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FROZEN PATH APPROXIMATION FOR TURBULENT DIFFUSION 
AND FRACTIONAL BROWNIAN MOTION IN RANDOM FLOWS* 

ALBERT FANNJIANGt AND TOMASZ KOMOROWSKII 

Abstract. We establish the conditions for the frozen path approximation for turbulent transport 
in a class of nonmixing Gaussian flows with long-range correlation. We identify the regimes of 
fractional Brownian motion limit as well as the Brownian motion limit. 
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1. Introduction. The study of turbulent transport is fundamental to under- 
standing of temperature fields as well as pollutant or tracer particles movement in 
the atmosphere and oceans and solute transport in groundwater flows [1]. For a long 
time, the Brownian motion (BM) and the heat equation have been the paradigm for 
describing large-scale turbulent transport since Taylor's works in the 1920s. The wide 
applicability of the Brownian motion and the related Gaussian processes have much 
to do with the central limit theorem which is often assumed to be valid over large 
scales if there is no memory or intermittency effect. 

To account for the memory or intermittency effect, anomalous diffusions have 
been introduced in recent years as phenomenological models within the framework 
of fractional kinetic equations or continuous-time random walks (see [21], [12], [19], 
and the references therein). The mechanisms for anomalous behaviors are generally 
attributed to long waiting times (subdiffusion) or long flights (superdiffusion) or both. 
The former results in fractional-in-time (hence non-Markovian) differential operators 
while the latter results in fractional-in-space differential operators. In both cases the 
underlying processes are non-Gaussian. 

In this paper we derive rigorously the fractional Brownian motions (FBMs) as 
limiting processes of large-scale motions of particles being advected by a family of 
random flows that are decorrelated both in space and time but in a manner depending 
on the wave modes of the velocity. This dependence is described in terms of two 
crucial parameters (a and 0) of the flows. Our limit theorem also characterizes the 
multiple-particle motions in the FBM regime. FBMs are Gaussian but non-Markovian 
processes and are different from the phenomenological models mentioned above. The 
FBMs we find in this paper are invariably superdiffusive due to the positive memory 
effect, while the FBMs we found elsewhere [7] for a different type of flows can be 
subdiffusive as well as superdiffusive. By varying the parameters we see that the 
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limiting processes can switch from FBMs to the Brownian motion, and we characterize 
the boundary of transition precisely. 

The FBM regime indicates the breakdown of the central limit theorem, but the 
Gaussianity persists in the limit and is inherited from that of the velocity field. It is 
an open problem if one would obtain non-Gaussian limits for non-Gaussian velocity 
fields, which are beyond the methodology of the paper. 

For the particle displacement x(t) in a given random velocity V(t, x) we consider 
the general large-scale limit 

x(t) -=x(-4) X'(t - E ( 2q 

satisfying the equation 

(1.1) dxz(t) = el-2qV(e-2qt, e-Px(t))dt + E1-q dB(t), p > 0, 

for some q > 0 (to be determined) as e tends to zero. Here B(t) is the Brownian 
motion and , is the molecular diffusivity. The special case of p - 0 and q = 1 is the 
white-noise-in-time limit. The scaling limit with p = 1 is the homogenization limit. 

We assume that, in addition to incompressibility, the velocity V(t, x), (t, x) E 
R x Rd, is a zero mean, time-stationary, space-homogeneous, isotropic, Ornstein- 
Uhlenbeck (thus, Gaussian and Markovian) process with long-range correlations (see 
below). Here the scaling exponent q depends on the correlation functions of the 
velocity. The scaling limit (1.1) has been studied by Kesten and Papanicolaou [11] 
in the case of p = 0 and Komorowki [13], [14] in the general case of 0 < p < 1 
for velocities sufficiently strongly mixing in time, and in this situation the scaling 
exponent is always q = 1, i.e., the diffusive scaling, and the limiting process is a 
Brownian motion with the diffusion coefficients given by the Taylor-Kubo formula 
[22] 

(1.2) Dj {IE[V(t, 0)Vj (0,0)] + E[Vj (t, 0)Vi(0, 0)]} dt. 
0 

To understand how the long-range correlation in velocity fields may change the 
diffusive scaling, we study the weak coupling limit for Ornstein-Uhlenbeck velocities 
with long-range correlations in both space and time (thus, nonmixing) defined as 
follows. We define the family of velocity fields with power-law spectra as follows. 
Let (Q2, V, P) be a probability space of which each element is a velocity field V(t, x), 
(t, x) E R x IRd satisfying the following properties. 

(HI) V(t, x) is time-stationary, space-homogeneous, and centered, i.e., EV(0, 0) = 
0, and Gaussian. Here E stands for the expectation with respect to the 
probability measure P. 

(H2) The two-point correlation tensor R = [R j] is given by 

(1.3) Rij(t,x) = E [Vi(t, x)Vj(0, 0)] 

=/ cos (k. -x) exp (- k12/t) 
(Qkj) 

( 
i 

kok dk, 
/3>O0, 

d_>2, 
with the spatial spectral density 

a(k) (1.4) 8(k)= a( 
, 

k < 1, 



2044 ALBERT FANNJIANG AND TOMASZ KOMOROWSKI 

where a : [0, +oo) - +R+ is a compactly supported, continuous, nonnegative 
function. The factor I - k 0 k/Ik|2 in (1.3) ensures the incompressibility. 

Note that for a < 1 the instantaneous two-point correlation functions Rij (0, x) decays 
to zero as Ix| tends to infinity. The velocity is strongly temporally mixing if and only 
if 3 = 0 (see [20]). 

We show that the scaling limit is either a Brownian motion or a persistent (i.e., su- 
perdiffusive) FBM as stated in the following theorem. 

