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FRACTIONAL BROWNIAN MOTIONS IN A LIMIT OF 
TURBULENT TRANSPORT1 

BY ALBERT FANNJIANG AND TOMASZ KoMOROWSKI 

University of California, Davis and Maria Curie-Sktodowska University, and 
Polish Academy of Sciences 

We show that the motion of a particle advected by a random Gaussian 
velocity field with long-range correlations converges to a fractional 
Brownian motion in the long time limit. 

1. Introduction. The motion of a particle advected by a random velocity 
field is governed by 

(1) dx(t) = V(t, x(t)), dt 

where V(t, x) = (Vl(t, x), Vd(t, x)) is a random, mean-zero, time- sta- 
tionary, space-homogeneous incompressible velocity field in dimension d > 2. 

In certain situations, it is believed that the convergence of the Taylor-Kubo 
formula (see [8] and [14]) given by 

00 

(2) f{E[Vi(t, O)Vj(O, 0)] + E[Vj(t, O)Vi(O, O)]} dt 

is a criterion for convergence of turbulent motion to Brownian motion in the 
long time limit. Indeed, it has been shown that the solution of 

(3) dt !V( , x,(t)), x8(0) = 0, 

converges in law, as e -> 0, to the Brownian motion with diffusion coefficients 
given by the Taylor-Kubo formula when the velocity field is sufficiently mixing 
in time (see [2], [6], [7] and [9]). Moreover, the solution of (3) converges to the 
same Brownian motion for a family of nonmixing Gaussian, Markovian flows 
with power-law spectra as long as the Taylor-Kubo formula converges (see [3]). 
In this paper, for the same family of power-law spectra, we show that, when 
the Taylor-Kubo formula diverges, the solution of the following equation 

(4) dx,(t) _1-28V( c2v x8(t))v x8(0) = O, 
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FRACTIONAL BROWNIAN MOTION LIMIT 1101 

with some 8 -7 1 depending on the velocity spectrum, converges, as 8 -> 0, to 
a fractional Brownian motion (FBM), as introduced in [10] (see also [13]). 

We define the family of velocity fields with power-law spectra as follows. 
Let (fQ, X/, P) be a probability space of which each element is a velocity field 
V(t, x), (t, x) E R x Rd, satisfying the following properties: 

(HI) V(t, x) is time stationary, space homogeneous, centered, that is, E{V} = 0, 
and Gaussian. Here E stands for the expectation with respect to the 
probability measure P. 

(H2) The two-point correlation tensor R = [Rij] is given by 

R jj(t, x) E [Vi (t, x) Vj (, O)] 

(5) 

- f 

cos (k 

. 

x)elk12ltRij(k 
dk 

with the spatial spectral density 

(6) R(k) = ak D(a+d)2 kI- ok)' 

where a: [O, +oc) -- R+ is a compactly supported, continuous, nonneg- 
ative function. The factor I - k 0 k/JkJ2 in (6) is a result of incompress- 
ibility. 

(H3) a < 1, /8 > 0 and a +,8 > 1. 

It can be readily checked that the correlation function (5) is temporally 
integrable and, hence, the Taylor-Kubo formula is convergent if and only if 
a +/3 < 1. 

The function exp (- Ik12't) in (5) is called the time correlation function of 
the flow V. For /8 > 0, the velocity field lacks the spectral gap and, thus, is not 
mixing in time. As the time correlation function is exponential, the Gaussian 
velocity field is an Ornstein-Uhlenbeck process. Because the function a has a 
compact support we may assume, without loss of generality, that V is jointly 
continuous in both (t, x) and is C" in x almost surely. For a < 1, the spectral 
density R(k) is integrable in k and, thus, (5)-(6) defines a random velocity 
field with a finite second moment. The exponent a is directly related to the 
decay exponent of R. Namely, JRJ(0, x) - Ixal- for lxl >> 1. As a increases 
to 1, the decay exponent of R decreases to 0. 

Our main result is summarized in the following theorem (see also Figure 1). 

THEOREM 1. Under assumptions (H1)-(H3), the solution of (4) with the 
scaling exponent 

(7) /3 
a+ 2,8 - I 

converges in law, as ? tends to 0, to a fractional Brownian motion BH(t), that is, 
to a Gaussian process with stationary increments whose covariance is given by 

(8) E[BH(t) 0 BH(t)] = Dt2H, 
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FIG. 1. Phase diagram for scaling limit. 

with the coefficients D 

(9) D = | ek 1 +|k|P( kI k) a(O) dk 
Id Ik 12a+4/3 l Jk 2 ) k d-1 

and the Hurst exponent H 

(10) < H= - + < 1. 
2 2 2,3 

Moreover, we show that the process x?(t) is asymptotically, as ? - 0, the 
same as the process 

t/? 28 

Y8(t) X?(0) + f V(s, x?(0)) ds 

(see Section 4). Namely, the spatial dependence of the Lagrangian velocity is 
frozen. As a result, the asymptotic motions of N particles starting at xlj(0), 
x2 (0),.. , xN(O), can be easily deduced and they are in stark contrast to the 
case of diffusive scaling (cf. [2], [3]). 

