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STRAIN GRADIENT ELASTICITY FOR ANTIPLANE SHEAR 
CRACKS: A HYPERSINGULAR INTEGRODIFFERENTIAL 

EQUATION APPROACH* 

ALBERT C. FANNJIANGt, YOUN-SHA CHANt, AND GLAUCIO H. PAULINOt 

Abstract. We consider Casal's strain gradient elasticity with two material lengths , ii associ- 
ated with volumetric and surface energies, respectively. For a Mode III finite crack we formulate a 
hypersingular integrodifferential equation for the crack slope supplemented with the natural crack- 
tip conditions. The full-field solution is then expressed in terms of the crack profile and the Green 
function, which is obtained explicitly. For i' = 0, we obtain a closed form solution for the crack 
profile. The case of small t' is shown to be a regular perturbation. The question of convergence, as 
e, e' -+ 0, is studied in detail both analytically and numerically. 
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1. Introduction. Classical elasticity is a scale-free continuum theory in which 
there is no microstructure associated with material points. In contrast, strain-gradient 
elasticity enriches the classical continuum with additional material-characteristic 
lengths in order to describe the size (or scale) effects resulting from the underly- 
ing microstructures. This consideration generally results in constitutive relations in 
which the strain energy density W is a function of not only the classical strain but 
also the spatial derivatives of deformation, i.e., W = W(c, Vc,F?V2c,...), where 
t represents generically a material-characteristic length. Microstructural size effects 
can, in theory, be present in any materials: In the case of crystals, the microstructure 
is the atomic lattice, and f is roughly the distance of interaction [2, 4]; in the case 
of polycrystalline metals or granular materials, the microstructure is determined by 
the compositional grains and probably has a larger characteristic length. In either 
case, the magnitude of X, after nondimensionalization, represents the ratio of the spa- 
tial scale of observation and the scale of the microstructure and is typically small. 
A graphical way of representing the transition from the classical continuum to the 
enriched continuum is to replace material points in the classical continuum with ma- 
terial particles (grains or cells) with internal structure, which gives rise to macroscopic 
effects described by the strain-gradient terms in the constitutive relations. There has 
been a surge of renewed interest in using strain-gradient theories to account for size 

(or scale) effects in materials (see, for example, [1, 19, 20, 29, 16, 34]). 
Since Cosserat and Cosserat's [7] pioneering work on couple-stress theory, various 

strain-gradient elasticity theories have been proposed and studied by, for example, 
Toupin [32], Mindlen and Tiersten [25], Mindlin [23], Eringen and Suhubi [12, 31], 
Green and Rivlin [18], Casal [5], Germain [17], and Eringen [11], among others. The 
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STRAIN GRADIENT ELASTICITY 

couple-stress theory takes into account only the rotation gradient, and its simplest 
version has the strain-energy density given by 

(1) W = Aeiicjj + Geijej + 2GOkijaOk:ij, ? > 0, 

6ij = 2 (OiU + j ui ), wij = 3 (iUj 
- 

oj Ui), 

where G is the shear modulus and A is the Lame constant. Here and below we 
adopt the summation convention that terms are summed over the repeated subscripts. 
The gradient of the rotation tensor &kWij represents certain curvature-twist effects. 
Because of the requirement of isotropy, (1) does not have terms representing surface 
energy (from the boundaries or the crack faces). To include surface energy within 
the couple-stress theory, one has to go to the second order gradient theory [24, 36]. 
On the other hand, Casal's theory incorporates surface energy as well as rotation and 
stretch gradients in the strain-energy density: 

W = eAkiik ( jj + G09kijakeji )+tVkak (Geije + 2Aeiiej 
2 \Z 

33 2 J) 
3 

1 ) 

(2) 
where ?' is another material-characteristic length associated with surfaces, and Vk, 
Okvk = 0, is a director field equal to the unit outer normal nk on the boundaries. It is 
easy to see, after integrating W over the material domain and applying the divergence 
theorem, that the term containing F' becomes a surface integral 

' (G j ij ej dA+ Aj I ii EA 6 dA) 

corresponding to certain surface energy which is allowed to be negative. Clearly, 
for e, I' > 0, the total strain energy is always nonnegative. On the other hand, it 
is straightforward to check that the strain energy density (2) is pointwise positive 
for -1 < 4'/l < 1. These two facts together imply that, for p = 4'/l > -1, the 
total energy is nonnegative and the associated boundary-value problems do not have 
oscillatory solutions. For p < -1, however, oscillations as well as displacements 
opposite to the loading condition may arise in the crack profile (see Figures 1, 2 and 
the discussion in section 9). 

Recently, Zhang et al. [38] studied the Mode III crack problem for the couple- 
stress theory with a semi-infinite crack subjected to the classical KIII field imposed 
at the far field or arbitrary antiplane shear tractions on crack faces. They used 
the Wiener-Hopf technique of analytic continuation to solve for the solutions and 
found that the stresses have r-3/2 singularity near the crack-tip, with a (normalized) 
stress intensity factor significantly larger than the classical one within a zone of size 
e around the crack-tip. Moreover, the crack displacement cusps at the crack-tip like 
r3/2, in departure from the classical result of r1/2. On the other hand, Exadaktylos, 
Vardoulakis, and Aifantis [13] and Vardoulakis, Exadaktylos, and Aifantis [35] studied 
a Mode III crack problem with a finite crack in Casal's continuum with or without 
a surface energy term (see (2)) and found a r3/2 crack-tip cusping, similar to that in 
Zhang et al. [38], but a different stress singularity, r-1/2. 

