the min-max
rate up to a factor of M when noise is sufficiently small, i.e.
‖η‖∞ . SRF−(4λ−3)/M .

If η is independent Gaussian noise, i.e., η ∼ N (0, σ2I),
‖H(η)‖2 satisfies the following concentration inequality [36,
Theorem 4]:

Proposition 1. Let C(L,M) := max(L + 1,M − L + 1). If
η ∼ N (0, σ2I), then for any t > 0,

E‖H(η)‖2 ≤ σ
√

2C(L,M) log(M + 2),

P {‖H(η)‖2 ≥ t} ≤ (M + 2) exp

(
− t2

2σ2C(L,M)

)
.

In the case of Gaussian noise, E‖H(η)‖2 scales like
σ
√
M logM , and ‖η‖∞ scales like

√
logMσ. In the small

noise regime where σ
√
M logM ∝ SRF−(4λ−3), the ESPRIT

error becomes

md(Ω, Ω̂) ∝
√

logM

M
SRF2λ−2 σ

xmin
,

md(Ω, Ω̂) ∝ SRF2λ−2

xmin

√
M
‖η‖∞.

(IV.9)

In the case of Gaussian noise, our result matches the min-max
rate up to a factor of

√
M when noise is sufficiently small.

D. ESPRIT in the well-separated case
In this section, we derive stability bounds for ESPRIT when

∆ ≥ C/M for a reasonable constant C > 1, we refer to as the
well-separated case. The stability of ESPRIT in this regime is
an easy consequence of the machinery we have developed so
far. The key result that we employ is the inequality from [32],

C − 1

C
M ≤ σ2

S(ΦM (Ω)), (IV.10)

which holds under the assumption that ∆(Ω) ≥ C/M for
some C > 1. This was derived by using properties of the
Beurling-Selberg majorant function, see [33]. Combining this
inequality with our machinery gives us the following result,
and the proof is in Appendix A.

Theorem 4. Fix positive integers M and S such that M ≥
4S is even and set L = M/2. For any µ ∈ MS such that
∆ = ∆(Ω) ≥ 2C/M = C/L for some C > 2, and any noise
η ∈ CM such that

‖H(η)‖2 ≤
C0xminL

4
√

2S

√
1− S

C0L
, (IV.11)

where C0 := C/(C − 1), then we have

md(Ω, Ω̂) ≤ 20C
3/2
0 S2

xmin

√
L+ 1

L3/2

(
1− C0S

L

)−1

‖H(η)‖2.

Let us explain what the inequality in the theorem means in
terms of the number of Fourier samples M . If we suppress all
of the terms that are independent of M = 2L and the noise
term, then the above inequality is of the form

md(Ω, Ω̂) .
‖H(η)‖2
M

.

V. NUMERICAL SIMULATIONS

We next perform numerical simulations to verify Theorem
1 and the scaling law in (IV.9) that was predicted by Theorem
3. In our simulations, the true support Ω contains 1, 2, 3
or 4 clumps (A = 1, 2, 3, 4) of λ equally spaced objects
consecutively spaced by ∆, while the clusters are separated
at least by β/M with β ≥ 10 (see Figure V.2 (a) for an
example). The coefficients {xj}Sj=1 have unit magnitudes and
random phases. We set M = 100, L = M/2 = 50 and let ∆
vary so that SRF varies. Noise is gaussian: η ∼ N (0, σ2I).

The support error is measured by the matching distance
md(Ω, Ω̂). For each parameter setting, we randomly choose
the phases of x, and run the experiments 100 times with
random noises and the fixed amplitudes x. The average support
error for this x is taken as the average of support matching
distance within these 100 experiments. In order to test ES-
PRIT’s capability of dealing with arbitrary complex phases,
we then take the worst average support error over 10 random
phases.

A. Matching distance versus σmin(ΦL) and SRF

Our first set of experiments is to verify Theorem 1 (b),
which proves the scaling law

md(Ω, Ω̂) ∝ noise

σ2
S(ΦM/2)

. (V.1)

By employing Theorem 2, the above can be rewritten as

md(Ω, Ω̂) ∝ noise · SRF2λ−2. (V.2)

The noise noise level σ is fixed in this experiment. For each
fixed σ, we let SRF vary and record the average md(Ω, Ω̂)
over 100 experiments of random noises, for the worst random
phases of x. Figure V.1 displays the log-log plot of the average
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md(Ω, Ω̂) versus σmin(ΦM/2) and SRF for (a) A = 1 and
λ = 2 and (b) A = 2 and λ = 3. The curves appear to
be straight lines and the slopes of these curves verifies the
theoretical prediction given by the scaling laws (V.1) and (V.2).
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(b) λ = 3

Fig. V.1. These figures display the log-log plot of the average md(Ω, Ω̂)
versus σmin(ΦM/2) (the left column) and SRF (the right column) for λ = 2
in (a) and λ = 3 in (b).

B. Phase transition

Our second set of experiments is more comprehensive than
our first set, because we allow both SRF and σ to vary. We
perform 100 trials for each SRF and σ, and we include the
performance of MUSIC to serve as a comparison.

Figure V.2 (b) and (c) display the average value of
log2[md(Ω, Ω̂)/∆] over 100 trials with respect to log10 SRF
(x-axis) and log10 σ (y-axis) when Ω contains 2 clumps of 3
consecutively spaced atoms: A = 2 and λ = 2. A clear phase
transition demonstrates that MUSIC and ESPRIT are capable
of resolving closely spaced complex-valued objects as long
as σ is below certain threshold depending on SRF. ESPRIT
outperforms MUSIC as it can tolerate a larger amount of noise.