REMARK. Molecular diffusion can be added to the equation of motion so 
that instead of (1) we may consider an Ito stochastic differential equation 

dx(t) = V(t, x(t)) dt + 2K dB(t), 

with B(t), t > 0, the standard Brownian motion, independent of V and K > 0. 

This, however, would not influence our results. 
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2. Multiple stochastic integrals. By the spectral theorem (see, e.g., [1]) 
we assume without loss of any generality that there exist two independent, 
identically distributed, real vector-valued, Gaussian spectral measures VI(t, ), 
I = 0, 1, such that 

(11) V(t, x) = fVo(t, x, dk), 

where 

Vo(t, x, dk) co (k x)Vo(t, dk) + c1(k x)Vl(t, dk), 
with co(4) cos (4), cl(+) -sin (4). Define also 

V1(t, x, dk) -c1(k x)Vo(t, dk) + co(k x)Vl(t, dk). 
We have the relations 

(12) dVo(t, x, dk)/dxj = kjV,(t, x, dk), 

(13) dV,(t, x, dk)/dxj = -kiVo(t, x, dk). 

Clearly, fV1(t, x, dk) is a random field distributed identically to and indepen- 
dently of V. We define the multiple stochastic integral 

(14) ... |4(kl,.. ., kN)Vll(tl, xl, dkl) ... ( VIN(tN, xN, dkN) 

for any 1, . IN E {0, 1} and a suitable family of functions Ef by using the 
Fubini theorem [see (15)]. For qf1, 7/N E Y(Rd), the Schwartz space, and 
11, ,IN E {O, 1} we set 

| '|l(kl) 
.. 

' 'N(kN)Vll(tl, Xl, dkl) XD ..X VIN (tN, XN, dkN) 

(15) 

:= |j(kj)VI1(tj, Xl, dkl) X N (kN)VIN (tN, XN, dkN)- 

We then extend the definition of multiple integration to the closure X of the 
Schwartz space ((Rd)N, R) under the norm 

11X112:f-|.f r(klk ,kN)q(kl, ...,kN) 

(16) x E[Vl,(tl,xl,dkl)?(... (VIN(tN,XN,dkN) 

VI Vl(tl,xl, dk/)g 0 VIN (tN, XN, dk'N] 

The expectation is to be calculated by the formal rule 

E [VI, i (t, x, dk)V,,, j, (t', x', dk')] 

= eHk2 tt'l8 ,co(k. (x - x'))Ri , (k)8(k - k') dk dk'. 

This approach to spectral integration follows [12]. 
When i = (il, ., id), il, ., id E {1, 2,..., d}, is fixed and l = (11, ...,IN), 

11, . . ., IN E {0, 1}, we shall denote the corresponding component of the stochas- 
tic integral by M, i 
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Note that ', i E HN(V)-the Hilbert space obtained as a completion of the 

space of Nth-degree polynomials in variables f qf(k)V(t, x, k) with respect to 
the standard L2-norm. 

PROPOSITION 1. For any (tl, X1), ..., (tN, XN) E R x Rd and p > 0, 1 i 
belongs to LP(fl) and 

(17) (EvIr1,iIP)l/P < C(ELIr1,i12)1/2, 

with the constant C depending only on p, N and the dimension d. Moreover, 
NV i is differentiable in the mean square sense with 

vxj Il, i (t 1 t *-- X1, *-- -,XN) 

(18) .. k-)j | ky,/(k,..., kN) V11i1,e(t1, x1,dk1) ..Vl-l j, ii (t, vxji dkj) 

* VN, iN(tN,XN, dkN) 

The proof of Proposition 1 is standard and follows directly from the well- 
known hypercontractivity property for Gaussian measures (see, e.g., [5], 
Theorem 5.1 and its corollaries), so we do not repeat it here. 

The field V is Markovian, that is, 

E[f q(k)V1(t, x, dk) x, s 
(19) 

e fe-kl2f(ts)qJ(k)V1(s, x, dk), 1 = 0, 1, 

for all qi E J(Rd, R), where 7 b denotes the ou-algebra generated by random 
variables V(t, x), for t E [a, b] and x E Rd. 

