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Fractional Brownian Motions and Enhanced Diffusion
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We study transport in random undirectional wave-like velocity fields with non-
linear dispersion relations. For this simple model, we have several interesting
findings: (1) In the absence of molecular diffusion the entire family of fractional
Brownian motions (FBMs), persistent or anti-persistent, can arise in the scaling
limit. (2) The infrared cutoff may alter the scaling limit depending on whether
the cutoff exceeds certain critical value or not. (3) Small, but nonzero, molecular
diffusion can drastically change the scaling limit. As a result, some regimes stay
intact; some (persistent) FBM regimes become non-Gaussian and some other
FBM regimes become Brownian motions with enhanced diffusion coefficients.
Moreover, in the particular regime where the scaling limit is a Brownian motion
in the absence of molecular diffusion, the vanishing molecular diffusion limit of
the enhanced diffusion coefficient is strictly larger than the diffusion coefficient
with zero molecular diffusion. This is the first such example that we are aware
of to demonstrate rigorously a nonperturbative effect of vanishing molecular
diffusion on turbulent diffusion coefficient.

KEY WORDS: Fractional Brownian motions; wave turbulence; convection
enhanced diffusion.

1. INTRODUCTION

Turbulent transport of passive tracer particles is an important problem in
fluid dynamics and applied mathematics because of its potential applica-
tions to containment transport in the environment (ground water, oceans
or the atmosphere). At a theoretical level, it provides a simple mathematical
model which can exhibit rich varieties of structures and phenomena.
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Let v(t, x) be a given velocity field and let \(t, x) be the concentration
of particles at time t, satisfying the advection-diffusion equation

�\��t+{ } [V(t, x) \]=D2\, \(t=0, x)=\0(x) (1)

where D�0 is the molecular diffusivity. The concentration \(t, x) can be
solved for from Eq. (1) as

\(t, x)=| G(t, x, y) \0(y) dy

where G(t, x, y) is the transition probability density of finding, at time t,
the particle at point x, given that the particle is released at y at time 0. We
study the particle's sample path x(t) which satisfies the Ito stochastic
differential equation

dx(t)=V(t, x(t)) dt+- 2D dw(t), x(0)=x0 (2)

where w(t) is the standard Brownian motion. The velocity field V(t, x) is
assumed to be a time stationary, space-homogeneous random vector field.
The primary object of investigation is the limiting law, as = � 0, of the scaling
transformation

=x(t�=2$) (3)

for some appropriate $>0.
In the previous papers, (10, 11) we considered turbulent transport in an

isotropic Ornstein�Uhlenbeck velocity field V with the correlation function
Rij (t, x) given by

Rij (x, t)=|
R d

r( |k| 2; t) cos(k } x) E(k)($ij&ki kj |k|&2) |k| 1&d dk, d�2

(4)

where

r( |k|2; t)=exp(&|k|2; t), ;>0 (5)

is the time correlation function and

E(k)=a( |k| ) |k|1&2: (6)

is the power spectrum of the velocity field. A nonnegative function a( |k| )
appearing in the power spectrum above represents cutoffs (infrared or
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ultraviolet) necessary for R� ij (k, t) to be integrable in k. In particular, an
ultraviolet cutoff is needed for :<1. That is, for :<1, a( |k| ) has a compact
support in wave numbers and is supported, say in [0, K0], K0<�. When
there is no infrared cutoff, we have a(0)>0.

In the weak coupling limit (see refs. 10 and 11), we showed that the dis-
placement x(t) converges weakly to fractional Brownian motions (FBMs)
in the region defined by :+;>1 as a result of long-range correlation.
Interestingly, these fractional Brownian motions are invariably persistent in
the sense that their Hurst exponent H ranges between 1�2 and 1. H=1�2
corresponds to a Brownian motion (BM) limit; H=1 corresponds to a
regular motion. Anti-persistent FBMs (0�H<1�2) do not occur in the
scaling limit for these Ornstein�Uhlenbeck velocity fields. In contrast
to Brownian motion, which is a Gaussian Markov process, FBMs are
Gaussian but not Markovian. The limit density \� (t, x) satisfies an integro-
differential equation which, in the persistent case H # (1�2, 1), takes the
form

�
�t

\� (t, x)=1 &1(2H&1) |
t

0
(t&s)2H&2 D* 2\� (s, x) ds, \� (0, x)=\0(x)

(7)

and, in the antipersistent case H # (0, 1�2), takes the form

1 &1(&2H+1) |
t

0
(t&s)&2H �

�s
\� (s, x) ds=D* 2\� (t, x), \� (0, x)=\0(x)

(8)

Here 1 (h) is the Gamma function. Note that the integral kernels in both
equations are integrable functions for the respective range of H. In contrast
to (1), (8) and (7) are nonlocal in time.