To make a fair comparison, let us note that, except for the material length 4', the 
strain energy of the couple-stress theory and Casal's theory for the Mode III crack 
probleni, in which the only nonzero strains are exz and eyz, can be written in the same 
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FIG. 1. Crack profiles for f = 0.05 and various p = ?'lf > 1. 
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FIG. 2. Crack profiles for f = 0.05 and various p = i'fnear -1. 
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form 

(3) W 2 [G(e2z + e2) + G2([Vexz2 + |Ve6 2) + G1'vk&k(e2z + eyz)] 

(See section 10 for a discussion of a slightly more general strain energy density.) 
Namely, for the Mode III crack problem, the couple-stress theory is a special case of 
Casal's theory with e' = 0. This is not true, of course, for in-plane crack problems. 
Besides the presence of the material length ', the boundary conditions used in Var- 
doulakis, Exadaktylos, and Aifantis [35] and Exadaktylos, Vardoulakis, and Aifantis 

[13] are somewhat different from, but closely related to, those of Zhang et al. [38] (see 
section 3 for details). 

One of the main purposes of this article is to resolve the crack-tip asymptotics for 
a finite crack embedded in an infinite homogeneous medium with antiplane traction on 
the crack faces (Mode III) and to study the dependence of solutions on ?, ?' using the 
method of hypersingular integrodifferential equations, which has been instrumental 
in studying crack problems in the classical theory [26, 10, 9]. In the special case 

of f' = 0, the exact solution is obtained in closed form and written in the physical 
variables such that the crack-tip asymptotics is explicit. Solutions of Mode I (and 
mixed-mode) problems for Casal's theory are significantly different from those for the 
couple-stress theory [30, 3, 37] and may be addressed by the method presented in this 
work. 

The other goal of this paper is to answer the question of convergence to the 
classical linear elastic fracture mechanics as , ?' -' 0. The results turn out to depend 
on whether p > -1 or p < -1 (sections 8 and 9). We show analytically that the 
convergence holds for small p ~ 0 and numerically for p > -1, and that, for p < -1, 
the crack profiles diverge as ?, ' - 0. This bifurcation phenomenon is consistent 
with the above analysis of the positive-definiteness of the strain energy. These results 
illuminate the transition from the strain-gradient theory to the classical elasticity 
theory as the intrinsic lengths vanish, and they also provide an important benchmark 
for numerical calculation of general strain gradient effects. 

2. Constitutive relations and equilibrium equations. For the Mode III 
problem, whose configuration is displayed in Figure 3, the x, y displacements are zero, 
i.e., ux = uy = 0, and the director field (Vk) = (0, -1,0). We set Uz(x, y) = w(x, y). 

We define the Cauchy stresses Tij, the couple stresses ,Ikij, and the total stresses 

a'ij as 

Tij = aW/9eij = A6ijEkk + 2Geij + ?'(A6ijVkakell + 2GkaOkeij), 

Akij = aW/Oeij,k = 2(A6ijakell + 2GOkeij) + e'(A6jjvkell + 2GL'keij), 

o-ij =Tij 
- 

1Ok/kij A= Sijekk + 2Geij -f 2(Aij V2e11 + 2GV2eij), 

and we have, for the Mode III crack problem, only the following nonzero stresses (see 
[35]): 

Tz = 2Gexz - 2GfOyexz, 

Tyz = 2Geyz - 2Gt/ayeyz, 

txxz = 2G2aexZa/x, 

pxyz = 
2Gf20eyz/ax, 

yxz= 2G(2ez/ay Exz - ), 

Iyyz 
= 2G( 20eyz/ay - 

f'eyz) 
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x 

FIG. 3. Geometry of the Mode III crack problem. 

Cxz = 2G(exz - f2V26xz), 

ryz = 2G(eyz - 2V2eyz). 

A calculation based on the principle of virtual work [17] leads to the equations 

(4) oioij + Fj = 0, 

(5) nirij 
- 

Dt(nkukij) + (Dtnl)nkniAkij + Tj = 0, 

(6) nknij/kij + Qj = 0, 

for the balance of the external body force Fj, the traction Tj, and the double traction 

Qj on the boundaries, respectively, where DV stands for the tangential derivatives on 
the boundaries. For the Mode III problem in the absence of external body force, the 
equilibrium equation (4) reduces to 

aux^z/x + aCuyz/y = 0, 

which, in the case of homogeneous materials (G = constant), takes the simple form 

(7) -e2V4w + V2w = 0 or (1-t2V2)V2w = 0. 

Equations (5) and (6) become the boundary conditions on the crack faces, which we 
will discuss next. 

3. Boundary conditions. For the convenience of deriving a hypersingular in- 
tegral equation, we treat the entire x-axis as the boundary on which the boundary 
conditions are imposed, and the upper half plane as the domain in which (7) is to be 
solved. Naturally the far-field boundary condition is imposed: 

lim w(x,y) = 0. 
x,y-+oo 
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With the outward unit normal (nx, n, Inz) = (0, -1, 0) on the x-axis, (5) and (6) 
become 

(9) Tz =- yz - x0lyyz, 

(10) Qz = -/Z. 

On the crack faces y = 0, x c (-a, a), the medium is loaded with a nonzero shear 
traction Tz = p(x) and zero double traction Qz = 0. Thus, 

(11) yz(x 0) = p(x), lxl < a, 

(12) ,yyz(x, 0) = 0, |xl < a. 

On the ligament y = 0, [xl > a, the displacement is assumed to be zero, 

(13) w(x,0) =0, lxl > a, 

which may be due to one of the following loading conditions. One condition is the 
antisymmetry of the loading with respect to the x-axis so that the displacement 
is antisymmetric with respect to the x-axis. In this case, one can furnish another 
condition: 

(14) =2w(x'0) -0, x >a. 

This is the condition used in Zhang et al. [38] in the case of C' = 0. Alternatively, the 
ligament can be clamped to a rigid substrate so that 

(15) Oa w(X, 0): 0, 
o xl > a. 

ay 

The boundary condition studied in much greater detail in what follows is a linear 
combination of the above two, 

(16) -?'eyz + e2eyz/Oy = 0, IxI > a, 

which, in conjunction with (12), implies 

(17) ,yyz(X, 0+) =0 Vx C (-oc, o). 

This is the condition used in Vardoulakis, Exadaktylos, and Aifantis [35]. Conditions 
(8), (11), (12) together with either (14), (15), or (16) constitute a mixed boundary- 
value problem for (7). Conditions (14), (15), and (16) are analogous to the Neumann, 
Dirichlet, and Robin conditions, respectively, in classical potential theory. In the 
special case ' = 0, however, condition (16) reduces to condition (14) of Zhang et al. 
[38]. 