To calculate a mathematical expectation of multiple products of Gaussian 
random variables, it is convenient to use a graphical representation, borrowed 
from quantum field theory. We refer to, for example, Glimm and Jaffe [4] and 
Janson [5]. A Feynman diagram Y (of order n > 0 and rank r > 0) is a graph 
consisting of a set B(Y) of n vertices and a set E(y) of r edges without 
common endpoints. So there are r pairs of vertices, each joined by an edge, 
and n - 2r unpaired vertices, called free vertices. Note that B(S) is a set of 
positive integers. An edge whose endpoints are m, n E B is represented by mTn 
(unless otherwise specified, we always assume m < n); an edge includes its 
endpoints. A diagram Y is said to be based on B(S). Denote the set of free 
vertices by A(y), so A(y) = Y \ E(y). The diagram is complete if A(F) 
is empty and incomplete, otherwise. Denote by S(B) the set of all diagrams 
based on B, by S4(B) the set of all complete diagrams based on B and by 
Si(B) the set of all incomplete diagrams based on B. A diagram 7' E 4,(B) 
is called a completion of YS E Si (B) if E(F) c E(7'). 

Let B = {1, 2, 3, ..., n}. Denote by 7k the subdiagram of $, based on 
{1, ..., 14. Define Ak(Q9) = A(Q5k). A special class of diagrams, denoted by 
Ss(B), plays an important role in the subsequent analysis: a diagram 7 of 
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order n belongs to 9s(B) if Ak(y) is not empty for all k = 1, ..., n. We 
shall adopt the following multiindex notation. For any P E Z+, multiindex 
n = (n1, ..., np), n1 stands for E ni. If P' < P we denote nlp, :(nl, .. ., np,). 
In addition, if k is any number we set n* k : (nl, ..., np, k). We work out 
the conditional expectation for multiple spectral integrals using the Markov 
property (19). 

PROPOSITION 2. For any function i E X and I1., IN E {0, 1}, ii,.... 
iN E {1 d,d} 

E q -f(kl~ ... kN) VI,, il (t, xl dkl) --VIN, iN (t" N dkN) 7/~-oo s] 

(20) = .N . exp - rn n7 1kn2/(t_s)} 
,7ES{1---NJ) MEA(,7) 

x qf(kl,..., kN)V S, Xl ..,XN (dkl, ...,dkN; 1), 

with 

V S, Xl, ... ,XN (dkl, . , dkN; 17) 

(21) H V1 , i7Z (S, Xm, dknZ) f [I -e(k 12/+1k12/) (t-s)] 
zneA(S9) iaD1EE(7) 

x E[V,, il (s, xm, dkm) Vl, Z (s, xii , dki,)] 

PROOF. Without loss of generality we consider q(kl, .. ., kN) = lA1(kl)... 

lAN(kN) for some Borel sets A1, ..., AN. Note that VI(t, Ai) = VI (t, Ai) + 

V1(t, Ai), where V? (t, -) is the orthogonal projection of Vj(t, .) on L and 

Vi (t, ) its complement. Here La b denotes L2 closure of the linear span over 
V(s, x), a < s < b, x E Rd. The conditional expectation in (20) equals 

H r| E[VLi",i (t, Ain)Vz 1, 1(t, An V) (t, Am). 
YES({1,...,N}) f-nEE(Y) mEA(Y7) 

The statement follows upon the application of the relations 

V?(t, A) = 'A e-1k12(t-S) VI(s dk) 

and 

I(t, A) JR [(t, B)k 

= || ,1X |E[i(t, dk)OVI,(t, dk')]-E[VI?t d)VI?,(t k) 
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3. Proof of tightness. Let us start with the following result, which estab- 
lishes, among other things, that the family of continuous trajectory processes 
x?(t), t > 0, is tight. 

LEMMA 1. For the family of trajectories given by (4) we have 

lim E[(x(t) - x(?(u)) 0 (x?(t) - x((u))] D(t - u)2H if t > u, 
4~0 

where H and D are given by (9) and (10), respectively. 

PROOF. First, let us observe that since x?(t) has stationary increments it 
is enough to prove the lemma for u = 0. By the stationarity of V(s, ?x(s)) 
(see [11]), we can write that 

(22) lim E[x8 (t) 0 xl:(t)] = lim g2 f ds E[V(s', cx(s')) ? V(0, 0)] ds'. 
4~0 4~0 0 

Thus (22) equals 
N 

(23) 2 E >7 + N, 
z=1 

where 

,t= 7z+10 dsj ds, j E[W7 l(si, Sn, 0) 0V(O, 0)] ds, 

and 

Wo(s1, x) = V(s1, x), 

Wil(sl, ,~sn+l? x) = V(s12i, x) .VWn-1(sl, ... ,sxfx) fornn1,2, ... 

with the remainder term 

(24 =26NN+2 ds dsl... E[WN(S1, ..SN+. 1 X(SN+1)) 

?V(0, 0)] dSN+l' 