THEOREM 1. Let the velocity field satisfy properties (H1)-(H2) with p < 1. 
Case 1. For a + p < 1 and the scaling exponent 

q = 1, 

the solution x• (t) converges in distribution, as e tends to zero, to the Brownian motion 
with the covariance matrix given by the Kubo formula (1.2) plus KI. 

Case 2. For 1 < a + 0, a + 20 < 1 + l/p, and the scaling exponent 

(1.5) q := 
a+2 -1' 

the solution xe (t) converges in probability, as e tends to zero, to a fractional Brownian 
motion BH (t) with covariance given by 

(1.6) Cov(BH(t), BH(t2)) = D {It1,2H + t2 H _ _ t212H 2 {IiH+ 2 H- i-t2} 

with the coefficients D 

(1.7) e-lkl2--l+l 
kl2 0 kk 

a(0) d 
Rd lk|2a+40-1 

k-2 
k Ikld-1 

and the Hurst exponent H, 

a+p/3-1 (1.8) 1/2 < H = 1/2 + < 1. 20 
The homogenization scaling with p = 1 has been considered in [2], [3], [8], [15] 

and the corresponding scaling exponent q is the same. But the eddy diffusion matrix 
is no longer given by the Kubo formula. 

We also establish the following results, which are very useful for understanding 
the simultaneous limit of the motion of multiple particles. 

THEOREM 2. Under the same assumptions of Theorem 1, the following approx- 
imations are valid in the respective regimes in the mean square sense for sufficiently 
small E: 

Case 1. 

X (t) = WE(t) + o(1) 

with 

We(t) : = 
IkI(k) ( I kok 

a•)• (kl2gP+ 
2)lkl) dk) 

iJkn2 
(1.9) [cos (e-Px•'(s) . k)Wo(ds, dk) + sin (e-Px•"(s) . k)Wl(ds, dk)], 
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where Wi(dt, dk), i = 0, 1, are two independent copies of a d-dimensional space-time 
white-noise field (see [16] for a thorough discussion). 

Case 2. 

t 

(1.10) z'(t) = x'(0) + E1-2qV(E-2qS, E-PxZE(O))ds + o(1). 
Og 

The surprising feature about the approximation (1.10) is that the "frozen path" 
approximation is asymptotically exact on the time scale of observation. Thus the 
multiple-point motion can be easily derived. 

The process W6(t) defined by (1.9) is a continuous martingale with the quadratic 
variation 

(w 
ek 

kl2E((kl) 
( ok 

k dk 
t (|k123 + E22 k k2 kikl 

Thus we know that W,(t), t > 0, is a Brownian motion. It is easy to check that the 
ratio (W,)t/t converges to the Kubo formula as s tends to zero. 

Theorem 1 characterizes the limit of one-point motion whereas Theorem 2 enables 
us to calculate the limit of multiple-point motion with each particle starting from a 
different point. It is straightforward to check from the corresponding approximations 
(1.9) and (1.10) that any two particles with a fixed initial separation in xe(0) become, 
in the limit e -+ 0, independent Brownian or FBMs for p > 0. However, if the initial 
separation of particles is of order Ep, then the resulting limit processes are correlated 
as in the case of p = 0 which has been studied in [6]. The proofs of Theorem 1 and 
2 use (finite) diagrammatic expansion and are given in sections 4-6.1. In the main 
text we present the physical explanation of the theorems in terms of the frozen path 
approximation. The results are shown schematically in Figure 1. In section 7 we 
provide a scaling argument for the case of p > 1 for the fractional Brownian regime. 

When an additional infrared cutoff of the size 6e is introduced in the velocity 
spectrum, the results depend on whether the cutoff is subcritical, 

y, 
< (a + 2/3 - 1)-1, 

or supercritical, y > (a +2~ - 1)-1. A supercritical cutoff does not affect the diagram, 
but a subcritical cutoff does. In particular, the regime of FBM limit disappears, and 
the limit is always a Brownian motion when the infrared cutoff is subcritical (see 
[2], [3]). We will not further discuss the effect of infrared cutoff in this paper. 

The effect of molecular diffusion on transport may be subtle (see [18], [7]). How- 
ever, for isotropic flows with monotonically decaying temporal correlation, small 
molecular diffusivity is negligible and will only affect results perturbatively. So we set 
K = 0 from now on to simplify the presentation. 

2. Brownian motion limit. Let us first consider the case of the Brownian 
motion limit. We express the displacement in the integral form 

xa(t) = xI(O0) + -IV i dt1. 

Assuming for simplicity that the spatial derivative of the velocity field is uniformly 
bounded, we know that the frozen path approximation 

xe(t) M e(t)= x(0) + 1 V ( 
ds, (O < t < 7, 

l0 
E 



+- 1 
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FIG. 1. Phase diagram with supercritical infrared cutoff. 

is accurate pathwise with an error of 0(T3/2 -1-p) on the time scale 

(2.1) e2 ? p+1 

(cf. (3.5)). One then expects that, for small e, the displacement x, (t) is approximately 
the sum, 6 ,(t), of t/7 random variables in the form 

((n+l))/e2 

S 

() = - ((n + 1)) - (nT) 

n 
V s, 

E (n) 
ds, n = 0, 1,2, 

nr7/ 
e2 Ep 

III 

Since T >? 2, by the central limit theorem for processes with mixing, stationary 
increments (cf. [20]), the process Azn(t), 

A n(t) +t/Ee V s, (n ds, O < t < 7, 
nr/e2 pI- 

conditioned on , (nT), is approximately a Brownian motion, starting at 0, with dif- 
fusion coefficient given by the Taylor-Kubo formula (1.2). Since > E2 and the 
Taylor-Kubo formula converges, Ai.n are nearly uncorrelated for different n and the 
total error made by the frozen path approximation is O(Te-1-P), which is negligible 
for T < E1+p 

The question is, What is the region in the (a, 3) plane where the classical tur- 
bulent diffusion theorem, with the Taylor-Kubo formula (1.2), holds? It is easy to 
find the necessary condition by imposing the convergence of the Taylor-Kubo formula 
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(1.2). A straightforward calculation 

D- Rij (t, k0)dt 

-= J i k )Jk1 
0 -exp (-Ik 2,t)dtdk 

(2.2) L (6 ~ kj (Ikl)dk (22 
d 1 k12 [k d+2 -1 

leads to the condition 

(2.3) a + 3 < 1. 