The weak coupling limit weakens and discounts the spatial variation
of the velocity field, so it is simpler to study than the original problem. As
a result, the results are insensitive to the compressibility of the velocity field
(cf. ref. 19). Nevertheless, besides interesting on its own right, the results for
the weak coupling limit are believed to hold for the usual scaling limit for
a substantial range of parameters :, ; of the above Ornstein�Uhlenbeck
flows.

Decaying temporal correlation, such as (5), is more typical of hydro-
dynamic turbulence, whereas oscillating temporal correlation is often pre-
sent in wave turbulence (ref. 28). In the present paper, we consider Gaussian
velocity fields with an oscillating time correlation function

r( |k|2; t)=cos(0( |k| ) t) (9)
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with a non-linear dispersion relation

0( |k| )=|k|2;, ;�0 (10)

Such flows are a superposition of random waves propagating at different
phase speeds determined by the non-linear dispersion relation (10) and
they arises in many practical situations related to wave turbulence (see,
e.g., ref. 28). When 2;=1, there is no dispersion; when 2;>1, short, waves
travel faster than long waves; when 2;<1, long waves travel faster. ;>0
because typically shorter waves have higher frequencies.

Since the transport problem for such flows is considerably more dif-
ficult, to study than that for the Ornstein�Uhlenbeck flows, a good starting
point is to consider the unidirectional flows

V(t, x)=(0, V(t, x)), x=(x, y) # R2

with the same power spectrum

E(k)=a(k) |k|2:&1, a(0)>0 :<1 (11)

In other words, the two-point co-variance function of the Gaussian velocity
field V(t, x) is given by

R(t, x)=E[V(t, x) V(0, 0)]=|
R

cos(kx) cos(t |k| 2;)
a( |k| )

|k|2:&1 dk (12)

The triplet of its underlying probability space is denoted by (0, V, P). The
equation of motion (2) is then simplified to

dx(t)=- 2D dw1(t), D�0

{dy(t)=V(t, x(t)) dt+- 2D dw2(t) (13)

x(0)=0, y(0)=0

Here (w1(t), w2(t)), t�0 is a certain two dimensional standard Brownian
motion given over the probability space (7, W, Q). The corresponding
mathematical expectation shall be denoted by M.

Our objective is to obtain the complete information of the scaling limit,
in particular, to characterize precisely the fractional Brownian motion limit,
in contrast to those arising in the Ornstein�Uhlenbeck flows, and to study
rigorously the subtle effect, of (vanishing) molecular diffusion, in particular
the phenomenon of convection-enhanced diffusion (see, for example,
refs. 25, 6, 7, 18, 20, 12, 13, 23, 22, 5 and references therein).
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As remarked before, all but one regime in the unidirectional case are
fully expected to carry over to the weak coupling limit in the isotropic case
with (9) and (6) (see more discussion on this below). More differences are
expected to occur in the isotropic case for the original scaling limit (3). The
techniques for the isotropic case, however, are different and will be presented
elsewhere. The unidirectional case for the Ornstein�Uhlenbeck flows with
an additional infrared cutoff has been studied thoroughly in refs. 3 and 29.
The differences between this case and the isotropic case for the original
scaling limit (3) can be found in ref. 8.

System (13) can be solved explicitly and we obtain then that x(t)=
- 2D w1(t) and

y(t)=|
t

0
V(s, - 2D w1(s)) ds+- 2D w2(t) (14)

We ask: what is the appropriate choice of the parameter $ (depending
on :, ;) in the scaling transformation

y=, $(t) :==y(t�=2$), $>0 (15)

such that the processes y=, $(t) are weakly convergent as stochastic processes
with continuous trajectories, as = a 0? And what is the limit probability law,
if exists? It turns out the limit process is a fractional Brownian motion
uniquely characterized by its Hurst exponent H # [0, 1] which is normally
related to $ by

H=1�(2$) (16)

a dimensionally correct equation.
We summarize the results in several diagrams (Figs. 1, 2 and 3) and

briefly discuss them as follows.
Figure 1 corresponds to the case of D=0 (see Section 2 for details). We

show that the whole family of FBMs (persistent or anti-persistent) can be
the scaling limit of turbulent transport. The persistent FBMs for :+;>1
are due to long-range correlation of the velocity field and, consequently,
the transport does not feel the oscillation in the time correlation function of
the velocity, so they are the same as those arising in Ornstein�Uhlenbeck
velocity fields (isotropic or not).(11) The anti-persistent FBMs for :+;>1,
absent in Ornstein�Uhlenbeck velocity fields, are due to the oscillation in
the time correlation function (9), which tends to slow down the transport.
In particular, for :+2;<1, the limit is a bounded motion corresponding
to H=0.
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File: 822J 682706 . By:SD . Date:11:08:00 . Time:09:25 LOP8M. V8.B. Page 01:01
Codes: 2005 Signs: 1582 . Length: 44 pic 2 pts, 186 mm

Fig. 1. The case with zero molecular diffusion, D=0.

The FBM scaling law is non-Markovian and may be altered if an
additional infrared cutoff exceeds certain critical power of the scaling factor =.
We discuss this effect of infrared cutoff briefly in Section 3.