Estimates of f7. Elementary calculations show that 

limY- 1 = Dt2H. 
4t0 

Since V is Gaussian we deduce that 

E,e' = 0, 

when n > 2 is even. We now show that 

(25) limEY7 0 
4~0 

for n > 3 odd. The i, jth entry of the matrix 1n is given by 

(6 J - 2671+11 dsf ds, .| E[EoVVz, r ( 
. s70) 

x Vj(O, 0)] ds7,. 
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We would like to express the conditional expectation appearing in (26) in terms 
of spectral measures associated with the velocity field. To do so, we introduce 
first the so-called proper functions of order n, a- {1, ..., n} -> {0, 1} that 
appear in the statement of the next lemma. The proper function of order 1 is 
unique and is given by o-(1) = 0. Any proper function, o-', of order n + 1 is 
generated from a proper function a- of order n as follows. For some p < n, 

u'(n + 1) O, 

(27) u-'(k) ov(k) for k < n and k A p, 

uJ'(p) 1 - o-(p). 

In other words, each proper function o- of order n generates n different proper 
functions of order n + 1. Thus, the total number of proper functions of order 
n is (n - 1)!. In the remainder of the paper, we sometimes write ok instead 
of or(k). 

LEMMA 2. Let n > 1 and s, i S2 > * 7 7,i E{, .. , dl, x E- R. 

We have then that 

ES1i+1 W n-1, Ji(.s , s1l, x) 

:=E[W11_1, Ji(Sl. * Sn n x)l )Noo S'2+1 I 

(28) = > 5if. .fc)(k1, , k17) exp j- L _km l (s - 
s1+?)} 

x Pn_1(Y)Q(Y) Hl Vin, 1 x(sn+IX, dk7), 

MEA,, (n) 

where q7z) are some functions, with sup l< 1, 
fl 

~~ ~ km Iexp 
~ 

12 2Sj_ S+j (29) Pnz_1(Y) =l Y1 ( kl ePt Ik77lps-yl} 
(j=1 'MEA j(7) mEAj(7) 

(30) Q(Y5) = H E[Vi,l,J,,JZ,O, dkm)Vi,,,,,rl,o (O, dkin')]. 
In7in' EE(97) 

The summation is over all multiindices i of length n, whose first component 
equals i, all Y cEA and all proper functions u- of order n. 

Before proving Lemma 2, we apply it to show (25). Notice that according 
to (28), 

10 ds dsi .. EOWn-1,i(Sl Sn, 0)ds, 

= Li dsJ J.o(. )(kj ...,k1) eXPj- L k12,} 

X P7z_1(Y)Q(1_) fl Vj,,ff,l(mAdkm() 
MEA,j (7) 
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for i = 1, ... , d. Here, adopting the convention sn+1 := 0, we set 

71i (kl,..., kj 

JJd~... fsnl-1 4~.k.,)xH~ x{ mA(7 ,~I(- sj?i)} ds1 ..-. ds,, fos ds, J;- (p(71) (k, klZ.) X I1J'=j expf - Y-.A i(,) Ik,. 110(sj- +)}d **s 

fJ ds, * * *1IJH= exp{- EmflEAJ(kj) IkmI2/sj} dsi ds,, 

and 

n-l(i ) nI Ik77/ ) x exp{- 
>7nEAj($7) Iknl 21S} I 

H J mA(z kn, ILimEAj(7z,) Jkm1 213 
j=l inzEAj(,7) 7neAj(F)7( 

It is elementary to check that, due to 'pij <1, 

(31) I 'Pi,7 a (kl, . 1 . <,k )|'1 

Using Lemma 2, we infer that the left-hand side of (26) equals 

(32) Jo I Lin E kin, ( Y; Ikm P12>1(Y) 
Q( ) 

(32) xE 

x E[v i airl2Jl (o,dkn)] 
-LmEA, (7) U {n?+1} 

Here the summation extends over all multiindices i = (ij, ..., Iin+?) such that 

i1 = i, in+1 = j, all Feynman diagrams Y e AS and all proper functions o- of 

order n. Using an elementary inequality stating that 

1 _ -x/ C 

? 25 + X 

for a certain constant C independent of 8, x, we conclude that the absolute 
value of (32) is less than or equal to 

-216 
K K ~Pn-1, 8(a) 53(kr - kIn,i)dkmndkm, (33) 2t,n8+82 ZnE () l' 

Jo J ?26+ EMnEA ,(b9) kn 72i`in 
I1#a- 

with 

n-I 
L~MEA.(,7) km 

j1 828 = IMEAEA k2in 

Suppose first that 2,8 > 1. There exists then a constant C, depending only 

on n, /8 and K such that, for any mj c Aj(Y), 

(34) LinE Aj(y) kin 8? /: + km 

828 + EmEAj($7) kin 828 + kmj 
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So, 

p 8'61,8 213?CHkin. 
(35) P1-i < - 88/1 2 

828 + Ln,E A,z (Y) km j-1 828 + kn 2 + 
kIn, 

for any choice of ni j E Aj(Y). Let m: j if j is not the right endpoint of an 
edge of the diagram Y. Otherwise, let mj be the closest free vertex to the left 
of j. 