By standard elliptic partial differential equation theory, the solution w(x,y) of 
(7) with the mixed boundary conditions (11), (12), (13), and (16) (or (14) or (15)) is 
unique in a general class of functions and is infinitely differentiable in the interior and 
continuous up to the boundary. One of the main goals of this paper is to characterize 
precisely the behavior of the solution as it approaches the boundary, in particular the 
points (i.e., the crack-tips) where the boundary conditions change type. 
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4. The Green function and integral representation of the solution. Let 
the Fourier transform be defined as 

1 f0 
f = .F(f)Q~) I=7= 00f(x)e-'xdx. 

By the Fourier inversion theorem, we have 

1 f00~ 
f .FT1(f)(x) = I~ f (~)eix~d~. 

v/2w7 oc, 

Let 

1 f0 
w(x, y) I zb(~, y)e x~d<; 

v/2w7 00 

then from (7) we obtain 

(18) f ~- (V2~22 + 1) dW + 4 + ~2>, 0. 

The characteristic equation corresponding to (18) is 

-24 (2f?2~2 + 1)A 2 + (e24 + 0) = 0, 

which can be factorized as 

-f A (1 + f2~2)] [A 2 
- 

2 
= o 

anld solved as 

or?V2f2 

By the symmetry of the problem, only the upper half plane (y > 0) is considered, and 
thus we keep only the negative roots 

- ~ an A2( - 
_V~2 + f -2* 

The general solution w(x, y) to (7) can be given by 

1 fOG 

(19) w (x, y) = '~ ] A(~)e'\1y ? BQ~)e A2Y] e2x~d<, y > 0, 

which satisfies the far-field condition (8). The coefficients A(s) and BQ~) are to be de- 
termined by the boundary conditions. Note that A2 (~) has the following asymptotics: 

(20) A2(~) - 

1 
- + 

which is used in the next section. After substitution, we obtain 

lyyz (X, Y) - 
wfoo{A(~~) (f2~2 ? f' ~) e-I'Iy 

(21) + B(s) [e2~2 + 1 ? (fl/j)V~2f2 + i] e-(y/e)V~~2f2?1} eix~d<, y > 0. 
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Condition (17) and equation (21) then imply that 

(22) B() = 2 1 
A(). 

(e,/e)v/e22 + 1 + 22 + 1 

As we will see below, A(() does not decay in ~ for ?fll >> 1, so (56) is not well- 
defined for y = 0, and the stress ryz (x, 0+) should be obtained from (56) by a limiting 
procedure y -+ 0+, giving rise to Hadamard's finite-part integrals (see the next section 
and Appendices A, B). On the other hand, the integral in (19), for IyI << ?, is a much 
nicer object due to the cancellation of singularities in A and B. Indeed, from (22) we 
see that 

B() (-1+ e22) A((), ll >? 1, 

and thus we have 

A(() + B(~) A( ), 1 > 1. 

Similar cancellation occurs in (21) (cf. (61)-(62)). 
Define the slope function 

(23) O(x) W(X 0+) 

so that 

O(x) = 0, xl > a, 

and 

(24) O/)(x)dx = w(a, 0+) - w(-a, 0+) = 0. 
a 

Since (19) implies 

&w(x,y) 1 00 
(25) 

x 

i( \A(~)e-WIy + B(~)e-( 
v/e)/e2 

e+1] eed y > 0O 
Ox 02 J- B1 

we have the integral representation for O(x): 

1 00 
O>(x) = V- j i[A(~) + B(~)]eix~d~, -oo < x < xo. 

Inverting the Fourier transform, we obtain 

(26) i~[A(~) + B(Q)] = (t)e-1tdt -:= (). 

Clearly, ()/(i0) = tb(, 0+) := Jaa w(t, 0+)e-itdt/2-. 
Substituting (22) into (26), we obtain 

(27) A(() = A(~)w(U, 0+), 

(28) B() =B()(, 0+), 

1073 
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with 

(29) A(s)- p,I 
~ 

+f2~ 

(30) f2~2 ?e'l~ 

Note that A + B = 1. With (29) and (22), we can rewrite (19) as 

(31) w(x, Y) - j wz(t, 0+)g(x - t, y)dt, 

where the Green function g9(x, y) is given by 

(32) g(x, Y) = elx EA(~)e-l~y + _1()(Yf d~. 

In contrast,I the displacement w, (x, y) of the classical elasticity, under the bound- 
ary conditions (11), (13), is 

(33) Wc(X, Y) - 
j2 WC (t,0+)!gc(x - t, y)dt 

with the Green function 

(34) 9c 2x PY) eIl~y?i(`t)~d~ dt -2? x2 

In section 8 we show the convergence of g to g;c as ? tends to zero for any p ?'I 
- 1. 

5. Hypersingular integrod'ifferential equations. Substituting (31) into (56), 
passing to the limit y -~ 0+ , and using condition (1 1), we obtain the following integral 
equation: 

(35) lim C /(t)f K( Y) ei~(x-t) d~ dt -p (x), lxl < a, 
Y-_~o+ 2wr J_ J 

with the kernel 

(36) jQ,) [~ 1 e~' A~Y 

The limit Y -+ 0 O in (35) is singular since KQ,0) does not decay in ~.Thus we 
write 

K(~ 0) = K00 (~) + K 

with the nondecaying part k0()given by 

(37) kI (, ) I 1 k00(~,o)=- 
41- 

(?N 2 C 
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and the decaying part Ko0() given by 

K0( _= /11 ([e'H1/2 + (?'/2f)2] (v//f22 + 1 - 11) + ('/)3/4 

(38) =P ( 1/2+p/p4)e22+1- )+ p2/4) , 

p + = \/22 + I + l J' 
' l 

By (37) and the results of Appendix B, 

/ koo (, y)ei(x-tdg 
oo 

converges as y -> 0+, in the sense of distribution, to the hypersingular kernels of the 
following equation (39), whereas Ko(() gives rise to the regular kernel Ko. Thus, as 
y -> 0+, equation (35) becomes 