Next, we discuss the effect of molecular diffusion. Figure 2 corresponds
to this case (see Section 4). The effect of molecular diffusion is significant:
it wipes out the anti-persistent FBM regime completely as well as part of
the persistent FBM regime; it also changes the functional form of the Hurst
exponent in another part (0<:<1, ;>1) of the persistent FBM regime
(Note that (:+1)�2<(:+2;&1)�(2;) in this region). It should be noted,
however, one part of the the BM regime defined by :<0 is part of the
general homogenization theorem which is valid for any (isotropic or not,
time dependent or not) space-homogeneous flows possessing space-homo-
geneous stream functions;(9) whereas the other part of the BM regime
(defined by :+;<1) is also valid for the Ornstein�Uhlenbeck velocity
fields (isotropic or not).(10) In the regime defined by 0<:<1, ;>1, the
scaling limit is not a pure FBM, but rather a composite FBM resulting
from the additional randomness of molecular diffusion (see Section 4). The
composite FBM is neither Markovian nor Gaussian, thus indicative of
some intermittency in transport. It is a scenario of intermittency in which
the particle constantly switches among different states of motion (in this
case, FBMs with different unit-time variances). Although this scenario in
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Fig. 2. The case with nonzero molecular diffusion, D>0.

our case is due to the anisotropy of the shear flow, random mixture of
Gaussian distributions as a result of molecular diffusion is a general theme
of passive scalar intermittency (see ref. 21).

Finally, we consider the singular limit of vanishing molecular diffusion.
Figure 3 summarizes the asymptotics as D � 0. The focus is on the BM
regime (:+;<1 or :<0) of Fig. 2. An important feature is the presence
of a convection-enhanced diffusion with the effective diffusivity D* much
larger than the molecular diffusivity D. Specifically, the effective diffusivity
D* is related to D via a power-law

D*tD p, p=(1&:&;)�(;&1), as D � 0 (17)

for :+2;>2, :<0. In this regime, the range of the power p is [&1, 1],
the fullest possible in any case (see refs. 18, 12, 13 and the references
therein). p lies between 0 and 1 in the region that overlaps with the anti-
persistent FBM regime of Fig. 1; whereas p lies between &1 and 0 in the
region that overlaps with the persistent FBM regime of Fig. 1. That means
that antipersistent as well persistent FBMs regimes in Fig. 1 can enhance
turbulent diffusion.

To further understand the effect of vanishing molecular diffusion, it is
particularly instructive to compare the turbulent diffusivities for the two
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Fig. 3. The limit of vanishing molecular diffusion, D � 0.

cases D=0 and D � 0 for :+;=1 where the exponent p in (17) is zero
(cf. (28), (68)):

D*=2a(0) |
�

0

1&cos(k2;)
k2:+4;&1 dk, for D=0 (18)

D*t2a(0) |
�

0

dk
k2:&3(k4+k4;)

, for D � 0 (19)

Both depend on the square intensity of the zero mode in the power spec-
trum of the velocity field, so they may be sensitive to ail additional infrared
cutoff. The normalized effective diffusivities D*�a(0) are plotted in Fig. 4.
Both the effective diffusivities corresponding to Eq. (19) and Eq. (18)
decrease as a decreases, but the former decreases much faster than the latter.
Several remarks are in order.

For the sake of discussion, let us write the dependence on D explicitly
and denote by D*(D) the effective diffusivity when the molecular diffusion
is D. Destructive interference in the sense that D*(D)<D*(0) for small
D>0 has been predicted in ref. 25 on the basis that the presence of
molecular diffusion tends to decrease the Lagrangian correlation in velocity
(see also ref. 7). As rightly pointed out in refs. 22 and 5 while this may be
true for flows with strictly decaying time correlation functions such as (5)
it may be false if the time correlation function is oscillatory. What is striking
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Fig. 4. The normalized effective diffusivities D*�a(0) versus : # [&0.4, 0]. The solid line
corresponds to Eq. (18); the dashed line corresponds to Eq. (19).

here is that the effective diffusivity D*(D) is nonperturbative with respect to
D in the sense that

lim
D � 0

D*(D)>D*(0)

As shown in Fig. 4, limD � 0 D*(D)�a(0) is nearly 10 times as large as the
D*(0)�a(0) for : near zero. This is the first such example that we are aware
of to demonstrate rigorously a nonperturbative effect of molecular diffusion
on turbulent diffusion coefficient.