Consequently, the expression on the right-hand side of (35) is less than or 
equal to 

(36) C H 81-fkm Hl (8/1 km 
+)I-5 I,l81 

(mmn'EE(Y) 8 +km, mEA,,(Y)U{n+1} (8 + 

where E(Y) denotes the set of the edges of the diagram Y and q7n > 0 is the 
number of left endpoints between a free vertex m E A1n(Y) and the next free 
vertex m' E A,7(Y), also by a convention q,,+? := -1. Note that 

(37) 7 +2 , qm = n-2, 
mnEA,,(9)U{n+1} 

with c7 denoting the cardinality of the set An(F). Applying (36) to (33), we 
deduce that 

( fK (8/P + k)dk ) (n-cr, )/2 
1-0,71L (]o (28?k2P8)k2al) 

(38) K (k +- 8113)2+q??+q,, - 7 X dk 

m (k2P + 828)2+q?,n+q?, k2a-1. 

Here the summation extends over all Feynman diagrams Y from AS({l, .I. , n}) 
and all complete diagrams Y' made of the vertices of A,,{5') U {n + 1} and 
rm, m := (m,5m,l +?m, m,2n Using the definition of ( [see (7)], it is elementary to 
observe that 

IK (88/P + k) dk 

(8o28 ? k2/3)k2a-l ( Y 

and 

JK (k + 86/13)2+q,+qn,,m, dk c + 

o (k2? + 82)2+?q+qnZ, k2al - V 

with 

3 - 2a - 2,8 
(39) 

(40) 4-2a -4/3 
+ 
(q?n 

+ 
q7l,)(1-228)-r1 z, in, 

0ny(mm) a? + 2B-1 
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x~~~ 

21 

FIG. 2. Regions A, B and C for estimating . 

Hence we obtain 

(41) cnf < C +1 28(1 + ?(n-c-)y 

with 

2r(2 - a - 2,3) + L' [(1 - 2/)(q72 + q7n') rnz 7n] 
K.- 

a + 23 - 1 

Here the summation ' extends over the edges mm' of the diagram Y' for 
which y(mm') < 0 and 

(42) r < (c1, + 1)/2 

denotes the number of such edges. In case there are no such edges we set 
K := 0. The estimate of the right-hand side of (41) consists of considering 
all possible situations depending on signs of the expressions 3 - 2a - 2,3, 
2 - a - 2,3 appearing in (39) and (40). As shown in Figure 2, there are three 
cases corresponding to three regions (A, B and C) in the (a, ,3) plane. In each 
region we can deduce that 

(43) 1-07Y_1 < Cs 

Indeed, in region A we have 

4(1 - a - /3) + (1 - 2/)(n - c,,) 
K> 2(a + 2/-1) 
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and /j: (2(a + /3) - 1)/2(a + 2/3 - 1); in region B we have 

-2a + cn(3 - 2a - 2/3) + (1 - 2/3)n 
K> 2(a + 23 - 1) 

and u (2(a +3) - 1)/2 (a + 2/3 - 1); in region C we have K as in the previous 
case and /u := 1/(a + 2/3 - 1). 

When, on the other hand, 2/3 < 1, we conclude that P<z-i 8(Y) < C for a 
certain constant C > 0. From (33) we obtain that 

Ct8~~128 
K 

82 1 5m'~(km - km,)dkrndkm 7,, , < ct,,n+1-28 ,J ..J. Ek I 

Ct,1nl-2802(l-a-8)8/1 Jo (Kk213 1d)k 2a- t - 

In conclusion, we deduce that all terms _n vanish as s 1 0 when n > 2. 
Estimates of 2N. Note that according to (24) 

N = 2? N+2 ds ds... J E[ESN 1WN(S1, ..., SN+1, ?X(SN+1)) 

? V(O, 0)] dSN+l1 

By the Cauchy-Schwarz inequality we get that 

I2N 12 < 4t2%4(1-8)+2NE V(0, 0)2 

x max 2EJ ... ESS>S?> ESNl1 
(45) 0<S_t182 / >Sj> ...>SN+1 >0 

2 

X WN(Sl, ..., SN, SN+?1, X(SN+1)) ds. dsN+1 

The stationarity of the Lagrangian velocity field implies that the maximum 
in (45) is equal to 

max E fSds'/ f EOWN(sl.,sN,0,O)dsl ...dsN2 
O<s<t/825 >s'>s .. >SN>0 

(46) < C max E Jds' EOVWN1(SI, ,SN-1,SN, ) 
O<s<t/,-25 0>Sj> ...>SN >0 

2 

x dsl... dSN EIV(O,0)12. 