It turns out that (2.3) is also sufficient. In other words, the classical turbulent diffusion 
theorem holds for this family of Gaussian velocity fields if and only if (2.3) is true 

(see section 6.1). 
Let us see what the frozen path approximation tells us. The covariance of the 

Gaussian increment An (t), 0 < t < T (given by (2.1)), stationary with respect to n, 
can be expressed as 

ft/62 

081 

22 
J Rij(S1 - s2, 0) ds2 ds1 

= 
2E2a 

1 ij i k }kd+2-1 -esIk|2)dkdsl 

= 
2l (2 

t 

kij -( k ,) (1 - 
e-t)lIk|2/E 2)dkdtl 

= 2D*t - 2 - 
ik (kl)•_ 

e-t ki2 /E2dkdtl 

(2.4) = 
2Dit- 

2 5j( kk ikj ( (k) x (1 -e-tdk|20o2 

ij 
JRd ikI2 ) 

kld?2)3-i 
'IkI2, )d 

with D* given by the Taylor-Kubo formula (2.2). The last integral can be estimated 
by breaking it into two parts: Ik 20 < e2/t and Ik120 > c2/t. The first part has the 
asymptotic 

2t 6.( 
- 

kikj (k[) 
A 2t kik ?(2kl) dk 

kl212)3 /, k2 j) kld+2,-1 
,6 )1/(20) 

Ik|2-2e-20 
I 
( 

)t 0 

(2.5) = 
e2(1-a-P)/0t("+2P-1)/, 

which, if a + 20 > 1, gives rise to the subdiffusive FBM with the Hurst exponent 

a+20 2-1 
H= < 1/2 20 

and vanishing coefficient since a + P < 1. The second part can be estimated by 

2 

•k(jk|) 

E2d 
l 

/20>E2t 
Ikld+20-1X Ik12T d 
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2d2 [(2) (1-a-2 )/f-K2(1-a-20) 
(2.6) 2( 

K2(1-a-2) 
(2.6) = 2E2(1-a-0)/t(a+20 -1)/ 0 - 22K2(1-a-20) 

Thus, if a + 20 < 1, the second term in (2.6) dominates the first and, if a + 20 > 1, 
the first dominates. But both (2.5) and (2.6) are negligible relative to the leading 
term 2D*t. 

Therefore, for a + 0 < 1, the displacement x,(t) behaves like the Brownian 
motion, with the diffusion coefficient given by the Taylor-Kubo formula (2.2), plus a 
correction term. When a + 2, > 1 the correction term is like a subdiffusive FBM. 

3. FBM limit. What happens if (2.3) is violated? The divergence of the Taylor- 
Kubo formula (1.2) suggests a superdiffusive behavior and, consequently, a different 

scaling limit. 
Consider the superdiffusive scaling on the displacement 

(3.1) 
.x(t)-= 

ex 
, q<l. 

The equation of motion becomes 

(3.2) 
dx(t) 1 ( t XC(t) 

(3.2)- 2q- V p < 1. dt 2q-1 2q ' gp ' 

The frozen path argument will show that for 

(3.3) a+ >l1, a<l, 

and 

(3.4) q = 
a+20- 1' 

the solution xe(t) of (3.2) converges to an FBM. 
First we note that the frozen path approximation 

1 ft (t1 x6(0) 
xe(t) M 2-i(t) = Xe(O) + V2q-1 V t, 2t 

) e(dt 
t~q- 1n E2q' Ep 

is accurate with the error O(rT+1/(2q)61-p-2q) on the (rescaled) time scale 7, 

(3.5) 62q ? T r <p+2q--1 

provided that the scaling exponent q is the right one (i.e., z,(t), t > 0 is 0(1)). The 

upper limit on T is imposed in (3.5) because the total error made by the frozen path 
approximation is then O(TEl-p-2q), which is negligible. 

Let us calculate the covariance of the Gaussian increment 

A.n(t) -E- 
V s, ds O<t<7, 

n-7/e2q vp 
EP 



FROZEN PATH APPROXIMATION FOR TURBULENT TRANSPORT 2049 

which is stationary in n. Denoting by Rs the symmetric part of the covariance matrix 
R, we have 

E[Aki (t) A n (t)] 
I t/E2q S1 

- 2E2j i Rs(si - s2, 0) ds1 ds2 

=2E2t/e2q I 2q k?k (k) 
(l _ eslk|2L) ds1 dk 

= 2e2(1-q) i 2q/t,/t 

I k k•2 9 kd+2- (1 - -tlIkl2q) dkdt1. 