2. D=0

Let W0(dk), W1(dk) be two independent, identically distributed
Gaussian white-noise field in k # R. Then the following Gaussian random
fields

W0(t, x, dk) :=cos(t |k| 2;+kx) W0(dk)+sin(t |k| 2;+kx) W1(dk) (20)

W1(t, x, dk) :=&sin(t |k| 2;+kx) W0(dk)+cos(t |k| 2;+kx) W1(dk) (21)

1079Transport in Wave Turbulence



are also independent and identically distributed. We have the spectral
representation for V (see, e.g., ref. 24):

V(t, x)=|
R

a1�2( |k| )
|k|:&1�2 W0(t, x, dk) (22)

In the absence of molecular diffusion, we have

y=, $(t)== |
t�= 2$

0
V(s, 0) ds (23)

and

E( y=, $(t))2==2 |
t�=2$

0
|

t�=2$

0
R(s&s$, 0) ds$ ds

=4=2 |
�

0

a( |k| )
|k|2:+4;&1 (1&cos(t |k| 2; =&2$)) dk (24)

For :+2;<1, the above integral is convergent, so E( y=, $(t))2=O(=2) for
all $>0. That is,

E( y(t�=2$))2=O(1) uniform in =>0, $>0, t>0 (25)

This is what we call a recycling motion. For :+2;>1, the integral
becomes, after the change of variable k=!=$�;,

E( y=, $(t))2=4=2=&2$(:+2;&1)�; |
�

0

a(!=$�;)
!2:+4;&1 (1&cos(t!2;)) d! (26)

Note that the integral is convergent at !=� for :+2;>1 and at !=0 for
:<1. Thus we have, by choosing

$=
;

:+2;&1

that

E( y=, $(t))2
t4a(0) |

�

0
4a(0) |

�

0
k1&2:&4;(1&cos(k2;)) dk t (:+2;&1)�;

(27)
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after another change of variable !=kt&1�(2;). Since, by definition (23),
y=, $(t) is a Gaussian process with stationary increments, the calculation
(27) is sufficient for us to conclude

Theorem 1. Suppose D=0. Then, for :+2;>1, y=, $(t) with

$=
;

:+2;&1

converges weakly to a fractional Brownian motion with the Hurst exponent
H=1�(2$) and the variance 2D* at time 1 given by

2D*=4a(0) |
�

0
k1&2:&4;(1&cos(k2;)) dk (28)

In particular, the limiting fractional Brownian motion is persistent for
:+;>1 and is antipersistent for :+;�1. For :+2;<1, the limit is a
fractional Brownian motion with H=0 for any $>0.

3. EFFECT OF INFRARED CUTOFF

Since the fractional Brownian motion limit is often the result of low
wave numbers, it is natural to consider the effect of an infrared cutoff which
is taken to be =#, #>0. For simplicity of discussion, we assume that a(k) is
the characteristic function of the interval [=#, K0] times a constant a(0)
where =#, #>0, describes an (vanishing) infrared cutoff. By tracing the
calculation in the previous section, it is easy to see that for :+2;<1,
y=, $(t) converges weakly to the FBM with H=0 for all #>0. For
:+2;�1, however, the answer is different. Equation (26) now becomes

E( y=, $(t))2=4a(0) =2=2$;�(1&:&2;) |
K0 =&$�;

=#&$�;
!1&2:&4;(1&cos(t!2;)) d! (29)

If

#>
1

:+2;&1
(30)

then, for $=;�(:+2;&1), we have #&$�;>0 and the rest of calculation
in the previous section follows through and Theorem 1 remains valid. If
Eq. (30) is violated, then the scaling limit may not exist! In summary,
Theorem 1 holds for any infrared cutoff =# in the power spectrum of V with

#>max(0, (:+2;&1)&1)
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4. D>0

First we need some preparation before stating the main results for this
case. Let F be the canonical Wiener measure defined on the space (X, B(X))
where X=C[0, +�) and B is its Borel-_ algebra. For any w # X we set

rw(k, s, t)=|
t

0
|

s

0
cos(k(w(u)&w(u$))) du du$ \t, s�0 (31)

Proposition 1. For F almost all w # X, rw satisfies

|
R

r2
w(k, s, t)(1+k2)r dk<+�, \0�r<3�2, s, t�0 (32)

By Proposition 1, the random function

Rw(s, t) :=a(0) |
R

rw(k, s, t)
dk

|k|2:&1 , s, t�0 (33)

is well defined for any :>0 since we can choose r>3�2&2:. Below we list
a number of properties of Rw .

Proposition 2. (1) (Ho� lder continuity) Rw(t, s), t, s�0 is Ho� lder
continuous and positive definite for F almost all w # X.

(2) (Self similarity) The law of Rw(*t, *s) and that of *2HRw(t, s) are
identical for any *>0.