In Figure V.3, we display the phase transition curves. We
say the output Ω̂ of either MUSIC or ESPRIT is successful if
md(Ω, Ω̂) ≤ ∆/2. The phase transition curves are extracted
such that the success probability within 100 simulations is
above 95%. Figure V.3 displays the phase transition curves of
MUSIC and ESPRIT with respect to log10 SRF (x-axis) and
log10 σ (y-axis). It appears that all phase transition curves are
almost straight lines, manifesting that the noise level σ that
MUSIC and ESPRIT can tolerate satisfies

σ ∼ SRF−q(Ω). (V.3)

The results of this experiment are consistent with the theoret-
ical scaling laws (IV.9), which predicts that q(Ω) = 2λ − 2
independent of the clump number A.

We perform a least squares fitting of the curves by straight
lines to obtain an empirical value of the exponent q(Ω), which
is summarized in Table I. The numerical exponents of ESPRIT
more or less match our theoretical estimation in (IV.9). Our
findings also indicate that ESPRIT is more robust to random
noise than MUSIC.

VI. A NON-HARMONIC UNCERTAINTY PRINCIPLE

Informally speaking, the uncertainty principle in Fourier
analysis states that a function cannot be simultaneously lo-
calized in both time and frequency. This intuition was first
formalized by the classical Heisenberg uncertainty principle,
which showed that a square integrable function on R cannot
simultaneously have small variance in both space and fre-
quency. Many intriguing papers have provided inequalities of
similar spirit for Fourier operators and spectral decompositions
in a variety of settings. We refer the reader to [37], [38] and
references therein for an overview of this subject.

We establish an uncertainty principle, but our main contri-
butions in this area appear to be non-standard in two ways:
the statements are not given in terms of norms and we treat
discrete non-harmonic Fourier series. More precisely, we are
mainly interested in the set MS of all non-zero complex
valued discrete measures µ on the torus T consisting of
at most S atoms. Any µ ∈ MS has the representation
µ =

∑S
j=1 ujδωj for some uj ∈ C and ωj ∈ T. Recall that

µ̂ denotes the Fourier transform of µ and it is convenient to
define the quantity

‖µ̂‖`2N =
(N−1∑
k=0

|µ̂(k)|2
)1/2

. (VI.1)

This section is primarily concerned with obtaining an upper
bound on the quantity,

CN,S := sup
µ∈MS

CN (µ) where CN (µ) :=
|µ̂(0)|
‖µ̂‖`2N

, (VI.2)

which is well-defined for N ≥ S in view of the following
result.

Proposition 2. For any µ ∈ MS and N ≥ S, we have
‖µ̂‖`2N > 0.

Proof. If µ =
∑S
j=1 ujδωj and Ω = {ωj}Sj=1, then the

Vandermonde matrix ΦN−1(Ω) has full rank when N ≥ S. If
‖µ̂‖`2N = 0, then

0 = µ̂(k) =
S∑
j=1

uje
−2πikωj for 0 ≤ k ≤ N − 1.

This implies u = 0, which contradicts the assumption that µ
is non-zero.

We note that CN,S = ∞ when N < S because it is not
hard to show there exists a µ ∈ MS such that ‖µ̂‖`2N = 0.
We also have that CS,S = 1. To see this, we can consider
a measure µ =

∑N−1
j=0 ujδj/N , where we shall pick the

amplitudes momentarily. Note that µ ∈ MS and that the
Fourier coefficients {µ̂(k)}N−1

k=0 consists of the discrete Fourier
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(b) MUSIC
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(c) ESPRIT

Fig. V.2. (b) and (c) displays the average log2[md(Ω, Ω̂)/∆] over 100 trials with respect to log10 SRF (x-axis) and log10 σ (y-axis) when Ω contains 2
clusters of 2 consecutively spaced objects: A = 2 and λ = 2.
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Fig. V.3. The phase transition curves below which the success probability is at least 95% for λ = 2, 3, 4 with respect to log10 SRF (x-axis) and log10 σ
(y-axis). The slopes are computed by least squares.

transform of the vector u ∈ CN . Thus, we can pick u ∈ CN
such that its DFT is precisely the canonical basis vector e0.
Doing this provides an example of a measure µ ∈ MS such
that CN (µ) = 1. The case where S = 1 and N > 1 is also
trivial, since a direct computation shows that CN,1 = 1/

√
N .

Thus, the only interesting case is when N > S > 1.