The first integral has the order of magnitude 

E2(1-q) 
t 

O•(k) 

t 

i•2 
dk dtl A 2[1-q(a+23-1)/]t(a+2- 1)/ 

i kJO k0 I2<E2q/t1 |kd+2Q-1 E2q 

The second integral has the order of magnitude 

2(1-q)t S(k) d dtl d ~2[1-q(a+20-1)/P]t(a+20-1)/0 
JO 

]Jkj2_>E2q/t1 

k(d+20-1 

They are of the same sign so they do not cancel with each other. With (3.4) both 
terms behave like the FBM of finite, constant coefficients with the Hurst exponent 
H = 1/(2q) on the (rescaled) time scales in the range given by (3.5). In particular, 
for p = 0, the FBM limit holds up to order one time as is rigorously proved in [6]. 
The scaling with (3.4) is superdiffusive since q < 1 for a + 0 > 1. This is the result 
of positive correlation between successive increments. For the FBM-like behavior to 
persist up to order one times for p > 0 the stationary increments at different times 
must have the right positive correlation. This is proved in section 6. 

4. Estimation by diagrammatic method. We now turn to the proof of Theo- 
rem 1. We shall only calculate the mean square displacement of the particle. We make 
use of a spectral representation of the velocity field as follows. Let 

Vo0(t, 
dk),Vl (t, dk) 

be two independent copies of real Rd-valued, Gaussian, random spectral measures with 
the structure matrix 

e- 
kl[2,d(|kd ( kJ 0ok ) (4.1) E[Vi(t, dk) Vi(0, dk)] = -IkkI 2 k(I)ki = 0, . 

, ~Ik(d~ 
(k12 dkL~,i-O,1 

The modes of the random measure can be intuitively thought of as mutually indepen- 
dent "infinitesimal" Ornstein-Uhlenbeck processes, that is, a stationary solution of a 
properly understood (e.g., in the sense of generalized functions) stochastic differential 
equation 

(4.2) dtVi (t, dk) 

= -Ik 
2P•i(t,dk)dt 

+ lkI(22+1d)/28i 
(IkI) (I k- k)Wi(dtdk), 

i=0,1. 



2050 ALBERT FANNJIANG AND TOMASZ KOMOROWSKI 

Here Wi(dt, dk), i = 0, 1, are independent RId-valued, uncorrelated space-time white- 
noise random measures. 

We can write then that 

(4.3) V(t, x) = V(t, x, dk), 

with 

(4.4) V(t, x, dk) := 
eik'xV(t, 

dk) 

and V(t, .) a Cd-valued, componentwise Gaussian random measure given by 

(4.5) V(t, A):= -[Vo(t, A) + Vo(t, -A)] + -[V1(t, A) - V1(t, -A)]. 2 2 

The velocity field is temporally Markovian because for any Borel set A and s < t 

(4.6) Es V(t, dk) = e- kI 2(t-s")V(s, dk). 

Here Es denotes the conditional expectation with respect to the history of the random 
field determined up to time s. Another property of temporal dynamics of the field 
is its reversibility, which can be expressed in the following form. For any Sl > s2 > 
S... sn 0 and functions F, G of appropriate arguments, we have 

(4.7) E Eo [F(v(sI, dki), . . ., (sn,dkn))] G(V(O, dkn+,)) 

= E [F(V(s - 
s, dkl),..., V(O, dkn))EoG(V(s, dkn+l)) . 

As explained in the introduction, the molecular diffusion has only a perturbative 
effect and will be set to zero to simplify the calculation. The motion of the tracer is 
then described by 

dz(t) 
(4.8) = V(t, El-Px(t)). dt 

Let us set 

te-2q 

(4.9) X'(t) 

=E?o 

V(s, e'l-px(s))ds, 

where p < 1 and x(t) is given by (4.8) and q is to be specified later. 
For any t > s define An(t,s) := [(sl,...,sn+l): t > s> 

"" 
. > sn+i > s]. To 

compute the mean square displacement of the particle we write 

te-2q 

E [x,(t) 0 
xe(t)] 

= E2 ds {E [V(si, l'-Px(sl)) 
0 

V(O, 0)] 

-+E [V(0, 0) V(s1, 
eI-Px(s1))] 

} ds1 
N-1 

(4.10) = 
In,~ (t) + 

7RN,E(t), 
n=0 
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with I,,,(t) the symmetric part of the matrix 

t 
--2 

q 

(4.11) o,(t):= 2n(I-p)+2 n 
ds ... E {Eo 

[Wn(sl, 
.. 

.,Sn+, 
0)] 

An (s,0) 
OV(0, 0)} dsl ...dsn+l 

and RN,S(t) the symmetric part of the matrix 

N,s(t) 

S2EN(1-p)+2 
j ds J...] ] E 

{ESSN+1 
[WN(s1 1..., SN+1, -1PX(SN+1)1 

AN (s,O) 

OV(0, 0)} dsl . 
dsN+l, 

where W, (.) is defined inductively by 

(4.12) Wo(s,1,X) := V(s1, X), 

(4.13) W,(sl,...,Si, +l) := V(S,,+,x) 

"VWn-1(s1, 
... ,sn, X) for n 1, 2,.... 

To estimate both In and the remainder term RN, (t) we shall deal with expec- 
tations of polynomial-like expressions in a Gaussian variable. To calculate the expec- 
tation of multiple product of Gaussian random variables, we use Feynman diagrams 
borrowed from quantum field theory (see, e.g., [9] and [10]). A Feynman diagram F 
(of order n = number of vertexes and rank r = number of edges) is a graph consisting 
of a set B(F) of n vertexes and a set E(F) of r edges without common endpoints. 
So there are r pairs of vertexes, each joined by an edge, and n - 2r unpaired ver- 
texes, called free vertexes. Let B(F) be a subset of positive integers. An edge whose 
endpoints are m, n E B is represented by imi (unless otherwise specified, we always 
assume m < n); an edge includes its endpoints. A diagram F is said to be based on 

B(F). Denote the set of free vertexes by A(.), so A(F) = F \ E(.F). The diagram 
is complete if A(F) is empty and incomplete otherwise. Denote by G(B) the set of 
all diagrams based on B, by 9o(B) the set of all complete diagrams based on B, and 
by gin(B) the set of all incomplete diagrams based on B. A diagram F' E 9c(B) is 
called a completion of F E i(B) if E(T) C E(F'). 