(3) (Stationary increments in the mean) The law of

Rw(t+h, s+h)+Rw(h, h)&(Rw(t+h, h)+R(h, s+h)), s, t, h�0

(34)

is independent of h and the law of Rw(t, t) is identical to that of D*(w) t:+1

where D* is given by

C:(0) D:&1 |
1

0 \|
s

0
|w(s$)|2(:&1) ds$+ ds, when :> 1

2

D*(w)={C:a(0) D:&1 |
R

(.(x, w)&.(0, w)) |x|2(:&1) dx when :< 1
2

C:a(0) D&1�2.(0, w), when := 1
2

(35)
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where C: is a constant depending on : and the function .( } , w) in (35) is
Ho� lder continuous with any exponent less than 1, defined via its Fourier
transform .̂

.̂(k, w) := } |
1

0
e ikw(s) ds }

2

\k # R, w # X (36)

Propositions 1 and 2 are proved in Section 4.4. By Proposition 2 we can
define, for F almost all w # X, a unique (random) Gaussian measure Qw on
(X, B(X)) corresponding to the covariance function Rw . The canonical
processes y(t, |), t�0, | # X associated with the measures Qw need not
have stationary increments, although on average they do as stated in Part 3
of Proposition 2. Moreover, (random) mean square displacement

| ( y(t)& y(s))2 Qw(dy), \t, s�0

has the same distribution as D*(w)(t&s)(1+:), resembling that of a frac-
tional Brownian motion with the Hurst exponent H=(1+:)�2 and
2D*(w) as the variance at time 1. So we call it a local, fractional Brownian
motion (LFBM). Our main results are stated in the following theorem.

Theorem 2. (1) Let :+;<1, or :<0. Then $=1 and the weak
limit of (15) is a Brownian motion with the diffusion coefficient

D*=D+D |
R

a( |k| )
|k|2:&3 (D2k4+|k| 4;)

dk (37)

(2) Let :+;>1, ;<1 and 0<:<1. Then

$=
;

:+2;&1
(38)

and the limit of (15) is a persistent FBM with the variance at time 1

2D*=4a(0) |
�

0
k1&2:&4;(1&cos(k2;)) dk (39)

and the Hurst exponent 1�2<H=1�(2$)<1.
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(3) Let :+;>1, ;>1 and 0<:<1. Then $=1�(:+1), the limit of
(15) is the measure

Q(A)=| Qw(A) F(dw), A # B(X) (40)

where Qw is the law of a local FBM defined above. The measure Q is self
similar with the Hurst exponent H=(:+1)�2 and the associated process
has stationary increments.

The canonical process associated with Q in (40) is called a composite
fractional Brownian motion because it is a random mixture of LFBMs
with different covariance functions but the same Hurst exponent. It is a
H-sssi process in the terminology of ref. 26 with a well-defined exponent
H=(:+1)�2. It should be noted, however, that composite FBMs are not
Gaussian.

In the following proof, C and C$ denote generic constants independent
of the scaling factor = and wave number k.

4.1. Proof of Part 1��The Homogenization Regime

For the proof of (1) we adopt a martingale technique (see ref. 16 for
general reference and ref. 9 in the homogenization context).

We first define the non-stationary corrector field by the stochastic
integral

/(t, x) :=|
R

a1�2( |k| ) |k|2;

( |k| 4;+D2k4) |k|:&1�2 [W1(dk)&W1(t, x, dk)]

&|
R

a1�2( |k| ) D |k|2

( |k|4;+D2k4) |k| :&1�2 [&W0(dk)+W0(t, x, dk)] (41)

The corrector field has a finite second moment

E(/(t, x))2=|
R

2a( |k| [1&cos(t |k|2;+kx)] dk
( |k| 4;+D2k4) |k|2:&1 <+� (42)

for :<0 or :+2;<2, including the region defined by :<0 or :+;<1.
The corrector field is, however, non-stationary since the integral in

(42) depends on x. Its gradient, (�t /, �x/) is of mean zero and stationary
with finite second mement

E[ |�t /(t, x)|2+D2 |�x /(t, x)|2]=|
R

a( |k| ) dk
|k|2:&1 <+�, \:<1
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independent of x. The utility of the corrector field in (47) is related to the
corrector equation

�t /(t, x)+D �2
x/(t, x)=V(t, x) (43)

for almost all realizations of V and /. We need the following result.

Proposition 3. Let :<0 or :+;<1. Then,

lim
= a 0

P _sup
CK

= } / \ t
=2 ,

x
=+ }�'&=0, \K, '>0 (44)

Here CK :=[(t, x): - |t|, |x|�K ].

Proof. it is straightforward to check that

_2
= :=sup

CK

=2 E } / \ t
=2 ,

x
=+ }

2

==2 |
R

a( |k| )[1&cos(t=&2k2;+=&1xk)]
[k4;+D2k4] k2:&1 dk

�C=2\, with \={min[1, (1&:&;)�;]
&:,

for ;�1, :+;<1
for :<0, ;>1

(45)

as = � 0.
To finish the proof of the lemma we use the Borell�Fernique�Talagrand

estimate (ref. 2, Theorem 5.2, p. 120) to estimate the extremal behavior of
a Gaussian field from its mean-square behavior. First note that

d=((t, x), (s, y))