22 a O (t) 1 -- p2/4 fa (t) d K o(t). ()d _ P(xW 
i- La (t - X)3 

dt +do Iiatdt- - C 7r J_o (a 7r a t - x J_a 2 G 

(39) 
where [xl < a, and the regular kernel Ko can be written as 

(40) Ko(t - x) = 2 ( Ko() sin[(t- x)]d- 

in view of the antisymmetry of Kfo(). Here f=a denotes Hadamard's finite-part inte- 

gral, and f-a denotes Cauchy's principal value integral [15, 22]. Since the dominant 
kernel in (39) is cubically singular, we need to furnish, in addition to (24), two more 
crack-tip conditions, 

(41) 0q(a) = 0b(-a) = 0, 

in departure from the classical elasticity, in which the displacement gradient O(x) has 
the end-point asymptotics 

(42) O(x) =- /2 _ 2) as x - a, (-a)+. 

(See below for more discussion on this.) As we shall see, a much weaker condition 
than (41) is sufficient to ensure the uniqueness of the solution which, in turn, can be 
shown to satisfy (41). 

An important observation is that once O(x) is solved from (39), the coefficients 
A(() and B(s) can be obtained from (29) and (30), respectively, and then the full-field 
solution w(x, y) is explicitly given by (19). 

6. Solutions of the integral equations. It is convenient to nondimensionalize 
(39) by the half crack length a. In view of the fact that both O(x) and p(x)/G are 
dimensionless, this amounts to normalizing the variables by a in the equation and 
replacing ?, ?' by ? = i/a, ' = #'/a, respectively. But we will continue to call ? by ? 
and e by /' for ease of notation. 
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6.1. Case e' = 0: Closed form solution. Note that the regular kernel Ko(t- 
x) in (39) has a factor ?', and so it drops out from the equation when t' = 0. 

After normalizing by the half crack length a, equation (39) becomes 

(43) -22 J (t)3dt +- t (t)dt = p(x)/G, l < 1. 

Let H denote the finite Hilbert transform 

i /: c)(t) dt. 
Hi7r t-x 

Then, by the definition of Hadamard's finite-part integrals (Appendix A), (43) is a 
second order differential equation for H[I](x), 

-_f2H["(x) + H [?](x) = p(x)/G, 

which has the general solution 

(44) H[k](x) = -- e/ e2 e-2/ e p) dt ds + Clex/e + c2e-/e. 

Set 

f(x) = - ex/ e-2S/e et/t p(t) dt ds; 
f2 GC - 

then we have 

(45) r f - x (t)dt - f(x) + Clex/t + C2e-x/ g(x). 

It is well known [33] that the solution ?(x) of (45), with condition (24), is unique in 
LP[-1, 1] for any p > 1, where LP[-1, 1] is defined by 

- /1 -"l-/p 

LP[-1, 1] - f: [-1,1] -7 | I Ifl = ] \f(x)lPdx < oc 
-1 - ) 

and Ob(x) can be written as 

VI(- 
1 

,g(t) xdt+ g( dt 
X(z) = / 1 VI t2(x - t)dt+ rV1 - x2 1 V/1 - t2 

- 1 AI -g (t ) d I + 
(46) + rV1-2 J 1 (-t2 dt + 1 J (t)dt, 

provided that (46) is well defined. For this it suffices, for example, that g(x) E 

LP[-1, 1] for some p > 2, so that g(t)//1 - t2 E Ll+[-1, 1]. 
Under condition (24) and a stronger integrability condition, ? C LP[-1,1] for 

some p > 2 (instead of condition (41)), we then have the conditions determining g(x) 

J1 j%2/ tg J (t) 2 tO 1r /1 --W dt= ' 
1 VI - t2 dt'o, 
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or equivalently, 

f (t) d t 
1 e+ I 

eC1 
(47) \1 - t2dt + Ci \/1 t2dt + C2 f -t2 dt = o, 

i tf(t) d 
1 tet/* te-tl 

(48) J - tft2 dt + Ci Jj / JI t2 dt +C2 2 dt - O 

which uniquely determine the constants C1, C2: 

C = (2 2 dt dt - (2 V / dt - 2 j dt dt 
\I Jl - t2 1 /--t2 1 I - t2 1 1- - t2 

C2 - (2 dt) + 2 dt dt. 
l 7-1 - t2 l /- t2 l 1- t2 l 7-1- t2 ' 

With the above proviso, (46) becomes 

/_ ,/ (49)- x2 [1 g(t) 4= 
T T_ VI V- t2(x - t) 

While the form of (49) makes explicit the crack-tip asymptotics 0(v/1- x2) for the 
slope O(x), the following alternative form [28] is also useful for analyzing the limiting 
behavior as f - 0 

(50) (x)- j /1 -' t2 f(t) dt + C1 
- t2 et/dt 

T(V) 
- 1 X - t x - t 

+c ji /1 
I- t2e-t/ dt 

since the limit has the singularity like (/1 - x2)-1 near the crack-tips (see section 8, 
(68)). To be consistent with expression (49), the apparent singularity in (50) must be 
canceled. 

The unique solution satisfying (41) corresponds to the following choice of C1, C2. 
First we note that, for f(x) C LP[-1, 1], p > 2, 

H [V1 - t2f] (-1) = >- j 1 f(t)dt < oc, 

H [ V/ 1- t2/] (1) = -1- 
f e/dt 

-1 
1 

j ?t et/edt - -H [1 - ret/t ] (1) < oe, 

-H [v/ -t2e-t/j (1) = r1 J/ e -/dt 

= et/it= H [1 2et/] (-1) < 
7l' I -t 
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Thus, in the presence of the factor 1//1 - x2 in (50), the constants Ci and C2 must 
satisfy 

(51) H [Vl/ - t2f] (-1) + C1H [V/1 - t2et/] (-1) + C2H [v1 - t2e-t/'] (-1) = 0, 

(52) H [/1 - t2f] (1) + C1H I/1 - t2et/e (1) + C2H [i/1 - t2e-t/t] (1) 0. 