Let Z := {1, 2, 3,..., n}. For n > 1 we define inductively a class &n of certain 
Feynman diagrams based on Z, as follows. For n = 1, E1 consists of the trivial 
diagram F with vertex 1. Given 6n_1, ~, consists of all the descendants of en-1. 
A descendant F' of .F E n-_1 is a graph based on Z, such that A(F') # 0 and 

(4.14) 'i n- - 
•, 

where 
F'_-1 

is the restriction of F' to Zn-1 
with edges of the type inni, m = 

1, 2,..., n - 1, deleted. We call F the predecessor of F'. The predecessor of any 
T' E 6~ is clearly unique. For FT E G, set Ak((F) = A(F k), k = 1, 2,..., n. 

Adopting the multi-index notation for any N E Z+, n = (n,..., nN+1), nj E 
{1, 2, 3,..., d}, and In! := 

+ + n2 + ... + nN+1, we have the following formula. 
LEMMA 1. Let N > 1 and sl > s2 > ... > SN+1 

_ 
0, i E {1,...,d}, x E Rd. We 

have then that 
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(4.15) 

ESN+ 
WN,i(Sl, . . , SN+1,X) / exp {i 

km' 

x 
n,FT mEAN(F)U{N+1} 

x iN J7 km exp - km•(j -- j+1) 
j= mEA3 (m) mEAj (T) 

x Cn,N f E 
[P(nm(0,dkm)Vnml,(0, dkm')] 

7 
Vnm(SN+l 1dkm), 

mm'EE(T) mEAN ()U{N+1} 

where ICn,NI | 1. The summation extends over all integer valued multi-indices n = 
(ni,..., ng1+l), nl 

= i, and all Feynman diagrams F CE N. 
The proof of Lemma 1 is a straightforward moment calculation with jointly Gaus- 

sian random variables using spectral representation (4.3)-(4.4). The free vertexes arise 
from centering and the edges from covariance of each pair. The condition A(F') 

: 
0 

is due to the gradient operation. The term Cn,N contains an 0(1) factor like 

H 
1 

[1-e-21km/12(S m'-SN+1)] 
mm'EE(F) 

resulting from replacing the conditional covariance by the covariance of the pairing 
(cf. [6]). 

Using Lemma 1 we can write that 

te-2q 

(4.16) fo ds- ... 
EsN+lWN,i(Sl, 

..., SN+1,)ds1... 
dSN+l 

AN(s,O) 

te-2qN 

10 
d 

d 
s idS 

' 

"..i 

N(k 

l,...,kN)PN 

(X i 

kl,...,kN; 

Y 

) 
AN- 1(S,S') 

x E 
[ nm (0, dkm) 

nm, (O, dkm,)] Vnm((s',dkm) 
mm' EE(T) mEAN(•F)U{N+1} 

for i = 1,...,d. Here, 

(4.17) 

N E km12, E km 
Nm 

Z 
IEA(F) m E A, (F) 

OPN(X, kl, ...,kN) := 
iNCn,N JH mEAj(3) _mAj() 

j=l 1 - exp - E kmI2 12t-2q) mEAj (F) 

mE Aj (.F) 

x exp{i km x 

mEAN (F)U{N+1 } 

x ... exp - 1 km 2(s j -••• j+l) ds, ...ds 
AN-1(s,s') j=- mE 

Aj (F) 
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and 

(4.18) 

N 

•1 

- 
exp{- 

E km 
2otE-2q 

PN(ki, ...,kN;F) 
= J km 

E Aj(km 20 
j=1 mEA (F) mEAj (Y) 

It is elementary to check that 

(4.19) (PN(X, kl,..., kN) < 1. 

To further estimate the expression (4.16) we need to have more refined analysis 
of the graphs F ? GN. Define 

(4.20) rN(T) := max{m : m E AN(F)}, 

(4.21) aN(F) := min {mm : E AN(F)}. 

We define ak(F), k < N, as 

ak-1(7) 
= min{m : m E Aak (F)} 

successively unless ak = 1. In other words, ak-1 is the smallest integer which is the left 
endpoint of an edge with its right endpoint greater than ak; cf. (4.14). Below we will 
use the short-hand notation ak := ak (F). Note that AN (F) and Aak-1 (F), ak > 1, 
are mutually disjoint. Let 

(4.22) A(T) :=- AN(T) U A _k1k (TF). 
k:ak > 1 

Observe that any vertex m E A(F) cannot be a right endpoint of any edge in E(gF). 
For any m E A(F) let m* be the nearest vertex in A(F) to the right of m, i.e., 

(4.23) m* := min[k: k E A(F), k > m] 

if the relevant set is nonempty; otherwise, set m* := N. Let 

(4.24) qm 
":= #{pp' E E(T) : m < p' < m*} 

and let e(.F), c(F) be the cardinalities of E(F) and AN(F), respectively. It is easy 
to see that 

(4.25) qm = e(F), 
mEA 

and thus 

(4.26) E qm + e(F) + c(F) = N. 

mEA(T) 
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4.1. Estimates for the remainder terms NN,,,(t). By the Cauchy-Schwartz 
inequality we get that 

(4.27) IRN,,(t)12 
< 4e2N(1-P)EIV(0, 0)12 

2 

S 
x max E ds' 

I" EsWN(Sl, W ...,SN, S'ex(s'))ds 
?..dsN 0<s<te-2 Jin fJ1J AN- 1(s,s') 