Obviously we have the trivial upper bound CN,S ≤ 1, and
the point of the below results is prove a better estimate by
using the assumption that µ ∈ MS . The quantity CN (µ)
describes the concentration or localization of µ̂ in its zero-th
Fourier coefficient. However, we suspect that CN,S < 1 when
N > S because if µ is supported in S points, then it is hard
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λ = 2 λ = 3 λ = 4 Numerical q(Ω) Theoretical q(Ω)
1-clump: MUSIC 2.78 5.50 7.75 2.49λ− 2.11 2λ− 2
2-clump: MUSIC 2.89 5.38 7.00 2.06λ− 1.08 2λ− 2
3-clump: MUSIC 2.90 5.25 7.00 2.05λ− 1.10 2λ− 2
4-clump: MUSIC 3.01 5.12 8.50 2.75λ− 2.70 2λ− 2
1-clump ESPRIT 2.36 4.88 6.70 2.17λ− 1.86 2λ− 2
2-clump ESPRIT 2.61 4.62 7.29 2.34λ− 2.18 2λ− 2
3-clump ESPRIT 2.03 4.32 6.79 2.38λ− 2.76 2λ− 2
4-clump ESPRIT 1.81 4.34 6.43 2.31λ− 2.74 2λ− 2

TABLE I
NUMERICAL SIMULATIONS OF q(Ω) ON THE PHASE TRANSITION CURVES OF MUSIC AND ESPRIT.

to imagine that µ̂ would be supported in exactly one of the
N > S frequencies. To provide some support for this claim,
we first generalize a result of Donoho-Stark [39, Theorem 1]
which was originally proved for (harmonic) Fourier series.

Proposition 3. Let µ ∈ MS and N ≥ S. For any N
consecutive Fourier coefficients of µ, at least bN/Sc of them
are non-zero. Moreover, for any µ ∈ MS and N > S, we
have CN (µ) < 1.

Proof. Fix a non-zero measure µ =
∑S
j=1 ujδωj , where

u ∈ CS and Ω = {ωj} ⊆ T. For any set containing N con-
secutive integers, from it we extract bN/Sc disjoint subsets,
where each set contains S consecutive integers. Call one these
sets {n, n + 1, . . . , n + S − 1}. Suppose for the purpose of
contradiction that µ̂(k) = 0 for each n ≤ k ≤ n + S − 1.
Then

∑S
j=1 uje

−2πikωj = 0 for each n ≤ k ≤ n + S − 1.
This is a system of equations, and since square Vandermonde
matrices are invertible, this implies uj = 0 for 1 ≤ j ≤ S,
which is a contradiction. Thus, there is at least one integer
in k ∈ {n, n + 1, . . . , n + S − 1} for which µ̂(k) 6= 0.
Repeating this argument for each of the bN/Sc sets proves
the first statement of the proposition.

To see why the second statement of the proposition follows,
consider the set {1, 2, . . . , S}. Then for any µ ∈ MS , there
is a k ∈ {1, 2, . . . , S} such that |µ̂(k)| > 0. This shows that
‖µ̂‖`2N > |µ̂(0)| or equivalently, CN (µ) < 1.

Proposition 3 and uncertainty principles of Donoho-Stark
type, see [40] for generalizations, estimate the number of
non-zero Fourier coefficients, but do not say how large they
must be. In contrast, the following theorem can be seen as a
statement about the size of the amplitudes.

Theorem 5. If N > S > 1, then CN,S ≤
√

1− 4−S .

Before we prove the theorem, we first state a simple and
useful observation regarding the dual relationship between
polynomial interpolation and Fourier transforms.

Proposition 4. For any µ ∈ MS supported in Ω, if there
exists a continuous function f on T such that f = 1 on Ω and
f̂ is supported in a set Λ ⊆ Z, then

|µ̂(0)| ≤ ‖f‖L2(T)

(∑
k∈Λ

|µ̂(k)|2
)1/2

.

Proof. This is a basic consequence of duality and the Parseval
theorem. Let µ =

∑S
j=1 ujδωj . If f is continuous and satisfies

the assumed properties, then we have

|µ̂(0)| =
∣∣∣ S∑
j=1

uj

∣∣∣ =
∣∣∣ ∫

T
f dµ

∣∣∣.
By the Parseval theorem and Cauchy-Schwarz inequality, we
see that∣∣∣ ∫

T
f dµ

∣∣∣ =
∣∣∣∑
k∈Λ

f̂(k)µ̂(k)
∣∣∣ ≤ ‖f‖L2(T)

(∑
k∈Λ

|µ̂(k)|2
)1/2

.

This concludes the proof of the proposition.

Proof of Theorem 5. The main idea is to construct, for each
set Ω of cardinality S, a continuous function fΩ with the
properties listed in Proposition 4 such that ‖fΩ‖L2(T) is
uniformly bounded in Ω. To do this, it is simpler to construct
a function that vanishes on Ω instead.

For now, we fix a set Ω = {ωj}Sj=1 ⊆ T and consider the
trigonometric polynomial,

pΩ(ω) := (−1)S
S∏
j=1

(e2πi(ω−ωj) − 1). (VI.3)

Its zero set is precisely {ωj}Sj=1. To see why p̂Ω is supported
in {0, 1, . . . , S}, we could expand out the product in the
definition of pΩ, which would provide its Fourier series
representation. Doing this also shows that p̂Ω(0) = 1. It is
natural to consider this function, since it is the polynomial with
the minimum degree that generates the ideal of trigonometric
polynomials vanishing on Ω.

For any α > 0, we define the family of functions

fΩ,α(ω) := 1− αpΩ(ω).

By construction, we have fΩ,α = 1 on Ω, f̂Ω,α is supported
in the set {0, 1, . . . , S}, f̂Ω,α(0) = 1 − α, and f̂Ω,α(k) =
−αp̂Ω(k) for all k 6= 0. It follows from these properties,
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Parseval’s theorem, and Hölder’s inequality that

‖fΩ,α‖2L2(T) =
S∑
k=0

|f̂Ω,α(k)|2

= (1− α)2 + α2
S∑
k=1

|p̂Ω(k)|2

= (1− α)2 − α2|p̂Ω(0)|2 + α2
S∑
k=0

|p̂Ω(k)|2

≤ (1− α)2 − α2 + α2‖pΩ‖2L2(T)

≤ 1− 2α+ α2‖pΩ‖2L∞(T).