The determinant of the above system is 

H [/i - t2et/t] (-1)H [/1 - t2e-t/] (1) - H v/1 - t2e-t/] (-1)H [v/1 - t2et/] (1) 

= {H [v/i - t2et/e] (-1)} - {H [V/1 - t2et/] (1)} 

#0, 

and thus Ci and C2 are uniquely determined by (51)-(52). It can be shown di- 
rectly that with this choice of C1, C2, equation (50) has the crack-tip asymptotics 
O(/1 - x2). The idea is that the expression 

v/1 
- t2 f (t) d C -t2et/~ /-t2e-t/ 

X t - f( )dt? + Cl X- /1 -t e / dt + C V - t2 e t 
--1 t-x i t -x i t-x 

generally has the asymptotics 0(1 - x2) near the crack-tips x = i1. We leave the 
details to the reader. 

6.2. Case ?' =7 0: Regular perturbation. Integrating (39) once in x, we 
obtain 

?2 ? (It) 1-p2/4 f1 1 ?1 
-- J (tx) dt + /4 og It - xlO(t)dt + - Ko(t- x)o(t)dt- - (x) 
7rJ (t -x)2 - 7r i 7ri 2 

(53) = p(t)/Gdt+Co, Ixl < 1, 

where Ko(t) is a primitive function of the regular kernel Ko: Ko(t) = Ko(t). The 
constant Co is to be determined by condition (24). With condition (41), equation 
(53) is a type of quadratically singular integral equation, studied in Martin [21], in 
which the end-point asymptotics of q(x) was shown to be O(/1 - x2) by using the 
Mellin transform under additional assumptions. 

The crack-tip asymptotics can also be derived in another way. Integrating (39) 
twice in x, we obtain 

-2H[q](x) + P / ] | log It - sfdsq(t)dt + - ] ds daKo(t - a)q(t)dt 
7r I i i 1 

-2 - (t)dt = J ds dap(ac) + Cx + Co, 
2 i G I I 

which is a generalized Cauchy singular integral equation 

(54) -2 H[0] (x) + j K(x, t)q(t)dt = ds + Clx + Co 

with a regular kernel 

t) 1 (f/2)2 ia ! fx s lI 

K(x,t) - log t- s\ds + ds daKo(t- a) - 
-I[-i, x](t), 7 -i 7r -i 1 2 
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where I[_1, x] is the characteristic function of the interval [-1, x] V\xl < 1, i.e., 

{ 1 if t [-1, x], 
I[_1, x](t) 

- 
0 if t ? [-1, x]. 

Since 

j K2(x, t)dtdx < oc, 

the integral operator 

K[0](x) K(x, t) x(t)dt 
-l1 

is a Hilbert-Schmidt operator on L2[-1, 1]. Therefore the solution X has the same 
end-point asymptotics as that of the solutions X of the dominant equation 

(55) -2H[](x) x) x) + Clx + Co, 

subject to the same set of end-point conditions [26]. The end-point asymptotics of 
the solution of (55) can be analyzed as before. We will not repeat it here. 

7. Stress asymptotics ahead of crack-tips. In this section we recover the 
original length unit, so that the crack length is 2a and the slope function is q(x/a), x E 
(-a, a), where 0(t), t E (-1, 1), is the solution of (39). 

The full-field stress is given by 

(56) ayz(X,y) = - J A(>w( 0+)e-l0+i,d, y > 0, 

which is analogous to its classical counterpart 

v/Z7T roo 
Uyz(X,Y) = - J y tlA>( )0(~,0+)e->ly+/XCd~ , y>0, 

with Ac(~) = 1. In what follows, we focus on the stress along the ligament, which has 
the alternative expression given by the left-hand side of (39). 

First let us analyze the asymptotics of H[q](z) as z -> a+. We write 

0(t/a) = /1 - t2/a2u(t/a), 

and we know that u(?1) -7 0 in general. Set 

z =a(l+e), 0 < <<1. 

A simple calculation yields 

H[?a](1 + e)= -- 1/.1 +a( (1)dt + 17' I1(1 - t)(1 + e - t) 

aE v /1+ t( u(t) ) 

2O (1-) r?? dr 2v/-2u( aye 2+ 

1 

as e -- 0, 
7I (o +4 1 
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since q(1) = 0. On the other hand, for the regular kernel K(x, t) in (54), the function 

F(z/a) - K(z/a,t))(t)dt 
/-1 

is twice continuously differentiable, and its second derivative generally has a finite 
limit 

(57) lim F"(z) < oc. 
z--a+ 

Thus the second antiderivative of the stress ahead of x = 1 has the asymptotics 

dt j yz(T)dT = O(/x/a 
- 1) as x a+. 

In other words, 

Ki/Itla K.I (Tz(x/a,0 ) as x 
- a z(x/a,0) (x/a - 1)3/2 2 w-(x- a)3/2 

with the Mode III stress intensity factor (SIF) 

K I -I = V VaK1i, 

where KIII is the normalized SIF, independent of the crack length. The SIF KIIi 
of the gradient elasticity is defined so as to have the same unit as its counterpart in 
classical elasticity. It should be noted also, because of (57), that the other singular 
term 0 ((x/a - 1)-1/2) in the asymptotic expansion of oyz(x) as x - a+ is also 
determined by the dominant cubically singular kernel. Mode III SIF for functionally 
graded materials is given by Paulino, Fannjiang, and Chan [27]. In Table 1, we see 
that the numerical values of KIII converge to the negative classical value of SIF (i.e., 
-1) for p > -1 and diverge for p < -1 as ?, ' 0. 