The stationarity of the Lagrangian velocity field implies that the right-hand side of 
(4.27) is equal to 

2 

4c2N(1-P)EIV(0, 0)12 max E ds' 
' "] 

EoWN(Sl, ... , 0, 
0)ds1"' 

-.dsN 
O<s<te-2 

Is 
AN (s',0) 

(4.28) 
Subsequently using (4.16) for the multiple time integration of the conditional expec- 
tations in (4.28), we deduce that the above expression is less than or equal to 

(4.29) 4CE2N(1-p)t2E4(1-2q)E J J . 
N?(x, k1, ..., kN)PN(k1,..., 

kN;.F) 
2 

x E 
[V-m (0, 

dkm)Vn., 
(0, dkm,)] 

I nm (0, dkm) 

mm'EE(.F) mEAN(F)U{N+1} 

The summation above extends over all Feynman diagrams FT E 6N and multi-indices 
n. 

By introducing an identical copy of the diagram which is supported on {N + 
2, N + 2,..., 2N + 2}, the expression in (4.29) can be written in the form 

4CE2N(1-p)t24(1-2q) z ... 

PN(Okl 

,... 
kN)(ON(0,k'•,... 

, k') 

PN(kl,..., kN; F) PN(k'l, ..., k'r; ) 

x E 
[Vnm (0, dkm)Vnm, (0, dkm')] 

mm'EE(T) 

x E 
[•nmE(0(dk'm))nmf 

(0,dk'n) E T( nm (0) ( 
dkm) 

mr'EE(F)LmEA(2)(.) 

where kN?+l+j := k' and 

(4.30) A(2)(F) = AN(F) U {N+ 1}U {j +N+ 1: j AN() U {N+1}}. 

Using the elementary inequality 

S- e-xtE2 C 
< t, x > 0, x - x + 2q/t' 
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for a constant C independent of E, x, we conclude that (see (4.18)) 

N E Ikml 
IPN(kl,..,kN;F) ?I 11 Aj(T 1 lkm +,1+2q"t 

mEAj (F) 

The expression (4.29) can be now estimated by 

(4.31) Ct2E4(1-2q) E 
" QN(kl,.., 

kN; -F) QN(kI, kf; 
F; 

) 

(k - km,)dkmdkm, 6(km - 
k,)dkmdkm1 

2a-1 2a-1 km km 

mm EE (km) 
km)dkmdkm 

Ek2aF--1' mm' EE(F') 

with km = Ikml and 

N E km 

QN(kI' " 

kN;T) 

"= 
nmEAj 

(F) 
j=l Y k 20 + E2q/t 

jm mc-Aj (T) 
m 

The summation extends over all Feynman diagrams F e EN and all complete dia- 
grams F' made of the vertexes of A(2) (T). 

When 20/3 1, QN(k1,...,kkN;JF) is bounded. This in turn implies that the 
expression (4.31) diverges at most at the rate e4(1-2q). The estimate (4.27) implies 
then that RN,E(t) vanishes with E 1 0 and N > 2/(1 - p). 

Let us assume therefore that 23 > 1. There exists then a constant C, depending 
only on t, N, /, and K, such that 

E km k / 
mEA 

()km 
r- 

+ 
Eq/ (432) () 

_< 
C Vmj E Aj(F) E 2 +2q/t kj + E2 

mEAj (T) 

and thus 

N +Nj 
-J 

Ek/. (4.33) QN(kl,..., kN<; 
C) 

ClI 
2+ 

S=1 k2) + E2q j=l M3 
for all mj E Aj (F). Hereby we make the following definite choice of mj: let mj := j 
if j is not the right endpoint of an edge of the diagram F. Otherwise, let my be the 
closest vertex from A(F) to the left of j. 

Denote by E'(F) the set of the edges of the diagram F with neither endpoint 
belonging to A(F) (see (4.22)) by cardinality of e'. In view of (4.25), (4.26), and the 
identity 

(4.34) e'(-F) + #[A(9F) \ AN(F)] = e(F), 
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the expression on the right-hand side of (4.33) can be written as 

(4.35) C n 
k / 

2 n 
km+3/ 

+ k(4.35 + C2q k -m +- E2q 
mm 'EE'(F) kmEA(.F)\AN(-F) 

x 
(km 

+ql3qm+1 

( km 
+ 

6._2q 

mEAN(T)') 

From (4.31), (4.33), and (4.35) we conclude that 

(4.36) 

[K (k ?c 
q/l )qm+l 

dk 
•R N,e(t)12 < CE2N(1-p)+4(1-2q) SKm A kk k 

2 q 
+ 

6 

m 

-+1)2 

mE 
( 

E 
)\AN (GF) (k + cq)-1 

x 
K 

(k +E )dk2e' 
K k E 2+qm+mdk [ 

(k2,+ -E2q)k2-a-11 k20 2qk2a- 
Lnmmr/E E( 1F' ) 

Here the summation extends over all possible diagrams ,F, F' as in (4.31). The 
meanings of qm's related to the diagram F are the same as introduced in the previous 
section. We adopt also the convention that qN+l = q2N+2 = -1 and qN+1+m := qm- 

4.2. Estimates for Zn,,(t) for n > 1. The calculation is similar to that for 
the remainder term carried out in the previous section, so we shall sketch only the 
main points. 