The optimal α that minimizes the right hand side is α =
‖pΩ‖−2

L∞(T). Let fΩ be the function fΩ,α for this particular
value of α. This shows that

‖fΩ‖2L2(T) ≤ 1− ‖pΩ‖−2
L∞(T). (VI.4)

All that remains is to upper bound ‖pΩ‖L∞(T) uniformly in Ω.
Since we do not want to use any information about Ω except
for its cardinality, the only bound available to us is

‖pΩ‖L∞(T) = sup
ω∈T

S∏
j=1

|e2πi(ω−ωj) − 1| ≤ 2S . (VI.5)

We are ready to apply Proposition 4 with the set Λ =
{0, 1, . . . , S}. For each µ ∈MS supported in Ω, we note that
fΩ satisfies the required properties. Together with inequalities
(VI.4) and (VI.5) shows that

|µ̂(0)| ≤ ‖fΩ‖L2(T)‖µ̂‖`2S+1
≤
√

1− 4−S ‖µ̂‖`2S+1
.

This inequality is uniform over all sets Ω of cardinality S.
Rearranging and taking the supremum over all µ ∈MS shows
that

CN,S = sup
µ∈MS

CN (µ) ≤ sup
µ∈MS

CS+1(µ) ≤
√

1− 4S .

At this point, we have proved the necessary uncertainty
principle that is required for the stability analysis of ESPRIT.
Since we have already introduced this problem, we make
several further observations that might be of independent
interest.

We next show that the case of real measures appears to
be different from that of the complex case. Let MS,R denote
the set of all non-zero real discrete measures supported on T
consisting of at most S atoms. We define the quantity

CN,S,R := sup
µ∈MS,R

CN (µ). (VI.6)

We obtain a bound for CN,S,R that is significantly smaller than
our bound for CN,S .

Theorem 6. If N > S > 1, then CN,S,R ≤√
1− (8S − 1)−1.

Proof. The strategy for the proof is the same as that of
Theorem 5, but we have the additional advantage of working
with non-negative polynomials instead, and we shall see why.

Indeed, fix a real µ ∈ MS,R. Then µ̂(k) = µ̂(−k) for each
k ∈ Z and so

|µ̂(0)|2∑N−1
k=0 |µ̂(k)|2

=
2|µ̂(0)|2

|µ̂(0)|2 +
∑N−1
k=−N+1 |µ̂(k)|2

. (VI.7)

It suffices to lower bound the denominator in terms of |µ̂(0)|.
For now, we fix a set Ω = {ωj}Sj=1 ⊆ T. Again, we let

pΩ be the trigonometric polynomial defined by (VI.3), and we
define the functions

fΩ(ω) := 1− hΩ(ω), where hΩ(ω) :=
|pΩ(ω)|2

‖pΩ‖2L∞(T)

.

Notice that fΩ = 1 on Ω, f̂Ω is real valued, has Fourier
transform supported in {−S, . . . , S}, and 0 ≤ hΩ ≤ 1.

By construction, hΩ is a positive continuous function on T
with ‖hΩ‖L∞(T) = 1. There exists a ω0 ∈ T such that h(ω0) =
1. Since S > 1, hΩ has at least two roots. The intermediate
value theorem guarantees the existence of an interval (ω−, ω+)
containing ω0 such that h(ω±) = 1/2 and h = |h| ≥ 1/2 on
the interval [ω−, ω+]. We argue that [ω−, ω+] cannot be too
small. To see this, we define the axillary polynomial

HΩ(ω) = 2hΩ(ω)− 1.

Note that ‖HΩ‖L∞(T) = 1, HΩ(x±) = 0 and HΩ(x0) = 1.
We proceed to apply Turán’s theorem [41], which we state
below.

Theorem 7. Let P be a non-trivial polynomial of degree n
such that |P (1)| = max|z|=1 |P (z)|. Then for any root w of P
on the unit circle, | arg(w)| ≥ π/n. Moreover, if | arg(w)| =
π/n, then P (z) = c(1 + zn) for some non-zero c ∈ C.

By construction, when extended to the complex plane, HΩ

is a polynomial of degree 2S, has zeros at e2πiω+ and e2πiω−

on the unit complex circle, and the maximum of HΩ on
the unit circle is attained at e2πiω0 . Turán’s theorem implies
that | arg(e2πi(ω+−ω0))| ≥ π/(2S) and | arg(e2πi(ω0−ω−))| ≥
π/(2S). These inequalities imply∣∣[ω−, ω+]

∣∣ ≥ |ω+ − ω0|T + |ω0 − ω−|T

=
1

2π

(
| arg(e2πi(ω+−ω0))|+ | arg(e2πi(ω0−ω−))|

)
≥ 1

2S
.

We could have reached a similar conclusion using the Bern-
stein inequality and the mean value theorem, but that argument
would yield an inequality with a slightly worse constant. By
construction, hΩ ≥ 1/2 on [ω−, ω+]. This implies∫ ω+

ω−

hΩ(ω) dω ≥
∣∣[ω+, ω−]

∣∣
2

≥ 1

4S
.