In the last line we used that WN E HN(V) and the resulting hypercontractive 
property of LP-norms with respect to a Gaussian measure on the space HN(V) 
(cf. Proposition 1). Using subsequently Lemma 2 to represent the conditional 
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expectations on the right-hand side of (46), we deduce that the left-hand side 
of the preceding formula is less than or equal to 

C -,xEE i (k, kN)NSQy 
(47) 2 

x Hl Vij,,Ul,,,(0, dk7n) 
77mEAN(y) 

with some lI j, < 1. The summation in (47) above extends over all Feynman 
diagrams Y E Se, the relevant proper functions o- and multiindices i. 

Thus, we have 

(48) w2 < Ct4,,2N+4(1l28) [K K 'y 73(k1 kmn)dkm'dkin N L 1oPN, ()i k2a-l 
mm' ~m 

Here the summation extends over all possible diagrams YS E AS,1({l, ..., N}), 
' E Sc(AN () U N + AN(Y)). The product is taken over all edges of 5' 

with AN(y) denoting the set of free edges of Y. Let CN be the cardinality 
of AN(Y). Arguing as in (38), when 2/3 > 1, we obtain that, for q,, > 0, 
m E AN(y) U N + AN(y7) as in (36) satisfying 

2CN?+2yqm = 2N 

we have 

2 (j~~~~K (e8/138 -1 k) dk N-cN | 12 < Ct4?,2N+4(1-25) E(/ 6+#pk- MN ~~~~~~~(828 ? k2j8)k2a-l 
(49) K k( h /J3 2+q,f+l?q, dk 

x H 
(k2,8 +825 X kal 

nim, 

The ranges of the sum and the product in (49) remain the same as in (48). 
Repeating the argument made after (42), we deduce that there exists /Lj > 0 
such that 

(50) IN 2 < Ct48NI-i-88 

The same inequality, with /Lj = 1, holds also when 2,3 < 1. This can be deduced 
repeating the corresponding argument used to obtain (44). We infer there- 
fore that 2N vanishes as 8 4 0 for a sufficiently large N. In conclusion, we 
proved that the left-hand side of (22) tends to Dt2H as 8 4 0, provided that 
a +,3 > 1. 0 

REMARK. The foregoing argument can be used to infer, via an application 
of the hypercontractivity property of the LP-norms over Gaussian measures 
on HN(V), that for an arbitrary p > 1 and T > 0 there exists a constant 
C > 0 such that, for any T > t > s > 0 8 > O, 

(51) E x,(t) - x(s) I P< C(t - s)2HP. 
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PROOF OF LEMMA 2. We prove the lemma by induction. The case n = 1 is 
obvious by choosing p(iO) =)1. Suppose that the result holds for n. For the sake 
of convenience we assume without loss of generality that sn 2 = 0. Then 

(52) E0 WV1+1, (S1, 
., s711, X) 

= Eo {V(sn+, X) VE,,I+ 1W71,i(si, Sn, x)}. 

By virtue of the inductive assumption we can represent ESi+ W1Z using (28) 
and as a result (52) becomes 

E Eo [J | (Pi ,07(kl, . , k7l) 

(53) x expj- L Iki2I+(sn- sn?)}Pn 1(Y)Q(5z) 

XVO(Sn+ln X, dknz+1 Vt v Vi ,7771 (sn+1D Xn dkin)] 
mEA,,(Y) 

To calculate (53), we decompose each V., i(s, x, dk) as 

(54) V,J i(s, x, dk) = V, js, x, dk) + V1 i(s, x, dk) 

and use (13)-(12) where 

(55) V (s, x, dk) e- Ik V (txdk) 

is the orthogonal projection of V on YK t. Expression (53) becomes 

LE0[ ... ( (kl,... k) 

(56) 

M EA,,(5/7) 

with 

K(5y) L= E Vgl+1(s, x, dk,,+1) 

jEAII(7)U{fn+1} 

Vtr n QveZlZ ins QIII x VjI Vc (s, x, dk1n) 
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The term corresponding to g 1 vanishes, as is clear from the following 
calculation: 

E jf. I a )(kl, k.. , - 1 (Y) Q(y) 

xVOl(s, x, dk,,+,) Vt I1 VCIZ i ... (s, x, dkm)) 

(57) A, 

= V E J JD(n(kj, ... , k7l)P71-1(Y)Q(P) 

x Vo(s,x,dkn?i) mIkl I V i(S X,dk1n) =? 
M EA, (,7) 

by homogeneity of the velocity field. By (13)-(12), 

VO(s) x) dk,+, V vuln, i m (s x dkm)} 

(58) M EA,,(,7) 

- L kmm .Vo(s, x, dkn) x H1 VC (S, X, dkm) 
M' EA,j Y) M EA,,(Y) 

where 

(59) in' = | r7Z7, if m'-m, 
m 0t (T7n, otherwise. 