:== {E } / \ t
=2 ,

x
=+&/ \ s

=2 ,
y
=+ }

2

=
1�2

== \|R

a( |k| )[1&cos((t&s) =&2k2;+(x& y) =&1k)]
[k4;+D2k4] k2:&1 dk+

1�2

(46)

defines a family of metrics on the space CK by the law of =/(t�=2, x�=). The
proof of (45) shows that the diameter of the space CK with respect to the
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metric d= is less than or equal to C=\ for a certain \>0. By (46), we also
know

d=((t, x), (s, y))�C[|x& y|+=&1 |t&s|] \(t, x), (s, y) # CK

Thus, the minimal number N=(r) of d-balls with radius r needed to cover CK ,
satisfies N=(r)�Cr&M, for some constants C, M>0 independent of r and =.
Thus by ref. 2 (Theorem 5.2, p. 120) we have

P _sup
CK

= } / \ t
=2 ,

x
=+ }�'&�C'M+1 exp {&

'2

8_2
= =

which vanishes in view of (45). K

By (14), (43) and the Ito formula we obtain

=/ \ t
=2 , - 2D =w1 \ t

=2++&=/(0, 0)+=y \ t
=2+

== - 2D |
t�=2

0
�x/(s, - 2D w1(s)) dx1(s)+- 2D =w2 \ t

=2+ (47)

Proposition 3 implies that

lim
= a 0

P�Q _ sup
0�t�T

= } / \ t
=2 , - 2D =w1 \ t

=2++ }>'&=0, \T, '>0

so that =y(t�=2) is approximately a martingale, given by the right hand side
of (47), which has the quadratic variation

2D=2 |
t�=2

0
(�x /)2 (s, - 2D w1(s)) ds+2Dt (48)

By a standard result (see, e.g., ref. 9, Proposition 1) we know that the
process �x(t, - 2D w1(t)), is stationary and ergodic over the product prob-
ability space (0�7, V�W, P�Q). Therefore, with probability one (48)
tends to, as = � 0,

2Dt(1+E(�x/)2)=2D*t

with D* given by (37). The martingale invariance principle(17) then implies
that (47) tends weakly as = a 0 to a Brownian motion with diffusion coef-
ficient given by (37). This completes the proof of Part 1 of Theorem 2. K
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4.2. Proof of Part 2

Tightness. Let $ be as stated in the theorem. We first show that for
H=1�(2$) and any T>0, r # (0, 1)

lim
= a 0 |

T

0
|

T

0

ME[ y=, $(t)& y=, $(s)]2

|t&s|2H+r dt ds=C<+�, \0�s�t�T (49)

Since H>1�2 throughout this regime, (49) and Corollary 2.1.4 of ref. 27
then imply that

lim
* a 0

lim sup
= a 0

P( sup
0�s�t�T

t&s<*

|y=, $(t)& y=, $(s)|�h)=0, \h<0

and the tightness of the laws of y=, $(t), t�0 for 0<=�1 in X follows from
Theorem 1.3.2 of ref. 27.

Note that

ME[ y=, $(t)& y=, $(s)]2=MEy2
=, $( |t&s| ) (50)

Without loss of generality for our calculation we set s=0. We have

MEy2
=, $(t)=

2=2

- 2? |
t�=2$

0
|

s

0
|

R
R(s$, - 2Ds$ u) e&u2�2ds ds$ du

=
2=2(1&$)

- 2? |
t

0
|

s�=2$

0
|

R
|

R

a( |k| ) cos( |k| 2; s$) cos(k - 2Ds$ u)
|k|2:&1

_e&u2�2 ds ds$ du dk

=2=2+2(1&:&2;) $�; |
t

0
|

R

a(=$�; |!| )
(D2!4=4(1�;&1)+|!|4;) |!|2:&1

_[D!2=2(1�;&1)[1&e&D=2(1�; &1)!2s cos( |!|2; s)]

+|!|2; sin( |!|2; s) e&D=2(1�; &1)!2s] ds d! (51)

Since 1�;&1>0, (49) has the same asymptotic as

2 |
T

0
|

T

0 _|
|t&s|

0
|

R

a(=$�; |!| )
|!|4; |!|2:&1 |!| 2; sin( |!|2; s$) ds$ d!& ds dt

|t&s|2H+r

t4a(0) |
T

0
|

T

0
|t&s|&r ds dt |

�

0
!1&2:&4;(1&cos(!2;)) d!

The corresponding result for D=0 remains therefore unchanged.
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Convergence of Finite Dimensional Distributions. Since =w2(t�=2$)
tends to zero for $<1, it suffices to show that finite dimensional distribu-
tions of the process

Z=(t) :== |
t�=2$

0
V(s, - 2D w1(s)) ds, t�0 (52)

converge weakly to a Gaussian process Zt , t�0 with stationary increments,
zero mean and the variance 2D*t2H at time t. Let us choose arbitrary
!1 ,..., !n # R, 0�t1� } } } �tn and set Y :=!1Z=(t1)+ } } } +!nZ=(tn). The
r.v. Y conditioned on F is Gaussian, thus

MEeiY=M exp(& 1
2 EY2) (53)