TABLE 1 
Normalized SIFs K I I (a) 

p t = 0.1 ? = 0.05 t = 0.025 
0.1 -0.9438012 -0.9720323 -0.9863192 
1.5 -0.9155931 -0.9647259 -1.0015685 

-1.5 -1.4612889 -0.3336649 -0.4651179 

8. Convergence to classical elasticity as ,e?' -+ 0. On one hand, it is 
natural to expect the convergence of the gradient elasticity to the classical elasticity 
in the limit X, ? -* 0 in a suitable sense; on the other hand, the convergence can not be 
uniform throughout the domain for certain physical quantities, in view of the fact that 
strains and stresses of the gradient elasticity have different kinds of asymptotics near 
the crack-tips from those of the classical elasticity, as we have shown in the preceding 
sections. In this section, we show analytically the convergence results for small p and, 
in the next section, we show numerically the convergence results for p > -1 and the 
divergence results for p < -1. 
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8.1. Convergence of the Green functions. We consider a general form of 
the classical limit in which X, f' tend to zero with a finite ratio p: 

(58) lim ?'/e p. 

First we analyze the asymptotic behaviors of A((), B(s) as given by (29), (30). 
We divide the domain into two regions: ?\ j <K 1 and t\1\ >> 1. Clearly, we have, for 

l <? 1, 

(59) A (( ) 
I + 

l 2f2/(2 
- 2p) if p/ -1, 

J(3*) ^ 
^ ~[j|/2 if p- -1, 

(60) 1B() if p -1, 

and, for 1 j[ >> 1, 

(61) A(() -22 + ,'[l/2 + 1 - p2/4, 

(62) /B() --2~2 - |'11|/2 + p2/4. 

In (61)-(62) we write several leading terms of the asymptotic expansion, because they 
are related to the cancellation of singularities alluded to in the discussion after (22). 
As a result of this cancellation, we have from (61)-(62) that 

(63) 0(, y) e-l for | 1 l1 > 1, 

after a simple calculation taking into account the exponential factors in (32). This 
asymptotics (63) shows the absence of boundary layer behavior (i.e., y/t <? 1) in 
Green's functions as f, ' -- 0. Outside the t-neighborhood of the x-axis (i.e., y/f >> 
1), Green's function is dominated by the contribution from A(s), |J1j << 1, due to 
the much smaller exponential factor associated with B(,) in (32), and thus, again, we 
have 

(64) g(, y) ~ e-vl[A(0) e-Il for 1l3| << 1, 

except for the special case p= -1, for which case 

(65) 0( y) - e-ylA(4) , e-ylelf31/2 for 1 | << 1. 

Equations (63) and (64) show the convergence of Green's functions to the classical one 
throughout the domain, while (65) clearly shows the divergence of Green's functions 
for p - -1 in the region outside the 1-neighborhood of the x-axis, i.e., y ?> f (cf. 
(33)). 

Therefore the full-field convergence of the displacement (31) to the classical so- 
lution requires only the uniform convergence of the crack displacement w(x,0), as 
determined from (39), to that of the classical elasticity on [-1,1]. This is addressed 
in the next section. The derivatives of the displacement (such as strains and stresses), 
however, may still develop different singularities in the 1-neighborhood of the crack- 
tips, preventing their uniform convergence (see Figures 4 and 5). 
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Thus in the limit (58) the Cauchy singular integral equation of the classical elasticity 
[26] is formally recovered from (39): 

(66) f1_ f (t)dt- p(x)/G, Ix\ < 1. 

In the following, we show analytically the c on vergence to the classical elasticity of 
the separate limits: limeo0 limoo and, for theme more complicated case of simultaneous 
limit (58), we show some numerical results (Figures 4 and 5 for the convergence of 
the slopes and the stresses for p > -1, Figure 6 for the divergence results for p K -1, 
and Table 1 for the stress intensity factors). 

In view of the integrated form of (54), the first limit of ?1 --- 0 with fixed ? is a 
regular perturbation by a vanishing Hilbert-Schmidt operator of 

(67) ?2 H[4](x)+- f(t) l og\t-s\dsdt= j dsf d p( )/G+Cx+Co 

1 l 1f_ s s i t 
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FIG. 5. Stress ayz(x/a, O)/G along the ligament for fixed p = 0.5 and various i. The dashed 
curve is the stress for the classical elasticity. Similar convergence holds for other values of p > -1. 

at p=-1.5 

x /a 

FIG. 6. The slope of the crack profiles for p = -1.5 and various ? as indicated. 
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as noted in section 6.2. So the convergence follows from standard perturbation theory 
of integral equations [26]. Equation (67) is equivalent to (43) upon differentiating 
twice. 

Next we examine the limit e 
--* 0 with e = 0. A similar limit has been studied in 

Zhang et al. [38] for a semi-infinite crack by using the Wiener-Hopf technique. 
Let Xc(x) be the solution of the Cauchy integral (66) and let A(x) = O(x) - qc(x) 

be the difference. Then, by (43), A(x) satisfies the equation 

H[A](x) = ?2H[4]"(x) = H[](x) -p(x)/G, Ixl < 1. 

Since A(x) integrates to zero on [-1,1], we have the formula for A(x) (see [28]): 

(68) A\(x) = 
-/1 2 - t (H[?](t) -p(t)/G)dt. 

Now we need only to show that H [0] -p/G vanishes as ? -- 0. For clarity and simplicity 
of the presentation, we consider the uniform loading p(x) = Po and po/G = 1, for 
which the crack profile of the classical elasticity is the unit semicircle. In this case, 
(44) becomes 

H[o](x) = 1- el/ex/e/2 - e-/ee-x//2 + Clex/l + C2e-/ =- 1 + C'ex/l + C2e-/, 

where Ci - C[ + el/e/2, C2 - C2 + e-1/e/2 satisfy 

c1 j \ --et/ect+ 
C' --j lte-t/f\dt=-X 

'tdt 0, 

C 1 i+tet/edt + C2 t e-t/dt 1i / dt 0 , 

7_ 1 -t 7l' 1 -t 7' 1 V 1- 

following from (51) and (52). It is easy to see 

(69) C 1C - J C et/+ e t/ dt j t. 