From (4.16) we infer that the i, jth entry of the matrix In,,(t), given by (4.11), 
equals 

te-2q 

2En(l-p)+2 E 

2 

ds 

... 
On+ 

l(klI...., 
kn+l) 

(4.37) xP(k...kn; + )km20 2q 

SmEAni (mF)U(n+ 
1 ( 

mm'EE(F) mAn+(F)Un+2 

Here the summation extends over all multi-indices 1 = (11l...1,n+2) such that 11 = i, 

ln+2 
= j, and all Feynman diagrams F• E En+1. Proceeding with the same type of 

estimates as in the case of the remainder term we conclude that 

K( qm+1 

(4.38) In,E (t)l < CtEn(1-p) n 

+•+q• 

kk 
l 

d- 

11 
0 + Eqk2o J 2a-1 

m7EA(.F)\An+l (9f) 

[K (K +k)dk 
e 1K (e k)2+qm+qmt-rm,m' dk 

(e22q + k2)k2a-1 J (2~q + k2)2+qm+m' X k2a-1' 
mm/ E) F 

Here the summation extends over all Feynman diagrams F E n,+1 and all complete 
diagrams F' made of the vertexes of An+1(-F) U {n+ 2}; rm,m' := 6m,mn+l + 6m',,mI n 
Also, we adopt convention qn+2 = -1. 
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5. Case 1. a + 3 < 1, 2pp < 1, O < p < 1-Brownian motion (q = 1). 
We shall give the proof only in the case 2p/ < 1. Also, for clarity we shall calculate 
only the asymptotic of the mean square displacement of x,(t), referring an interested 
reader to our paper [5], where the proof of the martingale version of our theorem has 
been laid out for p = 0. A suitable adaptation of the proof to the case pE [0, 1) and 

2pp < 1 is possible along the lines of the argument we present below. 
After an elementary calculation we deduce that under the assumption a + 3 < 1 

lim o,e(t) = Dt 
610 

with 

D =- ( k k k~ a(lkl) dk 

IRd 
d ik2 k kl2a+23-1 Ik d-1' 

provided that q = 1. 
Estimates for RN,E(t). We observe that 

(5.1) 
K 

2 f2kE1/ d< C, 
fo k2 ?E2 k2a-1 - 

/K El/, k 2+qm+mdk 
(5.3) < CJ ?(1( + E 

m 
)), 

05 
E 2 + k2 

k2_a-1 with 

(5.4) (m) := [2 - 2a + (qm + 1)(1 - 2/)], 

(5.5) (mml) :-[2 - 2a + (qm + q,m + 2)(1 - 20)]. 

We conclude therefore that 

(5.6) IRZN,(t)12 Ce", 
with 

(5.7) p := 2N(1 - p) - 4 + r, 
(5.7) 
(5.8) := '(2 - a - 

2/ ) + 2f"(3 - 2 - 
2/0) 

+(l- 2/3) '(qm + qm') +2(1 - 23) 
" 

qm 

where the summation 9' extends over the edges mm' of the diagram F' for which 

"y(mm') 
< 0 and -" extends over the vertexes m of A(T) \ AN(T), for which 

y (m) < 0 (see (5.4), (5.5)) and f', f" denote the cardinalities of the respective sets of 
edges and vertexes. Obviously, 

(5.9) f'c, f" e - e', 
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with c the cardinality of AN(F) and e the number of edges of F (cf. (4.34)). Note 
that c + 2e = N. 

Using E' (qm + qm,) + 2 E" qm < 2e and 2/3 > 1, we can write that 

2 
(5.10) ? - [f'(2 - a - 20) + f"(3 - 2a - 20) + e(1 - 20)]. 0P 

Since N = c + 2e we conclude from (5.9) and (5.10) that 

(5.11) p2 -4 + 2N(1 - p) + 
2 

[f'(2 - a - 2/3) + f"(3 - 2a - 23) + e(1 - 2/3)] 

S-4 + 2(c- f')(1 -p) 

+- {f'[2 - a - (1 + p)3] + f"(3 - 2a - 
2,3) 

+ e(1 - 2p/3)} > 0, 
09 

provided that 2p/ < 1 (note that then necessarily 2 - a - (1 + p)3 > 0) and N is 
sufficiently large. 

Estimates for In,e(t) for n > 1. Using (5.1)-(5.2) and 

S(k 
+ 

E)2+qm-+qrn-rrn,m 

dk 

o (k2 + 
E2)2+qmn+m 

k2a-1 - ' 

with 

(5.12) }(mm') [2 - 2a + (qm + qm, + 2)(1 - 20) - rm,m'] (512 ; (rnrn' " - 

we conclude that 

(5.13) IZn,E(t) |< Ce", 

where p = n(1 - p) + and 

S- 2f (2 - a - 
2/) + f"(3 

- 2a - 2)3) + f 

+(1 - 23) 
' (qm + qm) + (1 - 2/3) " qm - 1]. 

The summation Z' extends over the edges mm' of the diagram F for which '(mm') < 
0 and E" extends over the vertexes m of A(.F) \ A,+ (F) for which (y(m) < 0. f', f" 
denote the cardinalities of the respective sets of edges and vertexes. Finally, obtain 
that 

S (c+ 1 -2f'+e)(1 -p) 

+- [2pp + 2f'(2 - a - (1 + p)o) + f"(3 - 2a - 20) + e(1 - 2pp3)] > 0. 

In conclusion, we proved that the utmost left-hand side of (4.10) tends to Dt as 
E 1 0, provided that a + / < 1. 
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6. Case 2. 1 < a + 3 < 1+1/p, 0 <p < 1-FBM. For a +> 1, it is 
straightforward to check that 

limo0,e = Dt2H, 
et0 

provided that q = /3/(a + 2/3- 1). Here 

] 
e- 

ek2--l 
l+ 

k 20 k 
k0k) a(0) D - 

a 
lk2a+40-1 I [k- 2 T k)dfdk 

and the Hurst exponent H is given by 

a+/-1 
1/2 < H = 1/2 + < 1. 