The term EY2 can be expressed as a sum of products !i! jE[Z=(ti ) Z=(t j )].
Now we need to prove the convergence

E[Z=(t i ) Z=(t j )] �
D*
2

[t2H
i +t2H

j &(t j&ti )
2H ] as = a 0 (54)

which corresponds to the covariance function of a FBM with the Hurst
exponent H and the unittime variance 2D*. for this we observe that

E[Z=(t i ) Z=(t j )]

==2(1&2$) |
ti

0
|

tj

0
R \s&s$

=2$ , - D _w1 \ s
=2$+&w1 \ s$

=2$+&+ ds ds$

==2+2(1&:&2;) $�; |
ti

0
|

tj

0
|

R

a(=$�; |k| )
|k| 2:&1

_cos( |k|2; (s&s$)) cos(- 2D =$(1�;&1)(w=
1(s)&w=

1(s$))) ds ds$ dk

with w=
1(t) :==$w1(t�=2$). Passing to the limit = a 0, we obtain

lim
= � 0

!i!j E[Z=(t i ) Z=(t j )]=a(0) |
ti

0
|

tj

0
|

R

cos( |k|2; (s&s$))
|k|2:&1 ds ds$ dk

=
D*
2

[t2H
i +t2H

j &(tj&ti )
2H ] (55)

with H=(:+2;&1)�(2;) and D* given by (39).
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4.3. Proof of Part 3��Composite FBM

Tightness. Using the same argument as in the relevant part of the
proof of Part 2 it is sufficient to show that for any T>0 there exists C>0
such that for any T>0 and r # (0, 1) and we have

lim
= a 0 |

T

0
|

T

0

MEy2
=, $( |t&s| )

|t&s|2H+r ds dt=C<+� (56)

for H>1�2. Repeating the relevant calculations from Part 2 we find

MEy2
=, $(t)=2=2[1&(1+:) $] |

t

0
|

R

a(=$ |!| ) d!
[D2!4+=4(;&1) $ |!|4;] |!| 2:&1

_[D!2[1&e&D!2s cos(=2(;&1) $ |!| 2; s)]

+=2(;&1) $ |!|2; sin(=2(;&1) $ |!|2; s) e&D!2s] ds d! (57)

Using $=1�(:+1), ;>1, and the Lebesgue dominated convergence
theorem, we obtain in the limit = � 0 that

lim
= � 0 |

T

0
|

T

0

MEy2
=, $( |t&s| )

|t&s|2H+r ds dt

=2a(0) D&1+: |
T

0
|

T

0
|t&s|&r ds dt |

R
(1&k&2(1&e&k 2

))
dk

|k| 2:+1

(58)

Note that (58) is a convergent integral for 0<:<1. In view of (58), we
take H=(1+:)�2.

Convergence of Finite Dimensional Distributions. By the invari-
ance of a Brownian motion under the scaling =$w1(t�=2$) we have that

ME f1( y=, $(t1)) } } } fn( y=, $(tn))

=| F(dw) \| } } } | f� 1(!1) } } } f� n(!n)

_exp {& 1
2 :

n

i, j=1

R=, w(tj , ti ) !i! j= d!1 } } } d!n+
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where f� 1 ,..., f� n are the Fourier transforms of any f1 ,..., fn # C �
0 (R) and

R=, w(s, t) :==2 |
s�=2$

0
|

t�=2$

0
E[V(u, w(u)) V(u$, w(u$))] du du$

defined for any fixed w # X. We show

Proposition 4. Let 0<:, ;>1. Then

lim
= a 0 | |R=, w(s, t)&Rw(s, t)| F(dw)=0 (59)

with Rw defined by (33).

Proof. The left hand side of (59) is less than or equal to

|
R

dk
|k|2:&1 | } |

t

0
|

s

0
cos(kw(u)&w(u$)))

_[a(0)&a(=$ |k| ) cos(=2(;&1) |k|2; (u&u$))] } F(dw) (60)

As an integral on the k space, the above expression has an integrand that
converges pointwise to 0 for ;>1. The integrand of the k integral in (60)
can be bounded by C |k|1&2:�(1+k2) which is integrable for 0<:<1. The
proposition now follows by the Lebesgue dominated convergence theorem.

Self-similarity and stationarity of the canonical process associated with
the limiting measure follow from Parts 2 and 3 of Proposition 2.