We are ready to upper bound ‖fΩ‖L2(T). Since 0 ≤ hΩ ≤ 1,
we have

‖fΩ‖2L2(T) ≤
∫
T
(1− hΩ(ω)) dω

≤ 1−
∫ ω+

ω−

hΩ(ω) dω ≤ 1− 1

4S
.
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We apply Proposition 4 for the set Λ = {−S, . . . , S} and we
note that fΩ satisfies the required properties. Thus, for any
µ ∈MS supported in Ω, we have

|µ̂(0)| ≤ ‖fΩ‖L2(T)

( S∑
k=−S

|µ̂(k)|2
)1/2

≤
√

4S − 1

4S

( S∑
k=−S

|µ̂(k)|2
)1/2

.

This shows that for any µ ∈MS supported in Ω,

2|µ̂(0)|2

|µ̂(0)|2 +
∑L
k=−L |µ̂(k)|2

≤ 2

1 + 4S/(4S − 1)

≤ 1− 1

8S − 1
.

This bound is uniform over all Ω of cardinality S. This
completes the proof of the theorem.

The upper bounds in Theorems 5 and 6 are slightly less
than 1, which is to be expected for an estimate that is uniform
over all µ ∈ MS . If we impose additional restrictions on the
support of µ, then we obtain a much better bound on CN (µ).
Recall that the minimum separation ∆ of a set Ω = {ωj}Sj=1

is defined in equation (II).

Proposition 5. If N > S, µ ∈ MS is supported in Ω, and
∆ ≥ C/(N − 1) for some C > 1, then

CN (µ) ≤ min
(

1,

√
C

C − 1

√
S

N − 1

)
.

Proof. Fix any µ =
∑S
j=1 ujδωj satisfying the assumption

that ∆ ≥ C/(N − 1) and let ΦN−1 = ΦN−1(Ω) where
Ω = {ωj}Sj=1. The paper [32] showed that ΦN−1 is well-
conditioned and provided a lower bound on the operator norm
of ΦN−1. By this result, we get

‖µ̂‖`2N = ‖ΦN−1u‖2
≥ σS(ΦN−1)‖u‖2
≥
√

(1− C−1)(N − 1)‖u‖2.
(VI.8)

Using this inequality and Cauchy-Schwarz, we obtain

CN (µ) =
|µ̂(0)|
‖µ̂‖`2N

≤

√
S

(1− C−1)(N − 1)
.

We also have the trivial inequality CN (µ) ≤ 1.

The technique in Proposition 5 has its limitations. The key
step is inequality (VI.8), which controls ‖µ̂‖`2N via σS(ΦN−1),
which is not uniformly bounded in Ω. Hence, this argument is
too wasteful and cannot be used to deduce Theorem 5 where
no assumptions on Ω are placed. In fact, this shows that it
is impossible to obtain the theorem using an inequality that
estimates ‖ΦN−1u‖2 in terms of ‖u‖2. In particular, large
sieve inequalities, see [42] for an overview, do not appear to
be helpful for this problem.

The upper bounds given in Theorem 5 and 6 are independent
of N , and the reader might wonder if they can be improved
in the regime where N is significantly larger than S. It is

straightforward to see that the most optimistic decay we could
expect is a

√
N decay.

Proposition 6. For any N ≥ S, we have CN,S ≥ 1/
√
N and

CN,S,R ≥ 1/
√
N .

Proof. Fix any non-zero u ∈ CS and Ω of cardinality S. For
any ε > 0, we define the measure µε =

∑S
j=1 ujδεωj . We see

that µ̂ε(k)→
∑S
j=1 uj for each k ∈ Z as ε→ 0 and so

lim
ε→0

CN (µε) = lim
ε→0

|µ̂ε(0)|
‖µ̂ε‖`2N

=

∣∣∑S
j=1 uj

∣∣
√
N
∣∣∑S

j=1 uj
∣∣ =

1√
N
.

This argument also applies to when u ∈ RS .

Obtaining an upper bound on CN,S that decays in N (if
this is even possible) appears to be a difficult problem and
any solution should, in principle, address the number theoretic
issues that might arise. Indeed, let µ ∈ MS and assume that
the amplitudes of µ are identically one. Then we have

CN (µ)2 =
S2∑N−1

k=0

∣∣∣∑S
j=1 e

2πikωj

∣∣∣2
The exponential sum

∣∣∑S
j=1 e

2πikωj
∣∣ is O(S) when its S

phases {e2πikωj}Sj=1 “align” or occupy a small portion of the
unit complex circle. In principle, there could exist very special
Ω with particular number theoretic properties, such that the
phases {e2πikωj}Sj=1 do not align for all 0 ≤ k ≤ N − 1.

APPENDIX

A. Proof of Lemma 1

Let Θ(U, Û) = {π2 ≥ θ1 ≥ θ2 ≥ . . . ≥ θS ≥ 0}
be the canonical angles between the subspaces spanned by
the columns of U and Û . Since ESPRIT is invariant to the
choice of orthonormal basis, when we write U and Û , we
refer to the specific choice of bases for which their columns
consist of the canonical vectors. In other words, we let
U = [u1 u2 . . . uS ] and Û = [û1 û2 . . . ûS ], and assume
cos θk = |u∗kûk|, for k = 1, . . . , S.