Thus, the right-hand side of (68) becomes 

C' L ii Vi - t2et/ f /1 Vi-t2e-t/e } 
(70) 

1 dt + dt . 
7 rx/1 - X2 1 x - t 1 x - t 

Clearly, as ? -- 0, the dominant contribution to the first integral in (70) comes from 
t ~ 1, whereas the dominant contribution to the second integral comes from t . -1. 
The asymptotics of these integrals, as ? -) 0, are straightforward: 

J '1 t e dt v/2el/3/2 es/ ds 

v/lt2e-t/^e-/_ t dt - v2el/?3/2 e ds 

So (70) is asymptotically equivalent to 

2xv/el/t13/2x fo e-S00 d 

O(e1/ef3/2// - x2) for 1 - x2 > nt log l/e, - 
O(e1/?1l/2/V/1 - X2), otherwise 
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for some sufficiently large n > 0 (independent of ?). On the other hand, the relevant 
integrals in (69) have the following asymptotics: 

(72) e j et/edt ~ vV e-t/dt v/- e/ds 
I l+t IVl+ v 

Put together, (71), (72), and (68) imply the following bound on A(x): 

( f 0((1 - x2)-1/2), 1 - x > nlogi/e, 
(73) A(x) - 

0 O((1 - x22)-1/2), otherwise, 

uniformly for some sufficiently large n > 0 (independent of g). The first estimate of 
(73) provides a rate of convergence of the crack profile to the classical case away from 
the crack-tips. The second estimate of (73), in conjunction with the following other 
estimate, gives control over the behaviors in the immediate vicinity of the crack-tips. 

To analyze the limiting behaviors in the neighborhood 1 - x2 < n log 1/f of the 
crack-tips, we use the alternative form (49) of the solution. For p/G = 1, we have 
f(x) = -1 + el/iex/l/2 + e-1/ee-x/e/2 and 

O(x)_ v/1-x f X2 dt I/ et/e )-/ et/+e-t/f 
~(x) -2 - e ?dte dt 
lT -/1I2 - t2 1 V/1 - t2 1 lv1 - t2(x - t) 

fli - t2(x- t) 

A similar asymptotic analysis gives the following estimate on the slope q(x): 

., 1 dt { oOe -~)-xV/1 - 2 
y00 

c 

) j v d-t2 ( ds) V - 2 (l e- ds. 

In contrast to (71), the relevant asymptotics is now 

-/ _x2 L e-s d O(V 1-x2) for 1-x2 > nlogl/C, 
v/1 - 

Jox2 (x2 - (1 - )2) S 
O(-3/21 - x2), otherwise 

(74) 
for some sufficiently large n (independent of ?). Note that the second estimate of (73) 
holds for S(x) as it does for Xc(x). 

Now we can complete the proof by applying the mean value theorem to the crack 
displacement near the crack-tips: w(x) - w(-1) + (x1)(1 + x), w(x) = w(1) + 
qf(x2)(x- 1) for some x e (-1, x), x2 (x, 1) by choosing x. The second estimates of 
(73) and (74) together imply that the displacement in the region Ix2 - 1 < n?log 1/? 
is uniformly bounded by 

Cmin {t-3/2 (1 -2)3/2, (1- x2)1/2} for Ix2 _ 1| < n log l/, 

which vanishes as ? - 0, uniformly in the corresponding region as did the classical 
crack displacement. 

9. Numerical results. Our numerical solutions of (39) employ the fast Fourier 
transform and the collocation method in terms of the Chebyshev polynomials. The 
results are shown in Figures 1, 2, 4, 5, 6, and Table 1. 
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* Figures 1 and 2 show that for p > -1, no oscillations occur in the crack 
profile. We see that the crack profiles of the gradient elasticity have cusps at 
the crack-tips and are consistent with the analytical results of section 6. 

* Figure 2 also shows that for p < -1, oscillations as well as negative displace- 
ments (i.e., displacements opposite to the loading condition) arise and, for 
p = -1, the profile is not stable. 

* Figure 4 shows the convergence of the slopes to their classical counterpart as 
-> 0, in the region away from the crack-tips, for p = 0.5. At the crack-tips, 

the slopes are zero in contrast to the infinite slopes of the classical profile. 
Similar convergence holds for other values of p > -1. This is consistent with 
the analytical results of section 8. 

* Figure 5 shows the convergence of the stresses to their classical counterpart 
as ? -* 0, in the region away from the crack-tips, for p = 0.5. We see that, 
as the crack-tip is approached, the stresses change sign and become negative. 
Near the crack-tips, the stresses of the gradient elasticity are more singular 
than their classical counterpart. Similar convergence holds for other values 
of p > -1. This is consistent with the analytical results of section 8. 

* Figure 6 shows, for p < -1, that the slopes of the crack do not converge. 
Instead, oscillations develop and, as ? -+ 0, become more severe. Similar 
divergence occurs for other values of p < -1. 

* Table 1 indicates the convergence of the SIFs to the negative of their classical 
counterpart for p = 0.1,1.5 and the divergence of the SIFs for p = -1.5, as 
?-*0. 

10. Conclusion and discussion. We have considered Casal's strain-gradient 
elasticity with two material lengths ?, ? for a Mode III finite crack which gives rise 
to a higher order elliptic mixed boundary-value problem. We take the boundary 
integral formulation and transform the problem into a hypersingular integrodifferential 
equation on the crack line, supplemented with the natural crack-tip conditions. 

For a particular type of boundary condition, we have explicitly obtained the Green 
function. The full-field solution is then expressed in terms of the crack profile and 
the Green function. For ' = 0, we have obtained a closed form solution for the 
crack profile in two alternative forms, which explicitly yield the crack-tip asymptotics 

0((1 - x2/a2)3/2) for the displacement and 0((1 - x2/a2)-3/2) for the stress. The 
case of small ?' is shown to be a regular perturbation of the case ' = 0 and, thus, 
shares the same type of asymptotics. Numerical solutions are given for various values 
of p :: -1. 

For the limit ? -> 0 with p I -1 fixed, we show the convergence of the Green 
function to its classical counterpart. When p = -1, the Green function does not 
converge to the classical one. For small p, we have shown analytically the full-field 
convergence of displacement to its classical counterpart. For arbitrary p > -1, we 
show numerically the convergence of the crack profile, the slope, and the stress. For 

p < -1, numerical evidence points to the divergence of the crack profiles and the 
slopes. 