By (55), (54), (58) and definition (29), (56) further reduces to 

E E E E E (F7d km',il 

i7+= n'EA,, (,9')' YinEA,, (Y) lkm I 

x expt- E I knz 11sz+1 Pn(Y)Q(Y) 
mEA(Y') 

(60) X fH V-T1Z,' i,l (t, X, dkm) 
inEA(6 ') 

x H [1 -e-(Ik p2 + lkq120)(S_t)] 

PqEE(,7') 
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with &, n =Oand -u+i,7Z' = o-TY and all incomplete Feynman diagrams 7' 
based on the set A,,(7) U {n + 1}. Lemma 2 follows with 

(71?1) (n) k1? i,+ 
'Pi, ..': (k, , kni) 4(i, 0(ki , k1 ) m T~~~~~~~~~LM'EA,J(Y) Ii' 

x e1 [1- (Ip1kp 2+lkkqI20)Si+i] 
p^qEE(Y') 

4. Proof of weak convergence. It is a straightforward matter to verify 
that the Gaussian processes 

t/25 

(61) y8(t) 81 V(s, O)ds, t > 0O 

converge weakly to the fractional Brownian motion BH(t), t > 0, given by (8). 
In addition, we have 

limsupE ly(t) P < +0o 
?|0 

for any p > 1, t > 0. 
We now prove that 

lim E 
[Xs,i,(t1) 

- Xs,i1(t2)IP' ' [Xs, im(tm) 
- X, iM(tM+l)]1 

= E [BH, i1(tl) - BH, il(t2)] [BH,iM(tM)-BH,iM(tM+1)IPM 

Equation (62) implies that the limiting law of the family of processes x8(t), t > 
0, whose tightness, as 8 4 0, has been established in the previous section, 
is that of the fractional Brownian motion BH(t), t > 0. Equation (62) is a 
consequence of 

(63) lin ? ilt1) -x8, i1(t2)]P . [x8 iM(tM) - Xe, iAI(tM?l)IP 

- [Y8, il (tl) Y8, i, (t2)] 
P 

[Y8, iM (tM) - Ye, iM (tM+l)PM O, 

with y8(t) = (y8 1(t), . Y-, d(t)). Equation (63) follows from the next lemma. 

LEMMA 3. For any positive integers M, Pl, ..., PM, multiindices i1 
c{1,...,d}PJ for j= ,...,Mand tl > > tM > tM+l =0, wehave 

(64) lim E[Z i, (t2, tl) ... 
Z?, iM (tM+l, tM) 

-W? i (t2, tl) ... 
W, iM (tM+1, tM)] 0. 
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Here for any integer N > 1, multiindex i = (i,..., iN) E {1, d}N and 
t > s, we define 

Z$ji (SI t) HN1 * 171 Vj (sP' 8x(SP))dsj ... dSN 

AN(S, t) 

and 
N 

W?i (S, t) 'EN 1 H V(Sp,O) dsi ... dsN, 
AN(S, t) 

= 

with AN(S, t) = {(Sl, *, SN) t/?8 > Sl > * > SN > S/?8} 

PROOF. To avoid cumbersome expressions that may obscure the essence of 
the proof, we consider only the special case of M = 1 and t1 = t, t2 = 0. The 
general case follows from exactly the same argument. We shall proceed with 
the induction argument on Pi = P. The case when P = 1 is trivial because the 
stationarity of the relevant processes implies that the expression under the 
limit in (64) vanishes. In fact, as a consequence of the remark made after 
the proof of Lemma 2, we can conclude that, for any q> 1, 

lim sup E Zs,?(O, t) <7 +. 

Assume now that (64) has been proven for a certain P - 1 > 1 and that for 
any q > 1 we have 

(65) lim sup E Z? i (0, t) <)+o. 

In analogy with (23) we write that 

N-1 

(66) EZ? i(O, t) - L X9(O, t) + IN(70 t), 
11=0 

with 

--g?n At)1 := 1 (t) E{S2Wi(1 'X(S2)) 

(67) P 

X H V (Sp, ex(SP))} ds( d 2 ... dsp, 
p=2 

titNOn t = P+N+1l .. EN E{SN WiN S(N ) 
I?X(Sl1 N+1)) 

(68) 
x H Vi (sp,ex(sp))ds'(N'dS2 dsp. 

p=2 
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Here 

A\p (s, t) := I(s(" , S",**. Sp) : t/ 2 > Sl 2 
2> >S S?} 

wih1l): (Si, 17 Si, n+1) We say that t > s, > s, where s =(sl, s , S7) iS 

an ordered n-tuple, that s> > s, when t > s, > S,, > s. 
The argument used in the proof of Lemma 2 together with (65) shows that 

lim 7 (, t) = 0 

for n > 1 and 

l?iM 'wN (0, t) = O, 

provided that N is chosen sufficiently large. Asymptotically then, as 8 4 0 the 
behavior of EZ(P)(O, t) is the same as that of the term 