20 

6.1. Case 2a. We assume that 

3/2<a+/3, a+20/<1+1/p, O<p<l. 

We shall only carry out the estimates of 7N,~ (t). One can easily obtain the respective 
estimates of In,~(t). These estimates are very similar to the corresponding part of 
section 5. We use the notation introduced there. 

As before we need only to consider the case 20 > 1 (cf. (4.36)). Note that 

noK 

(Eq/P 
+ k)dk 

(e2q + k20)k2a-1 
- 

( 

oK 
q/+ k m+1 dk 
J 2q + k2) k2 1 ()), 

and 

[K 

(Sq/P• 
+ k 

- 

2+qm+qm' dk 
S k2q + k2) Xk2)-1 - C(1 + )), 

with 

3- 2a - 20 
(6.1) +2/3- 

a+2/-1' 

3 - 2a - 23 + qm (1 - 2/3) (6.2) +7(m) 2- 
a + 2/ - 1 

4 - 2a - 4/3 + (q, + qm,)(1 - 2/) (6.3) +(m2) = a+2/3- 1 

(cf. (5.4)-(5.5)). 
Estimating the same way as in (5.6)-(5.11) we obtain 

InN,e(t)12 
< 

Ct46p, 
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with 

(6.4) p := 2N(1 - p) + 4(1 - 2q) + , 

3 - 2a - 2/3 
" 
:= 2(e' + f") 

a + 20 - 1 

+ + -1 [f'(2 - a -3)+ (1 - 23) ' (qm + qm')+ 2(1 - 20)" qm 

(cf. (5.9)). We have 

3 - 2a - 2/ 
t 2 4(1 - 2q) + 2N(1 - p) + 2(e' + fU") a+20 - 1 

2 
+ [f'(2 - a - 20) + e(1 - 20)] a + 2~ - 1 

3 - 2a - 2P 
> 4(1 - 2q) + 2(c + 2e)(1 - p) + 2e a + 20 - 1 

2 
+ 2 [c(2 - a - 20) + e(1 - 20)] 

a+2,-1 

> 4(1 - 2q) + 2Np 
- a - 2 > 0, 

a +2P- 1 

provided that N is sufficiently large. This in turn implies that IRZN,e(t) 2 vanishes as 
E t 0 for such a choice of N. 

6.2. Case 2b. Here we assume that 

1<a+0<3/2, a+213<1+1/(2p)+(a+0-1)/p, O<p<1. 

In this case one can write , in (6.4) as 

3 - 2a - 23 1 
S= 2f" + a +2 2- I a + 213- 1 

x [2f'(2 
- a - 23) + (1- 203)' (qm 

+ qm')+ 2(1- 20)" qm] 

and hence 

, > 4(1 - 2q) + 2(c + 2e)(1 - p) 
S 
2f" +- 2a- 2+ 2 

[f'(2 - a - 20) + e(1 - 20)] 
a + 203- 1 a+23- 1 

S4(1 -2q) +2ep(a +0- 1)/p + 1/(2p) -a- 213 
2f 

3- 2a- 23 
a + 20 - I a + 213- 1 

+ 2(c - f')(1 - p) +2fp l/pa > 0, 
a +23- 1 

provided that N is sufficiently large. This in turn implies that I]RN,e(t)|2 vanishes as 

S1 0 for such a choice of N. 
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7. FBM limit with p 
_ 

1: Heuristics. In this section we give an argument 
indicating that the FBM limit holds for p > 1. The argument is similar to the one 
given in [8]. 

Let UE (t, x) be the Gaussian velocity with energy spectrum given by 

a(ePk) (7.1) E(k) = 
k2 . k2a-1' 

Then it follows from the spectral representation of the velocity correlation function 
that UE is related to V via 

V t xx Ep(1-a)UE 
t 

x . 

With a unique pair of parameters q, qje, 

(7.2) q 3/(a + 2/3- 1), 
77• 

El+p-p(a+20) 

the equation of motion can be written as 

(7.3) 
dxe (t) 1 

U 
t 

x ) dt 2q-1 2q 

Since 77e must tend to zero we require that 

1 
(7.4) a + 20 < 1 + -. P3 

Condition (7.4) is also related to the fact that the velocity UE has increasingly smaller 
scales as E tends to zero. 

The following physical argument shows that, under the conditions (7.4) and 

a+/> 1, 

the ultraviolet divergence in U' has no physical significance. The small-scale velocity 
associated with high wave number Ik| has the amplitude 

(eiS jkjjk'jc2jkE(k')dlk' l) 
Jkll-?, 

IkI >> 1, 

and the correlation time is of the order lkl-28. Then particles transported by small- 
scale velocity travel a distance less than or equal to the sum of tlkl2P number uncorre- 
lated random variables of magnitude k 1-afkj-2,. Thus, on the time scale t 77,2q 
the displacement caused by high wave number k is of the order less than or equal to 

T7-;2q |k23 |k|1-a-20, as suggested by the turbulent diffusion limit theorem for mix- 

ing flows [4], which equals qr-qkll-k - and is always smaller than 7-,1 (the spatial 
scale of observation) if a + p > 1 and q < 1 (superdiffusive scaling). With (7.2) the 
two conditions (a + p > 1 and q < 1) are equivalent. It is clear that for [kl = 0(1) 
the previous argument is still valid. 

Now, if we neglect the high wave numbers in (7.3) the equation becomes 

(7.5) dx6F(t)/dt = --2qV(t/r29, Z X(t)), 
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which has the asymptotic solution 

(7.6) x•'(0) + rt/, 
V V(x (0), s)ds 

converging to an FBM (Theorems 1 and 2). 
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