Moreover, numerical calculation indicates the convergence of a suitably defined 
SIF to the negative of the classical counterpart for p > -1 as ? -- 0, even though 
the stresses are one order more singular than the classical stresses near the crack-tips. 
The SIFs for p < -1 are shown to oscillate and diverge as f -+ 0. 

Finally we discuss briefly the strain-gradient effect on Mode III cracks for the 
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more general strain energy density 

W- 2 [G(6+2 + E62) + G2(IVEzl2 + IV,Yzl2) + Gevkok( + 6)] 

+ 2G2(xz,x + z,y)2, 

which has the one additional volumetric characteristic length ? > 0 to (3) and has the 
most general volumetric strain energy for isotropic materials. Likewise, one can add 
a corresponding term with ? to (2) (see Fleck and Hutchinson [14]). 

It is straightforward to check that the equilibrium equation becomes 

- (2 + 2) V4W + V2W -0. 

The expressions for pIkij and ari would also change. However, in the case of f' - 0, 
the corresponding hypersingular integral equation is the same as (43), and thus the 
crack profile does not change with T. In the general case of e > 0, the corresponding 
hypersingular integral equation takes the form 

2?2 a (t) d I-p p2(1 +2)/4 a (t) t _2e ()~3 dt + 1f( + )/ f.t-)dt +- /Ko(t -x)(t)dt 

-2(+ p2) (X)= GP 

with the regular kernel Ko(x) having the Fourier transform 

<l \/1 - 2t /2 + p(1 + p2)/4] /(e2 + [2)2 + 1 - VI2+l + ^ + p2(1 + 2)/4 

p + "(e2 + 2)2 + + vf2 + j2 

where 

' I 

Vf2 + j2 V2 + 2 

In particular, the transition to the classical elasticity must be investigated with respect 
to the two parameters p, p as ? tends to zero. However, by comparing this with (38) 
and (39), we see that the convergence results should be similar to the case = 0 as 
long as p stays away from 1. 

Appendix A. Finite-part integrals. Let C"(-1, 1) be the space of locally 
H6lder continuous functions on (-1, 1) with index a < 1. Denote L1+ = Up>1 LP-1, 1]. 

DEFINITION 1 (Cauchy principal value integral). 

f L(t) dt : lim dt + dt} xI < 1 
1 t-x - -o\- t-x x+et-x 

' ' 

for any X$ e C"(-1, 1) n L1+, 0 < a < 1. 
By definition, we have 

- t- X e?O t-xl>e t- x t-x\l>e t - x 

1 (7) =- X t () \dt dt 
(75) :dt+ OW 
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Note that for any c C C, a > 0, the first integral on the right-hand side of (75) is 
an ordinary Riemann integral, and the second integral is 

J1 dt 1-x 
f dt - =log-X 1 x[ < 1. - t-x 1+X' 

Denote by Cm'(- 1, 1) the space of functions whose mth derivatives are locally 
Holder continuous with index 0 < a < 1. Finite-part integrals are defined recursively 
as follows. 

DEFINITION 2 (Finite-part integral). For any q E Cn C'(-1, 1) n L1+ and n = 
1,2,3,..., 

- (t-x)n+1 n dx (t - X)n 

with 

I ~(t)dt dt. 
-1 t-x _1 t-x 

From (75) and the definition of finite-part integrals, it follows that 

(76) (t) dt 

__1 -(t) _ En- (j)(x)(t -x)/k! (x) [1 dt 

I -1 (t-x)n j= k! - (t-x)n-' 

For ?) C c'"(-1, 1) n Ll+, the first integral on the right-hand side of (76) is an 
ordinary Riemann integral. It is easy to check that the integration-by-parts formula 
holds for finite-part integrals. 

PROPOSITION 1. For X e Cn (X(-1, 1) n L1+ 

/i ? dt'() 0(?t OM 0(- 1) 
(t-x) 1dtn (t -x)+ dt) - (-1) ) n > 1, 

1(1t) log It - xldt == X t) dt + X(1) log 11 - xl - 0(-1) log 11 + xl. 
i it-x 

Alternatively, one can define finite-part integrals by (76) and deduce Definition 2 and 
Proposition 1 as properties. 

Appendix B. Hypersingular kernels. For the derivation of hypersingular 
kernels, we use three basic ingredients: 

* the definition of finite-part integrals, 
* the following identity: 

(77)( -1 i- 
* the Plem dyely-i(t-) dn formy la- i(t- ) 26]. 

? the Plemelj formula [8, 26]. 
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PROPOSITION 2. 

limr1 (t dt dft -+ r-iq(x), 0 C Ll. 
e-0o (t- x) + ie t-r x ' 

Observe that 

kn(t-x,y) = 1 I 
i n e-lly+it-) 

27r 00 

- (-i)nIm d (Y-i(t-x))-1 

=(-1)~ dIm d- (y-d (t- x))- 

(_ )n 
dn 

-Re dX(t-x+iY) 
, 

where Im and Re denote the imaginary and the real parts, respectively. Thus, 

lim kn(t - x, y)o(t) dt= lim (-1)n Re -(t - x + iy)-1 (t) dt 
y--O+ Y-i'0+ I dxn 

=(-1l)n Re d lim (t - x + iy)-10(t) dt 
V dxn y-Jo+ 

n (- V2 dxn _ t- dt 

=Vn! (-1 )n dt, -nri!(-1)Th frI (t - X)d+1 

by the Plemelj formula and the definition of finite-part integrals. 
Note that, when n is an odd integer, 

j/ in e-ely+i(t-) d =-/-Im d-(t- +iY)- 

Thus we have 

j dt(t) lim J e- d< 
7-1 y d -o d 

=- Im -dn lim O (t)(t - x + iy)-1 dt V _dXn y-o+0 
dxn 

= v- r (x), 

where we have used the Plemelj formula again. 
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