We first derive several matrix perturbation bounds. The first
one about Θ(U, Û) follows from the Wedin’s theorem [43],
[44]:

Lemma 4. Fix positive integers L,M,S such that (II.3) holds.
For any µ ∈ MS and η ∈ CM+1 such that 2‖H(η)‖2 ≤
σS(H(y0)), we have

sin θ1 ≤
2‖H(η)‖2
σS(H(y0))

.

Lemma 4 shows that when U and Û are chosen so that
their columns align, the column spaces of U and Û are close
when the noise is sufficiently small. This leads to the following
perturbation bounds for ‖Û − U‖2 and ‖Ψ̂−Ψ‖2, where the
proofs can be found in Appendix A.
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Lemma 5. Fix positive integers L,M,S such that (II.3)
holds. For any µ ∈ MS and η ∈ CM+1, if 2‖H(η)‖2 ≤
xminσS(ΦL)σS(ΦM−L), then

‖Û − U‖2 ≤
2
√

2S‖H(η)‖2
xminσS(ΦL)σS(ΦM−L)

.

Proof. For k = 1, . . . , S,

‖ûk − uk‖22 = 4 sin2

(
θk
2

)
= 2(1− cos θk) ≤ 2(1− cos2 θk) ≤ 2 sin2 θk.

Using this inequality, see that

‖Û − U‖2 ≤ ‖Û − U‖F =
( S∑
k=1

‖ûk − uk‖22
)1/2

≤
(

2S sin2 θ1

)1/2

=
√

2S sin θ1.

The proof is complete once we apply Lemma 4 and the
inequality

‖H(y0)‖2 ≥ xminσS(ΦL)σS(ΦM−L).

Since Ψ is computed from U , an estimate of ‖Ψ̂−Ψ‖2 can
be derived from ‖Û − U‖2 as follows.

Lemma 6. Fix positive integers L,M,S such that (II.3) holds.
For any µ ∈ MS and η ∈ CM+1 such that ‖Û − U‖2 ≤
σS(U0)/2, one has

‖Ψ̂−Ψ‖2 ≤
7‖Û − U‖2
σ2
S(U0)

.

Proof. By triangle inequalities, we obtain

‖Ψ̂−Ψ‖2 = ‖(Û†0 − U
†
0 )Û1 + U†0 (Û1 − U1)‖2

≤ ‖Û†0 − U
†
0‖2‖Û1‖2 + ‖U†0‖2‖Û1 − U1‖2

≤ ‖Û†0 − U
†
0‖2 + ‖U†0‖2‖Û − U‖2,

where for the last inequality, we used that Û1 is the submatrix
containing the last L rows of Û and that Û has orthonormal
columns, so ‖Û1‖2 ≤ ‖Û‖2 = 1 and ‖Û1−U1‖2 ≤ ‖Û−U‖2.
Note that by assumption, we have

‖Û0 − U0‖2 ≤ ‖Û − U‖2 ≤
1

2σS(U0)
.

This enables us to apply [45, Theorem 3.2], and so

‖Û†0 − U
†
0‖2 ≤

3‖Û0 − U0‖2
σS(U0)

(
σS(U0)− ‖Û0 − U0‖2

)
≤ 6‖Û − U‖2

σ2
S(U0)

.

Therefore, we have that

‖Ψ̂−Ψ‖2 ≤
( 6

σ2
S(U0)

+
1

σS(U0)

)
‖Û − U‖2

≤ 7‖Û − U‖2
σ2
S(U0)

.

Combining Lemma 5 and Lemma 6 yields Lemma 1.

B. Proof of Equation (III.1)

Proof. If md(Ψ, Ψ̂) ≥ 1, we have the trivial inequality

md(Ω, Ω̂) ≤ 1

2
≤ 1

2
md(Ψ, Ψ̂).

If md(Ψ, Ψ̂) ≤ 1, we have

2πmd(Ω, Ω̂) ≤ sin−1
(
md(Ψ, Ψ̂)

)
≤ π

2
md(Ψ, Ψ̂). (A.1)

The first inequality is a consequence of the law of sines, see
Figure A.1. The second inequality follows by observing that
the function f(t) = sin(πt/2) is concave on the domain
0 ≤ t ≤ 1 and f(0) = 0 and f(1) = 1, so f−1(u) =
2 sin−1(u)/π ≤ u for all 0 ≤ u ≤ 1. Thus, regardless of
the value of md(Ψ, Ψ̂), we have md(Ω, Ω̂) ≤ md(Ψ, Ψ̂)/2,
which proves equation (III.1).

0

e2πiωj

λ̂ψ(j)

e2πiλ̂ψ(j)

θj

αj

1

εj

Fig. A.1. Geometric figure corresponding to inequality (A.1). Here, we
define θj = 2π|ωj − ω̂ψ(j)|T and εj = |e2πiωj − λ̂ψ(j)|. Note that
εj ≤ md(Ψ, Ψ̂). By the law of sines, we have εj/ sin(θj) = 1/ sin(αj).
This implies sin(θj) = εj sin(αj) ≤ εj .

C. Proof of Lemma 2

Proof. Proof of Part (a). Recall from Equation (II.8) that Ψ is
diagonalizable by an invertible matrix P−1. Thanks to (III.1)
and the Bauer-Fike theorem, see [46] and [47, Chapter IV,
Theorem 3.3], we have

md(Ω, Ω̂) ≤ 1

2
md(Ψ, Ψ̂) ≤ 1

2
(2S − 1)κ(P−1)‖Ψ̂−Ψ‖2.