-90 (0, t) :=? |***|(0) Et Vil (sj, Ex(S2)) 

(69) p 
x H Vp(sp,8x(sp))dSl... dsp. 

p=2 

In order to deal with (69), we need a generalization of the argument used 
in the proof of Lemma 2. Let us introduce some additional notation. For any 
multiindex i = (ij, ..., ip) and p > 1 we define Wf"'1 by induction as follows. 
We set 

i l i (s1,. . ., Sp, X) 

:= Vi,(Si, x) Vip(SP, x) - El Vj(sl, x) .. Vi (Sp, x)} 

and assuming that Wip17 (Sl, .Sp-, s(n)7I x) has been defined for any 

ordered n + 1-tuple s (1) = (sp,i **^ Sp,77?i) < Sp-, we set 

WiPl i... 1 * * *li Sp-1, Sp?), X) 

VWpn?1) X VS X 
:= V i i, (Sj,***, p ,, 

X * (pn+2, X 

for any ordered n + 2-tuple s = (sp 1' **., Sp 7+ Sp 7 Expanding the 
left-hand side of (69) in analogy with (23), we obtain 

'x 0 
) 

= 

| 

. 

IA(o)(O' t) E IVi, (Sl, --X(S2)) Vi2 (S2, --X(S2))l 

x E H V p(Sp, ?X(Sp))} ds1 dS2... dsp 
p=3 

N-1 

+ E -L1, ni(O t) + 1 N(O t), 
77-n 
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where 

J-gi,n(0 t) = f f(1,,) EjES3Wl iD2(5lr s2 , ?X(S3)) 

(70) p 
X H V (sp, ?x(sp))J dsi ds l) ds2... dsp, 

p=3 

P+N+1 ... E E w 2, N 
Sl dS2N) E sX .dp 

1, NO ( t7) | A(1, N) (0 t) E S2, N+I 'I l2 72 (S1 X 2, N+1)) 

(71) x H Vi(sp, ?x(sp)) Js,sl d N) ds3 dsp, 
p=3 

A 
(,n 

(0, t) = l |s1 
(n) 

: 3 p t/? 
2 > 51 > S 

(n 
> . > Sp, >l. 

We represent the conditional expectations appearing in (70) and (71) using a 
generalization (Lemma 4) of Lemma 2. 

To formulate it, we need a generalized notion of a proper function, which 
we call a p-proper function. Let p be a positive integer. The p-proper function 
of order 1 is unique and is given by o-(i) = 0, i = 1,., p. Any p-proper 
function, o-', of order n + 1 is generated from a p-proper function o- of order n 
as follows. For some q < p + n, 

O'(p + n + 1) 0, 

(72) O'(k) :o(k) for k < n + p and k 0 q, 

ur'(q) 1 -(q). 

We also distinguish a special class of Feynman diagram pfs(B) a diagram Y 
of order n+p belongs to pSs(B) if Ak(Q9) is not empty for all k p, ..., n+p. 

LEMMA 4. For any positive integer p, s, > ... sp > s(p-) > s, a 
multiindex i (ij, ..., ip) E {1, ..., d}P, we have 

ES WFI'7 (sl, . ,Sp_l, s (n-1) I X) 

(73) x exp{- EA lkm 12,(Spn-S)Pp , - 

x m l V j," .(Js x, dkm), 
MeA7+P(Y) 
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where 9(p"') are functions satisfying I (pv7")I < 1 and 

n+p-1 

PP,itQJ) lkml 
j=p mEAj(17) 

(74) x expj- E lkm12P(p J ppj - sP j_p+1)j, 
meA(,7) 

Q( ) H E[Vi7, -71,; (O, dkn] )V i7n X 7;z, (O, dkm')] 
mm' eE(7) 

The summation is over all multiindices j = (jl,..., jJ7?+p) such that jlp 1i 
all 5 E p4S and all p-proper functions o- of order n. Here by a convention 
Sp, o := SP-. 

The proof of Lemma 4 is exactly the same as that of Lemma 2 and is omitted. 
Using Lemma 4 and the argument presented in the foregoing to demon- 

strate that .Y0(O, t) is asymptotically equal to EZ(P)(O, t), as 8 4 0, we can 
show that 

P+1~~~~~~~ 
? | . . . | E( Vi1 (s 1, EX (S3 ) V i2 (52, -v ?( S3)) 

p 

X Hl Vi (sp EX(sp)) dsids2 dsp 
p=3 

is asymptotically equal to EZ(?i)(O, t), as 8 4 0. Repeating the preceding argu- 
ment p times, we obtain (64). Finally, we notice that the hypercontractivity 
properties of the LP norms over Gaussian measure space allow us to conclude 
that (65) holds with P - 1 replaced by P. L 
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