4.4. Proof of Propositions 1 and 2

Proof of Proposition 1. Notice that

rww(k, t, s)=Re |
t

0
|

s

0
eik(w(u)&w(u$)) du du$

and, hence,

r2
w(k, t, s)� } |

t

0
eikw(u) du }

2

} |
s

0
eikw(u) du }

2

(61)
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We also have

| } |
t

0
eikw(u) du }

4

F(dw)�CT 2 \ t
k2+1+

2

(62)

From (61), (62) and Jensen's inequality, we know that

| r2
w(k, s, t)(1+k2)r F(dw)

is integrable in k for 0�r<3�2 and, hence, the proposition. K

Proof of Part 1, Proposition 2. We have

| (Rw(s, t)&Rw(s, t$))2q F(dw)

�C | \||k|�1

(rw(k, s, t)&rw(k, s, t$))
|k|2:&1 dk+

2q

F(dw)

+C | \||k|>1

(rw(k, s, t)&rw(k, s, t$))
|k| 2:&1 dk+

2q

F(dw) (63)

Since |rw(k, t, s)&rw(k, t$, s)|�|t&t$| s, the first integral can be bounded by

|t&t$|2q s2q \||k|�1

dk
|k|2:&1+

2q

which is finite for :<1. Using the Jensen inequality for the integral with
respect to the finite measure 1 |k|�1 dk�|k|2:+1, the second term can be
bounded by

C |
|k|>1

|k| 4q

|k| 2:+1 \| |rw(k, s, t)&rw(k, s, t$)|2q F(dw)+ dk

�C$sq |t&t$|q |
|k|>1

1
|k| 2:+1 dk

which is finite for :>0.
Similarly, we can show that

| (Rw(s, t)&Rw(s$, t$))2q F(dw)

�C( |t&t$|q+|s&s$|q) \0�s�S, 0�t�T
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which guarantees the existence of Ho� lder continuous modification of Rw

(see ref. 1, Theorem 3.2.5 and its corollary).
Positive definiteness of Rw is obvious.

Part 2, Proposition 2. From (31) we have rw(k, *s, *t) and
*2rw(k - *, s, t) are identically distributed. Thus,

Rw(*s, *t)=a(0) *2 |
R

rw(- * k, s, t)
dk

|k| 2:&1

=a(0) *:+1 |
R

rw(!, s, t)
d!

|!|2:&1 (64)

after a change of variable !=- * k.

Part 3, Proposition 2. By (31) and (33), (34) can be written as

|
t+h

h
|

s+h

h
cos(k(w(u)&w(u$)) du du$

whose law is independent of h since w(u) has stationary increments.
We also know that Rw(t, t) and D*(w) t2H are identically distributed

with

D*(w) :=Rw(1, 1)

=a(0) |
R

1
|k| 2:&1 |

1

0
|

1

0
cos(kw(u)&w(u$))) du du$ dk

=a(0) |
R

.̂(k, w) dk
|k|2:&1 (65)

where .̂ is given by (36). By Proposition 1 the function . belongs to the
Sobolev space H r(R), \r<3�2. The classical Sobolev embedding theorem(15)

then implies that . is Ho� lder continuous with any exponent less than 1.
To simplify (65) we note that the inverse Fourier transform of

1�|k|2:&1 is the distribution

C:a(0) |
R

|x| 2(:&1) f (x) dx, :> 1
2

F( f ) :={C:a(0) f (0), := 1
2

C:a(0) |
R

f (x)& f (0)
|x|2(1&:) dx, :< 1

2
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for any Schwartz function f. We further observe that this distribution can
actually be extended to test functions such as .. Indeed, we have

|F( f )|= } |R

f� (k) dk
|k| 2:&1 }

�& f� &L� |
|k| �1

dk
|k|2:&1+& f &H r(R) \||k|�1

dk
|k| 2:&1 |k| 2r+

1�2

<�

for any r>1 and 0<:<1. So the proof is now complete.

5. ASYMPTOTICS AS D � 0

In the section we analyze the asymptotics of the effective diffusivity

D*=D+D |
R

a(k)
k2:&3(D2k4+k4;)

dk (66)

as D tends to zero, which is valid in the Brownian motion regime
(:+;<1 or :<0). For :+2;<2, (66) clearly has the asymptotics

D*tD \1+|
R

a( |k| )
|k|2:+4;&3 dk+ (67)

because the integral is convergent. For :+2;>2, the integral in (67) is
divergent, therefore the asymptotics of D* is more subtle. Note that :<0,
;>1 in this part of the Brownian motion regime. Let

k*=D1�2(;&1)

so that D2(k*)4=(k*)4;. It is easy to see that

D |
|k|<<k*

a( |k| )
|k| 2:&3 D2k4 dk<<

a(0)
&:

D(1&:&;)�(;&1)

This shows that the effective diffusivity D* mainly comes from the wave
numbers of order k

*
as D tends to zero. So after making the change of

variable ! :=k�k*, we obtain

D*tD+D(1&:&;)�(;&1)2a(0) |
�

0

d!
!2:&3(!4+!4;)

, for ;>1 (68)
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which is finite for :+2;>2, :<0. Moreover, the integral in (68)
dominates over D in the region.

The asymptotics demonstrate the phenomenon of convection enhanced
diffusion D*>>D as

p :=(1&:&;)�(;&1)<1, for :+2;>2

Moreover, the exponent becomes negative

&1< p=(1&:&;)�(;&1)<0, for :+;>1

and results in a divergent effective diffusivity as D tends to zero. The range
p # [&1, 1] is the fullest possible in any case and is fully realized in this
regime.
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