To control the conditioning of P , we use (II.7) to see that
P = Φ†LU and so

κ(P−1) ≤ ‖Φ†L‖2‖ΦL‖2 = κ(ΦL)

≤ ‖ΦL‖F
σS(ΦL)

≤
√

(L+ 1)S

σS(ΦL)
.

(A.2)

Combining the two inequalities together completes the proof
of Lemma 2 Part (a).

Proof of Part (b). The argument is identical to the one in [47,
Chaper IV, Theorem 2.3], which holds for general matrices.
For the reader’s convenience, we reproduce the argument in
the context of our setting.
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Recall from (II.8) that there is an invertible matrix P such
that PΨP−1 = DΩ. For convenience, let E := Ψ̂−Ψ so that
Ψ̂ = Ψ + E. We consider the matrix

J := P Ψ̂P−1 = DΩ +Q, where Q := PEP−1.

Note that J has the same eigenvalues as that of Ψ̂. Define the
quantity

ε :=

√
(L+ 1)S‖E‖2
σS(ΦL)

.

Note that we have

ε =
‖ΦL‖F ‖E‖2
σS(ΦL)

≥ κ(ΦL)‖E‖2

≥ κ(P )‖E‖2 ≥ ‖P‖2‖E‖2‖P−1‖2,

where we used the inequality κ(P ) ≤ κ(ΦL) which was es-
tablished in (A.2). Consequently, we have |Qj,j | ≤ ‖E‖2 ≤ ε
and |Qj,k| ≤ ε.

From here onwards, fix an index 1 ≤ k ≤ S. We introduce
a parameter α > 0 that will be chosen later. Let A be the
diagonal matrix whose k-th diagonal is α and the remaining
diagonal entries are 1. If we define Jα := AJA−1, then the
eigenvalues of Ψ̂, J , and Jα coincide. A direct calculation
shows that this conjugation by A multiplies the k-th column
of J by α−1, and multiplies the k-th row of J by α. Thus, the
k-th Gershgorin disk of Jα is centered at e−2πiωk +Qk,k with
radius bouned above by (S− 1)αε, while the j-th Gershgorin
disk for j 6= k is centered at e−2πiωj + Qj,j with radius
bounded by α−1ε + (S − 2)ε. This implies that, the k-th
disk is contained in the disk centered at e−2πiωk and radius
ε + (S − 1)αε, while the remaining disks are contained in
disks centered at e−2πiωj with radius α−1ε + (S − 2)ε + ε
for j 6= k. Thus, a sufficient condition for the k-th Gershgorin
disk to be disjoint from the other disks is that for all j 6= k,

|e−2πiωk − e−2πiωj | ≥ (S − 1)αε+ α−1ε+ Sε. (A.3)

In particular, using the inequality |1 − e2πit| ≥ 4|t| for all
|t| ≤ 1/2, we see that (A.3) holds provided that

4∆ ≥ (S − 1)αε+ α−1ε+ Sε, (A.4)

where we recall that ∆ := minj 6=k |ωj − ωk|T. From now
onwards, we pick α = ε/∆ so that the above condition is
equivalent to

(S − 1)ε2

∆2
+
Sε

∆
≤ 3.

We see that this inequality is satisfied because assumption
(III.3) implies ε/∆ ≤ 1/S.

There is an eigenvalue λ̂k of Ψ̂ contained in the k-th
Gershgorin disk, which has center e2πiωk + Qk,k and radius
bounded by (S − 1)ε2/∆. Since |Qk,k| ≤ ‖E‖2, we have

|e2πiωk − λ̂k| ≤ ‖Ψ− Ψ̂‖2 +
(L+ 1)S2

σ2
S(ΦL)∆

‖Ψ− Ψ̂‖22. (A.5)

This shows that for the k-th eigenvalue of Ψ, there is a λ̂k
that satisfies this inequality.

Furthermore, we check that the assumption (III.3) together

with (A.5) implies that

|e2πiωk − λ̂k| ≤ 2‖Ψ− Ψ̂‖2.

In particular, the assumption (III.3) yields

|e2πiωk − λ̂k| ≤ 2‖Ψ− Ψ̂‖2

≤ 2σ2
S(ΦL)∆

S2(L+ 1)

=
2∆

S

σ2
S(ΦL)

‖Φ‖2F
≤ 1

2S
min
j 6=k
|e−2πiωk − e−2πiωj |.

This shows that the best matching between the eigenvalues of
Ψ and Ψ̂ satisfy

md(Ψ, Ψ̂) ≤ 2‖Ψ− Ψ̂‖2.

Using (III.1) completes the proof.

D. Proof of Lemma 3
Proof. We first write

U =

[
w∗1
U1

]
=

[
U0

w∗0

]
.

Since U∗U = IS , we have U∗j Uj = IS − wjw∗j for j = 0, 1.
This implies wj is an eigenvector of U∗j Uj associated with
eigenvalue 1−‖wj‖22, and the other S−1 eigenvalues of U∗j Uj
are 1 with eigenvectors perpendicular to wj . This shows that
for j = 0, 1, we have

σ1(Uj) = σ2(Uj) = · · · = σS−1(Uj) = 1

σS(Uj) =
√

1− ‖wj‖22.
(A.6)

It suffices to provide an upper bound for ‖wj‖2 that is better
than the trivial one ‖wj‖2 ≤ 1. This can be loosely interpreted
as the amount of information contained in the first or last row
of U .

The column space of ΦL is a S-dimensional complex
subspace of CL+1, which we denote by Z. Let ej be the j-th
canonical basis vector in CL+1, for 0 ≤ j ≤ L. By definition,
the columns of U is an orthonormal basis for the range of ΦL.
The norm of w0 (respectively w1) is the length of projection
of eL (respectively e0) onto Z. Hence,

‖w1‖2 = max
z∈Z, z 6=0

|e∗0z|
‖z‖2

, and ‖w0‖2 = max
z∈Z, z 6=0

|e∗Lz|
‖z‖2

.

For each z ∈ Z, there are coefficients cj = cj(z) such that
z =

∑S
j=1 cjφL(ωj) where φL(ωj) is the j-th column of

ΦL. Another way of looking at this is to define the measure
µ =

∑S
j=1 cjδωj , and we readily see that zk = µ̂(k) for

k = 0, 1, . . . , L. Using this observation, we see that

‖w1‖22 = sup
supp(µ)⊆Ω

|µ̂(0)|2∑L
k=0 |µ̂(k)|2

. (A.7)

We also have that,

‖w0‖22 = sup
supp(µ)⊆Ω

|µ̂(L)|2∑L
k=0 |µ̂(k)|2

= sup
supp(µ)⊆−Ω

|µ̂(0)|2∑L
k=0 |µ̂(k)|2

,

(A.8)
where second equality is a consequence of the following
observation: if µ =

∑S
j=1 ujδωj , then we define ν =
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∑S
j=1 ujδ−ωje

2πiLωj and check that µ̂(k) = ν̂(L − k) for
all k ∈ Z.

The above identities relate σS(U0) and σS(U1) to the
quantities defined on the right hand side of equations (A.8)
and (A.7), which are interpreted as the concentration of µ̂
in its zero-th Fourier coefficient relative to the total energy
contained in its first L + 1 Fourier coefficients. We estimate
these concentrations using two different methods.

One approach is to control these in terms of ΦL(Ω). By
application of Cauchy-Schwarz,

sup
supp(µ)⊆Ω

|µ̂(0)|2∑L
k=0 |µ̂(k)|2

≤ S

σ2
S(ΦL(Ω))

.

We obtain a similar inequality for when µ is supported in
−Ω because σS(ΦL(Ω)) = σS(ΦL(−Ω)). Using this with the
above inequalities (A.6), (A.7) and (A.8) yields,

min(σ2
S(U0), σ2

S(U1)) ≥ 1− S

σ2
S(ΦL(Ω))

.

Another approach is to interpret the right hand sides of (A.7)
and (A.8) in terms of an uncertainty principle. It immediately
follows from Theorem 5 and the previous inequalities (A.6),
(A.7) and (A.8) that

min(σ2
S(U0), σ2

S(U1)) ≥ 4−S .

E. Proof of Theorem 1

Proof. (a) Note that the noise assumption (III.5) guarantees
that ‖U − Û‖2 ≤ σS(U0)/2 so the assumption in Lemma
6 holds. Thus, we combine Lemma 2 Part (a), Lemma 5,
and Lemma 6 to conclude that

md(Ω, Ω̂) ≤ 20S2
√
L+ 1

xminσ2
S(ΦL)σS(ΦM−L)σ2

S(U0)
‖H(η)‖2.

(b) We readily check that the noise assumption (III.7) implies
the conditions of Lemma 2 Part (b), Lemma 5, and 6, are
satisfied. Hence, we combine the aforementioned lemmas
with Lemma 2 to complete the proof.

F. Proof of Theorem 3

Proof. According to Theorem 2, if Ω satisfies Assumption
1 with parameters (M/2, S, α, β) for some α > 0 and β
satisfying (IV.1), then there exist explicit constants ca :=
Ca(λa,M/2) such that

σmin(ΦM/2) ≥
√
M

2

( A∑
a=1

(
caα
−λa+1

)2)− 1
2

.

Combining the inequality above, Lemma 3 and Theorem 1
gives rise to Theorem 3.

G. Proof of Theorem 4

Proof. The proof amounts to checking that the assumptions of
the first statement in Theorem 3 hold, and then using known

results for σS(ΦL). First, the assumptions on M,L, S imply
that S ≤ L ≤M − L+ 1. Second, the assumption ∆ ≥ C/L
together with inequality (IV.10) yields

σ2
S(ΦM−L) = σ2

S(ΦL) ≥ C − 1

C
L. (A.9)

Combining Lemma 3 and (A.9), we have that

min
(
σ2
S(U0), σ2

S(U1)
)
≥ 1− S

σ2
S(ΦL)

≥ 1− C

C − 1

S

L
.

(A.10)
Note that the term on the right hand side is strictly positive
due to the assumptions that M = 2L ≥ 4S and C > 2. The
noise assumption (IV.11) together with inequalities (A.9) and
(A.10) imply that the assumptions of the first statement of
Theorem 1 are satisfied, which gives us the inequality,

md(Ω, Ω̂) ≤ 20S2
√
L+ 1 ‖H(η)‖2

xminσ2
S(U0)σ3

S(ΦL)
.

Inserting (A.9), and (A.10) into this inequality completes the
proof of the theorem.
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